

All rights reserved.

Reproduction in whole or in part is prohibited without the prior written permission of the copyright holder.
December 5, 2016

BLE on Android v1.0.1

Contents

Revision 1.0.1 Page 1 of 15

Liability disclaimer

Nordic Semiconductor ASA reserves the right to make changes without further notice to the product to

improve reliability, function or design. Nordic Semiconductor ASA does not assume any liability arising out of

the application or use of any product or circuits described herein.

Life support applications

Nordic Semiconductor’s products are not designed for use in life support appliances, devices, or systems

where malfunction of these products can reasonably be expected to result in personal injury. Nordic

Semiconductor ASA customers using or selling these products for use in such applications do so at their own

risk and agree to fully indemnify Nordic Semiconductor ASA for any damages resulting from such improper

use or sale.

Contact details

For your nearest dealer, please see Hwww.nordicsemi.com

Main office:

Otto Nielsens veg 12

7004 Trondheim

Phone: +47 72 89 89 00

Fax: +47 72 89 89 89

Hwww.nordicsemi.com

RoHS statement

Nordic Semiconductor’s products meet the requirements of Directive 2002/95/EC of the European
Parliament and of the Council on the Restriction of Hazardous Substances (RoHS). Complete hazardous
substance reports as well as material composition reports for all active Nordic Semiconductor products can
be found on our web site www.nordicsemi.com.

Revision history

Date Version Description

Nov 2016 1.0 First release

Dec 2016 1.0.1 Update based on comments by
Emil Lenngren

http://www.nordicsemi.no/
http://www.nordicsemi.no/
https://devzone.nordicsemi.com/blogs/1046/what-to-keep-in-mind-when-developing-your-ble-andr/

Contents

Revision 1.0.1 Page 2 of 15

Contents

1. Permissions ... 3

2. Scanning .. 4

2.1 Android 4.3 and 4.4.x ... 4
2.2 Android 5 and 5.1 ... 4

2.2.1 Scan mode... 4
2.2.2 Report delay .. 5

2.3 Android 6+ .. 5
2.3.1 Callback type ... 5
2.3.2 Match mode .. 6
2.3.3 Number of matches .. 6

2.4 Receiving packets from a single device .. 6

3. BluetoothDevice object ... 7

4. Connection .. 8

4.1 The autoConnect parameter .. 8
4.2 BLE operations ... 8
4.3 Connection parameters ... 10
4.4 MTU .. 10
4.5 Packets per connection parameter .. 11
4.6 Protected services .. 12

5. GATT server ..13

6. Advertising ...14

Permissions

Revision 1.0.1 Page 3 of 15

1. Permissions
Android 6 divided all permissions into two protection level groups: normal and dangerous. Like before, each
permission that an app requires must be specified in the AndroidManifest file. However, normal permissions are
granted on installation, while dangerous permissions must be requested in runtime by the application when such is
needed. For more information, see Permissions normal-dangerous.

On Android, an app must have the BLUETOOTH_ADMIN permission to scan for BLE devices and to connect to them. If
an app just needs to connect to already paired devices, it is enough that the BLUETOOTH permission is requested.

Both BLUETOOTH_ADMIN and BLUETOOTH permissions belong to the normal permissions group. For more
information, see List of normal permissions.

On Android 6, an app must also request a permission from the LOCATION group in order to scan for BLE devices. The
permissions in this group are ACCESS_COARSE_LOCATION or ACCESS_FINE_LOCATION. The protection level for this
group is dangerous as it involves user’s private data in that beacons can be used to track user’s location. Android
requires user’s explicit approval to reveal a possible loss of privacy. This is why nRF Connect asks for Location
permission when the SCAN button is clicked for the first time.

https://developer.android.com/guide/topics/security/permissions.html#normal-dangerous
https://developer.android.com/reference/android/Manifest.permission.html#BLUETOOTH_ADMIN
https://developer.android.com/reference/android/Manifest.permission.html#BLUETOOTH
https://developer.android.com/guide/topics/security/normal-permissions.html
https://developer.android.com/reference/android/Manifest.permission.html#ACCESS_COARSE_LOCATION
https://developer.android.com/reference/android/Manifest.permission.html#ACCESS_FINE_LOCATION

Scanning

Revision 1.0.1 Page 4 of 15

2. Scanning
We recommend using Android Scanner Compat Library for scanning on Android. It brings almost all new Android
scanning features to the older platforms.

2.1 Android 4.3 and 4.4.x
On Android 4.3 and 4.4.x, there were two methods to start BLE scanning:

 BluetoothAdapter#startLeScan(LeScanCallback)

 BluetoothAdapter#startLeScan(UUID[], LeScanCallback)

When scanning, they were using a lot of battery and returning all advertising packets, though were not recommended
for use in background services. Every application with the scanning feature in a background service would have to
start and stop scanning every few seconds on its own, but as each app would do it independently from others, this
could end up with 100% time of scanning. This has been solved in the new API in Android 5 with scanning modes (see
Scan mode below).

A further restriction was that the method with UUID[] service filter could only be used with 16-bit UUIDs. A custom
UUID filtering wasn’t working so this method was practically useless.

2.2 Android 5 and 5.1
On Android 5+, scanning is performed using BluetoothLeScanner which can be obtained using
BluetoothAdapter#getBluetoothLeScanner(). This method returns null if Bluetooth is disabled.
A list of filters and scan settings, including scan mode and report delay, can be set using the ScanSettings.Builder
object.

2.2.1 Scan mode

ScanSettings.Builder#setScanMode(int) sets the scan mode. There are three options to choose from:

 SCAN_MODE_LOW_LATENCY

 SCAN_MODE_BALANCED

 SCAN_MODE_LOW_POWER

https://github.com/NordicSemiconductor/Android-Scanner-Compat-Library
https://developer.android.com/reference/android/bluetooth/BluetoothAdapter.html#startLeScan(android.bluetooth.BluetoothAdapter.LeScanCallback)
https://developer.android.com/reference/android/bluetooth/BluetoothAdapter.html#startLeScan(java.util.UUID[],%20android.bluetooth.BluetoothAdapter.LeScanCallback)
https://developer.android.com/reference/android/bluetooth/le/BluetoothLeScanner.html
https://developer.android.com/reference/android/bluetooth/BluetoothAdapter.html#getBluetoothLeScanner()
https://developer.android.com/reference/android/bluetooth/le/ScanSettings.Builder.html
https://developer.android.com/reference/android/bluetooth/le/ScanSettings.Builder.html#setScanMode(int)
https://developer.android.com/reference/android/bluetooth/le/ScanSettings.html#SCAN_MODE_LOW_LATENCY
https://developer.android.com/reference/android/bluetooth/le/ScanSettings.html#SCAN_MODE_BALANCED
https://developer.android.com/reference/android/bluetooth/le/ScanSettings.html#SCAN_MODE_LOW_POWER

Scanning

Revision 1.0.1 Page 5 of 15

SCAN_MODE_LOW_LATENCY SCAN_MODE_BALANCED SCAN_MODE_LOW_POWER

Figure 1 Scan modes

In the balanced and low power modes, the interval is 5 seconds. In the balanced mode, it scans for 2 seconds, then
waits for 3 seconds, while in low power mode, it scans for 0.5 seconds and waits for 4.5 seconds.

Packets should also be reported when another app scans in a more aggressive mode.
There is also a fourth, special scan mode, opportunistic, which means that your app will receive advertising packets
only when another application, for example Google Play Services, is scanning at the same time.

2.2.2 Report delay

ScanSettings.Builder#setReportDelay(long) sets report delay in milliseconds. Instead of notifying about each received
packet separately when it’s found, the app gets a list of packets every number of milliseconds. This has been added to
save battery as batching may be done on a very low level.

Bug: On Samsung S6 and Samsung S6 Edge all reported packets using report delay > 0 have equal RSSI (for older
version, or RSSI = -120 dBm in the current version). Therefore, if RSSI is important this method should not be used.

2.3 Android 6+

2.3.1 Callback type

ScanSettings.Builder#setCallbackType(int) sets the callback type. There are three types available:

 CALLBACK_TYPE_ALL_MATCHES - Trigger a callback for every Bluetooth advertisement found that

matches the filter criteria. If no filter is active, all advertisement packets are reported.

 CALLBACK_TYPE_FIRST_MATCH - A result callback is only triggered for the first advertisement

packet received that matches the filter criteria. This is useful if “beacon in range” scenario is

needed.

 CALLBACK_TYPE_MATCH_LOST- Receive a callback when advertisements are no longer received

from a device that has been previously reported by a first match callback. Useful to detect that a

beacon is out of range.

nRF Connect 4.8 does not allow to set the callback type. Only the ALL_MATCHES (default) mode is used in scanning.

https://developer.android.com/reference/android/bluetooth/le/ScanSettings.Builder.html#setReportDelay(long)
https://developer.android.com/reference/android/bluetooth/le/ScanSettings.Builder.html#setCallbackType(int)
https://developer.android.com/reference/android/bluetooth/le/ScanSettings.html#CALLBACK_TYPE_ALL_MATCHES
https://developer.android.com/reference/android/bluetooth/le/ScanSettings.html#CALLBACK_TYPE_FIRST_MATCH
https://developer.android.com/reference/android/bluetooth/le/ScanSettings.html#CALLBACK_TYPE_MATCH_LOST

Scanning

Revision 1.0.1 Page 6 of 15

2.3.2 Match mode

ScanSettings.Builder#setMatchMode(int) sets the match mode. There are two types available:

 MATCH_MODE_AGGRESSIVE - In Aggressive mode, hw will determine a match sooner even with

feeble signal strength and few number of sightings/match in a duration. This mode is default.

 MATCH_MODE_STICKY - For sticky mode, higher threshold of signal strength and sightings is

required before reporting by hw. The threshold RSSI may be chip-dependent.

See also: Android-6.0-Bluetooth-HCI-Reqs.pdf Chapter 6.1.3, Batch_scan_Discard_Rule.
nRF Connect 4.8 does not allow to modify this parameter and only the aggressive (default) option is used.

2.3.3 Number of matches

ScanSettings.Builder#setNumOfMatches(int) allows to set the number of matches for Bluetooth LE scan filters
hardware match. It seems to be related with Report Delay and says how many packets we want from a device in a
single batch. Three types are available:

 MATCH_NUM_ONE_ADVERTISEMENT - Match one advertisement per filter.

 MATCH_NUM_FEW_ADVERTISEMENT - Match a few advertisements per filter, depends on current

capability and availability of the resources in hw.

 MATCH_NUM_MAX_ADVERTISEMENT - Match as many advertisements per filter as hw could

allow, depends on current capability and availability of the resources in hw.

nRF Connect 4.8 does not allow to set this parameter.

2.4 Receiving packets from a single device
On some devices, for example Nexus 4 and 7, a scanning application receives only one packet from connectable
devices per scan – only one Scan Request is sent. Subsequent advertising packets are ignored. This makes listening to
RSSI changes complicated. An app would have to stop and start scanning every couple of seconds. Such a mode can be
configured in nRF Connect by setting Settings -> Scanner -> Continuous scanning to Disabled. However, if a peripheral
advertises as a non-connectable device, every packet received is reported to the application.

The majority of Android devices, however, send a Scan Request for each Advertising Packet received and both
Advertising Packet and Scan Response are reported multiple times.

https://developer.android.com/reference/android/bluetooth/le/ScanSettings.Builder.html#setMatchMode(int)
https://developer.android.com/reference/android/bluetooth/le/ScanSettings.html#MATCH_MODE_AGGRESSIVE
https://developer.android.com/reference/android/bluetooth/le/ScanSettings.html#MATCH_MODE_STICKY
https://static.googleusercontent.com/media/source.android.com/en/-/devices/Android-6.0-Bluetooth-HCI-Reqs.pdf
https://developer.android.com/reference/android/bluetooth/le/ScanSettings.Builder.html#setNumOfMatches(int)
https://developer.android.com/reference/android/bluetooth/le/ScanSettings.html#MATCH_NUM_ONE_ADVERTISEMENT
https://developer.android.com/reference/android/bluetooth/le/ScanSettings.html#MATCH_NUM_FEW_ADVERTISEMENT
https://developer.android.com/reference/android/bluetooth/le/ScanSettings.html#MATCH_NUM_MAX_ADVERTISEMENT

BluetoothDevice object

Revision 1.0.1 Page 7 of 15

3. BluetoothDevice object
In order to connect to a BLE device, an app needs to obtain a BluetoothDevice object. This can be done using one of
three methods:

 By scanning: a BluetoothDevice object is returned for each scanned advertising packet in a callback

parameter ScanResult.

 By obtaining a list of bonded devices using BluetoothAdapter#getBondedDevices().

 By creating a device object using BluetoothAdapter#getRemoteDevice(String address).

When a BluetoothDevice object is obtained using the last method (or by creating a new object with new
BluetoothDevice(address)), a connection attempt to it will work only if:

 The device has a PUBLIC address or is bonded, or

 The device has been scanned at least once before connection attempt since Bluetooth adapter

have been started

Explanation: In order to connect to a BLE device, a master device needs to know its 48-bit address and the address
type (public/random). The method above takes only an address (in the format AA:BB:CC:DD:EE:FF) as a parameter,
which means that the “type” information is missing. Android has a “security database” in the stack layer where it
stores triples: address, device type, and the address type of all scanned addresses. Every time a new device is found, a
row is added to this database.

If a device hasn’t been scanned, Android assumes that the given address is a public one, the logic being that random
addresses can change any time, and if it is known without scanning, most probably it is a public one. It is a known
Android bug and the work is being done to fix it. The result should be available in Android 7.2 or later.

This may cause a problem for example when starting a service that should reconnect to a device after a reboot. The
Android app may have the address saved, but until it’s scanned and found, the connection will not succeed as the
Connect Request will have the flag set to Public Address. Currently, the recommended way of restoring a connection
to non-bonded device it is to scan for it and start connecting (with autoConnect true or false) when found (note that
the device does not have to be in range when the phone is restarted/Bluetooth enabled).

Bug: When a connection is established with autoConnect=true to an unknown device (one that has not been scanned
since Bluetooth was enabled) the Android assumes the address is RANDOM, not PUBLIC. This is the opposite to when
this flag is cleared. This is the commit (2016-02-02) that changed this:
https://android.googlesource.com/platform/system/bt/+/d36b421035fe3b7d086f5d7737d8ba9fbdc471b3%5E%21/
and https://android-review.googlesource.com/#/c/200376/. See the last else-block, i.e. under "not a known device,
i.e. attempt to connect to device never seen before". Now, instead of always choosing public address it seems they do
some heuristics assuming random address, but if it is neither a non-resolvable, resolvable or static random address,
then it is certainly a public address. The problem is that the bit-check is written incorrectly to always return false, so
random address is always chosen. That was however fixed by
https://android.googlesource.com/platform/system/bt/+/42e055353ca397f3aaf350b99e79d42f79a478e1%5E!/. That
commit does not seem to be included in the Android 7.1 Nougat releases, so the change may be available since next
Android release.

https://developer.android.com/reference/android/bluetooth/BluetoothDevice.html
https://developer.android.com/reference/android/bluetooth/le/ScanResult.html
https://developer.android.com/reference/android/bluetooth/BluetoothAdapter.html#getBondedDevices()
https://developer.android.com/reference/android/bluetooth/BluetoothAdapter.html#getRemoteDevice(java.lang.String)
https://android.googlesource.com/platform/system/bt/+/d36b421035fe3b7d086f5d7737d8ba9fbdc471b3%5E%21/
https://android-review.googlesource.com/#/c/200376/
https://android.googlesource.com/platform/system/bt/+/42e055353ca397f3aaf350b99e79d42f79a478e1%5E%21/

Connection

Revision 1.0.1 Page 8 of 15

4. Connection
On Android, a peripheral BLE device may be used by more than one application at the same time. The physical
connection is managed by the system, while each app “thinks” it’s the only one connected to this device. There is no
way to check if another app is also connected without getting this information from the peripheral (checking if it’s
advertising, reading a value, etc.). When an app disconnects from the device, it will receive a callback
BluetoothGattCallback#onConnectionStateChange(BluetoothGatt, int status, int newState) with newState =
STATE_DISCONNECTED but it doesn’t mean that the device is in fact disconnected. To verify that a device has actually
disconnected, an app may get a list of connected devices using BluetoothManager#getConnectedDevices(int) with the
GATT parameter and check if the peripheral is listed there.

To ensure that the device will be disconnected, some kind of disconnect operation must be implemented on the
peripheral side (for example OpCode “Disconnect”, etc.), and it is the peripheral that must close the connection.

4.1 The autoConnect parameter
Connecting to a BLE device is done by calling the BluetoothDevice#connectGatt(Context, boolean autoConnect,
BluetoothGattCallback) method. The second parameter, autoConnect, indicates if Android should keep connecting to
this device whenever it is discovered until the BluetoothGatt#close() method is called, or the Bluetooth adapter is
turned off. If it’s true, the only difference regarding that is that the address is provided by the white list instead of the
HCI LE Create Connection command. Also the standard configuration (which may be different between Android phone
vendors) is to use more active scanning parameters when using autoConnect=false which leads to faster connection
setups. Whenever a device from the whitelist is discovered, the system will try to connect to it.

There are more differences: once the device disconnects with a reason other than the gatt object was
disconnected/closed, a new connection attempt will be made automatically if either the autoConnect parameter was
true or the connect() method was called on the gatt object, i.e. if you used autoConnect=false no further connection
attempt will be made. With autoConnect=false the connection attempt will also get a timeout of 30 seconds.
autoConnect=true has no timeout. Lastly, autoConnect=false will temporarily cancel all other pending connections to
devices in the white list and autoConnect=false attempts are queued up. You should also be aware of
https://code.google.com/p/android/issues/detail?id=228633 and certainly of
https://code.google.com/p/android/issues/detail?id=69834 if you use autoConnect=true (the latter issue was fixed in
Android Nougat)

An address may be added to the whitelist only if at least one of the following is true:

 A device is bonded

 The address is a public one

 The address is a random static address

Random non-resolvable and random resolvable addresses will not be added to this list if a device is not bonded, which
means that a connection to such address may never be completed (there is no callback at all, even no timeout) as it
would with this parameter set to false.

4.2 BLE operations
After a connection to a device is established, an app may send or receive data using asynchronous calls using the
BluetoothGatt object API. This object is returned by BluetoothDevice#connectGatt(Context, boolean autoConnect,
BluetoothGattCallback).
A corresponding callback must be received before a new method is called, so it is not possible to send data in a loop
just by writing characteristics. The correct way of sending more than one packet is to write a characteristic, wait for a
callback, write the next packet, wait for a callback, etc.

To make this easier, the BleManager class in nRF Toolbox v.2.0 introduced a queue of requests. An app using this
manager may now enqueue many requests and they will be performed one after another.

https://developer.android.com/reference/android/bluetooth/BluetoothGattCallback.html#onConnectionStateChange(android.bluetooth.BluetoothGatt,%20int,%20int)
https://developer.android.com/reference/android/bluetooth/BluetoothProfile.html#STATE_DISCONNECTED
https://developer.android.com/reference/android/bluetooth/BluetoothManager.html#getConnectedDevices(int)
https://developer.android.com/reference/android/bluetooth/BluetoothProfile.html#GATT
https://developer.android.com/reference/android/bluetooth/BluetoothDevice.html#connectGatt(android.content.Context,%20boolean,%20android.bluetooth.BluetoothGattCallback)
https://developer.android.com/reference/android/bluetooth/BluetoothDevice.html#connectGatt(android.content.Context,%20boolean,%20android.bluetooth.BluetoothGattCallback)
https://developer.android.com/reference/android/bluetooth/BluetoothGatt.html#close()
https://code.google.com/p/android/issues/detail?id=228633
https://code.google.com/p/android/issues/detail?id=69834
https://developer.android.com/reference/android/bluetooth/BluetoothGatt.html
https://developer.android.com/reference/android/bluetooth/BluetoothDevice.html#connectGatt(android.content.Context,%20boolean,%20android.bluetooth.BluetoothGattCallback)
https://developer.android.com/reference/android/bluetooth/BluetoothDevice.html#connectGatt(android.content.Context,%20boolean,%20android.bluetooth.BluetoothGattCallback)
https://github.com/NordicSemiconductor/Android-nRF-Toolbox/blob/master/app/src/main/java/no/nordicsemi/android/nrftoolbox/profile/BleManager.java
https://github.com/NordicSemiconductor/Android-nRF-Toolbox/blob/master/app/src/main/java/no/nordicsemi/android/nrftoolbox/profile/BleManager.java#L635

Connection

Revision 1.0.1 Page 9 of 15

The BluetoothGattCallback#onCharacteristicWrite(BluetoothGatt, BluetoothGattCharacteristic, int status) callback is
called for both Write Request (when a response has been received) and Write Command (when the packet has been
added to the local outgoing buffer). In the latter case, when the buffer gets full, the BLE may either stack (Android 4.3
– 5x) or the callback may be postponed until the buffer is empty (Android 5.1+(?)). If the device loses the connection
while the internal queue is full, no further GATT operations will work on that GATT object once it reconnects. See
https://code.google.com/p/android/issues/detail?id=223558.

Handling a full buffer is shown in the following image:

Figure 2 Handling full buffer

Gray color indicates how fast a characteristic may be written using Write Without Response (write, wait for callback,
write, callback, etc.). The speed drops down to 0 when the callback is postponed until the buffer empties.

https://developer.android.com/reference/android/bluetooth/BluetoothGattCallback.html#onCharacteristicWrite(android.bluetooth.BluetoothGatt,%20android.bluetooth.BluetoothGattCharacteristic,%20int)
https://code.google.com/p/android/issues/detail?id=223558

Connection

Revision 1.0.1 Page 10 of 15

4.3 Connection parameters
Since Android 5 (API 21), three connection priorities can be requested using
BluetoothGatt#requestConnectionPriority(int). This method is asynchronous (like all BLE related methods) but there is
no callback called when it’s completed/rejected. This is a known bug, which will be fixed in the future.

Table 1 Connection priorities

 Connection Interval (ms) Latency Timeout (sec)

Android 5 Android 6+

CONNECTION_PRIORITY_HIGH 7.5 – 10 11.25 – 15 0 20

CONNECTION_PRIORITY_BALANCED 30 – 50 0 20

CONNECTION_PRIORITY_LOW_POWER 100 – 125 2 20

The commit in AOSP (Android Open Source Project) that has changed these values can be found here:
https://android.googlesource.com/platform/packages/apps/Bluetooth/+/434bd21a120078b2944a22828f64714df414
c5d9%5E1..434bd21a120078b2944a22828f64714df414c5d9/

The current configuration (from master) is here:
https://android.googlesource.com/platform/packages/apps/Bluetooth/+/master/src/com/android/bluetooth/gatt/Ga
ttService.java#1632

The values are set from a config file:
https://android.googlesource.com/platform/packages/apps/Bluetooth/+/0e94b62d60f3a729b03841a1891af3a889c9
748f%5E2..0e94b62d60f3a729b03841a1891af3a889c9748f/

The current version of the config file can be found here:
https://android.googlesource.com/platform/packages/apps/Bluetooth/+/master/res/values/config.xml#39

This method works only if Android is the master. If it has advertised and another device gets connected to it, this
method seems to be doing nothing.
If another value is needed, it has to be requested from the peripheral. Mind, that a new restriction in Android 6+ is
that connections interval lower than 11.25 ms. are not possible anymore (which is important if you use the
Connection Parameter Update Request from the slave side) due to some performance issues Google had.

4.4 MTU
Since Android 5 (API 21), MTU may be requested using BluetoothGatt#requestMtu(int).
The lowest MTU is 23 (default), the highest is 517. There is a callback called
BluetoothGattCallback#onMtuChanged(BluetoothGatt, int, int) when this asynchronous operation completes with the
status and final MTU.

Both Connection Priority and MTU may be tested using the Android version of nRF Connect 4.3 or newer.

https://developer.android.com/reference/android/bluetooth/BluetoothGatt.html#requestConnectionPriority(int)
https://developer.android.com/reference/android/bluetooth/BluetoothGatt.html#CONNECTION_PRIORITY_HIGH
https://developer.android.com/reference/android/bluetooth/BluetoothGatt.html#CONNECTION_PRIORITY_BALANCED
https://developer.android.com/reference/android/bluetooth/BluetoothGatt.html#CONNECTION_PRIORITY_LOW_POWER
https://android.googlesource.com/platform/packages/apps/Bluetooth/+/434bd21a120078b2944a22828f64714df414c5d9%5E1..434bd21a120078b2944a22828f64714df414c5d9/
https://android.googlesource.com/platform/packages/apps/Bluetooth/+/434bd21a120078b2944a22828f64714df414c5d9%5E1..434bd21a120078b2944a22828f64714df414c5d9/
https://android.googlesource.com/platform/packages/apps/Bluetooth/+/master/src/com/android/bluetooth/gatt/GattService.java#1632
https://android.googlesource.com/platform/packages/apps/Bluetooth/+/master/src/com/android/bluetooth/gatt/GattService.java#1632
https://android.googlesource.com/platform/packages/apps/Bluetooth/+/0e94b62d60f3a729b03841a1891af3a889c9748f%5E2..0e94b62d60f3a729b03841a1891af3a889c9748f/
https://android.googlesource.com/platform/packages/apps/Bluetooth/+/0e94b62d60f3a729b03841a1891af3a889c9748f%5E2..0e94b62d60f3a729b03841a1891af3a889c9748f/
https://android.googlesource.com/platform/packages/apps/Bluetooth/+/master/res/values/config.xml#39
https://developer.android.com/reference/android/bluetooth/BluetoothGatt.html#requestMtu(int)
https://developer.android.com/reference/android/bluetooth/BluetoothGattCallback.html#onMtuChanged(android.bluetooth.BluetoothGatt,%20int,%20int)

Connection

Revision 1.0.1 Page 11 of 15

4.5 Packets per connection parameter
Different Android phones send and receive a different number of packets in a single connection interval, depending
on their Bluetooth chip capabilities. Here’s a short list of devices that have been tested using a precompiled sample
Secure DFU bootloader from SDK 12.1 by sending a sample HRM app using nRF Connect 4.8 (Android) and nRF
Toolbox (iOS). During the test, a phone/tablet was sending eight times 205 Writes Without Response packets as fast as
possible (one object is 4096 bytes which requires 205 20-byte-long packets).

On Android, each write must be done when a callback for the previous write operation has been received, so the
system has a way to pause the sending process when the buffer gets full (handling this situation was fixed in Android 5
or 5.1). There is no such callback on iOS when writing without response, and therefore sending bytes in a loop may
cause a buffer overflow.
Regarding older devices where overflow is not handled well, as well as on iOS, an easy workaround is to send each
15th packet or so as a Write With Response. Then you don't need to create any special acknowledgement logic like
Packet Receipt Notifications in DFU on the peripheral side. It of course reduces speed a bit, but rather that than
dropped packets.

Table 2 Number of packets in a connection interval

Device OS Version Connection
interval
(ms) 1

Packets sent in
connection interval

PRN Required
/max PRN 2

Nexus 6P 7.1.1 (beta) 30 4 No

Nexus 5X 7.1.1 (beta) 30 123 No

Nexus 9 7.0 30 4 No

Nexus 6 6.0.1 30 4 No

Nexus 4 5.1.1 30 1 No

Samsung S3 4.3 48.75 1 Yes / ~340 4

Samsung S7 6.0.1 30 5 No

HTC One M8 6.0.1 30 9+5 No

Sony Xperia Z5 Compact 6.0.1 30 4 No

For comparison, measurements done on iOS:

Table 3 Measurements on iOS

Device OS Version Connection
interval (ms)

Packets sent in
connection interval

PRN Required
/max PRN

iPhone 7 10.1 30 9+ Yes / 22

iPhone 6 Plus 10.1 30 7 Yes / 29

iPhone SE 9.3.3 30 8 Yes / <~20

iPhone 5s 10.0.2 30 7 Yes / <~20

iPhone 4S 8.1.3 30 7 Yes / <~20

iPad Mini 9.3.4 30 6 Yes /<~20

iPad Air 9.3 30 6 Yes / <~20

1 This is not the minimum connection interval, but the actual one during performing DFU.
2 Max supported PRN – the higher the number, the better. No value is even better as it means that PRNs are not required.
3 Based on a comment here.
4 Tested using Legacy DFU. As the maximum object size in Secure DFU (4096 bytes) is 205 packets long, no PRNs are
required when doing Secure DFU on that phone model.
5 The DFU Bootloader wasn’t sending ACK for the 9th packet. If it did there could perhaps have been more packets sent.

https://devzone.nordicsemi.com/blogs/1046/what-to-keep-in-mind-when-developing-your-ble-andr/

Connection

Revision 1.0.1 Page 12 of 15

4.6 Protected services
Android does not allow to read or write data to the following characteristics (and their descriptors):

1. HID Service (since Android 5):

a. HID Information

b. Report Map

c. HID Control Point

d. Report

2. FIDO (https://fidoalliance.org/) (since Android 6)

a. U2F (0000FFFD-0000-1000-8000-00805F9B34FB)

Only applications with BLUETOOTH_PRIVILEGED, that is, applications signed with the same certificate as the system,
are able to read and write data to those characteristics.

Explanation: On Android 4.3 and 4.4.x applications are able to sniff to HID devices and read passwords and other
private information. U2F is used by security tokens.

https://fidoalliance.org/
https://developer.android.com/reference/android/Manifest.permission.html#BLUETOOTH_PRIVILEGED

GATT server

Revision 1.0.1 Page 13 of 15

5. GATT server
GATT server is supported since the beginning, that is, since Android 4.3.
An app may add 0+ services to the phone server but it is not aware of any other service that other apps have already
added to it. A peripheral device will discover a sum of services created by all apps using GATT server + 2 additional,
namely Generic Access and Generic Attribute, which are added by the system. Therefore, it may happen that the app
service will never be used if the same service has already been created before.

Opening the server must be done using BluetoothManager#openGattServer(Context, BluetoothGattServerCallback)
method. When an app has opened the server, it will immediately receive a
BluetoothGattServerCallback#onConnectionStateChange(BluetoothDevice, int status, int newState) callback for each
device that is already connected or getting connected to the Android device. This is how nRF Connect discovers
devices that connected when the app got launched or was in the background.

If the app intends to use the connection, it should call the BluetoothGattServer#connect(BluetoothDevice, boolean
autoConnect) method, giving the device as a parameter. Otherwise Android can close the connection if another (or
this) app disconnects as not being used. To release a server connection, the
BluetoothGattServer#cancelConnection(BluetoothDevice) method must be called. However, calling this method will
not disconnect the device from the server. The peripheral device should disconnect itself when it gets disconnected by
the client.

Example:
A Proximity tag nRF Proximity by Pebble is not releasing the server connection when disconnected.

1. In nRF Connect, configure the GATT server and create the predefined Link Loss and Immediate Alert

services.

2. Connect to the tag and test two-way communication.

3. Disconnect by pressing DISCONNECT button in the app.

4. Observe in the log that server.cancelConnection(device) method has been called and the device has

got disconnected (Android has disconnected from it). You may still click the button on the tag to

trigger an alarm.

https://developer.android.com/reference/android/bluetooth/BluetoothManager.html#openGattServer(android.content.Context,%20android.bluetooth.BluetoothGattServerCallback)
https://developer.android.com/reference/android/bluetooth/BluetoothGattServerCallback.html#onConnectionStateChange(android.bluetooth.BluetoothDevice,%20int,%20int)
https://developer.android.com/reference/android/bluetooth/BluetoothGattServer.html#connect(android.bluetooth.BluetoothDevice,%20boolean)
https://developer.android.com/reference/android/bluetooth/BluetoothGattServer.html#connect(android.bluetooth.BluetoothDevice,%20boolean)
https://developer.android.com/reference/android/bluetooth/BluetoothGattServer.html#cancelConnection(android.bluetooth.BluetoothDevice)

Advertising

Revision 1.0.1 Page 14 of 15

6. Advertising
Advertising is supported on newer devices with Android 5+. Devices that got updated to Android 5 but were designed
for an older version do not support it (for example Nexus 4 or Nexus 5). To verify that an Android 5+ device supports
advertising (or has a high chance of this), use the BluetoothAdapter#isMultipleAdvertisementSupported() method.
However, this method always returns false if the Bluetooth® adapter is disabled, or on some devices, e.g. Sony
Xperia™ Z1 Compact, it returns true even though the device in practice does not support advertising
(AdvertiseCallback#ADVERTISE_FAILED_TOO_MANY_ADVERTISERS error is returned even with one advertisement
set).

For more information, see the StackOverflow post.
In order to start advertising, an app must obtain a BluetoothLeAdvertiser object using
BluetoothAdapter#getBluetoothLeAdvertiser(). This method also returns null if Bluetooth is disabled on the
phone/tablet, or when advertising is not supported. On Sony Xperia Z1 Compact, and perhaps on some other devices,
it returns an object.

The advertiser API allows to configure the advertising data, scan the response data, and set AdvertiseSettings. The
data for both packets can be configured using AdvertiseData.Builder with the following API:

1. addManufacturerData(int manufacturerId, byte[] data)

Adds a manufacturer data field

Bug: Only the data added first is in fact added to each packet, all the following ones are ignored,

2. addServiceData(UUID serviceUUID, byte[] data)

Adds service data field

Bug: Only 16-bit UUIDs are supported, 128-bit UUIDs are truncated to 16-bit ones,

Bug: Only the first data is advertised in each packet,

3. addServiceUuid(UUID serviceUUID)

 Adds a Complete List of Service UUID field,

4. setIncludeDeviceName(boolean include)

Adds the device name to the packet or removes it. The name can’t be set to a custom value using

this API, but it may be set in Bluetooth Settings for the Android device,

5. setIncludeTxPowerLevel(boolean include)

Includes TX power information. TX power may be set in AdvertiseSettings. The value advertised is

automatically set to a proper value.

The allowed settings:

1. Advertise mode to one of the following:

a. ADVERTISE_MODE_LOW_LATENCY – Advertising interval: 100 ms

b. ADVERTISE_MODE_BALANCED – Advertising interval: 250 ms

c. ADVERTISE_MODE_LOW_POWER – Advertising interval: 1000 ms

2. TX power to one of the following:

a. ADVERTISE_TX_POWER_HIGH – TX power: +1 dBm

b. ADVERTISE_TX_POWER_MEDIUM – TX power: -7 dBm

c. ADVERTISE_TX_POWER_LOW – TX power: -15 dBm

d. ADVERTISE_TX_POWER_ULTRA_LOW – TX power: -21 dBm

3. The connectability of the device using setConnectable(boolean connectable)

4. Advertising timeout using setTimeout(int milliseconds)

https://developer.android.com/reference/android/bluetooth/BluetoothAdapter.html#isMultipleAdvertisementSupported()
https://developer.android.com/reference/android/bluetooth/le/AdvertiseCallback.html#ADVERTISE_FAILED_TOO_MANY_ADVERTISERS
http://stackoverflow.com/questions/36751253/ble-advertisement-in-android/39869680#39869680
https://developer.android.com/reference/android/bluetooth/le/BluetoothLeAdvertiser.html
https://developer.android.com/reference/android/bluetooth/BluetoothAdapter.html#getBluetoothLeAdvertiser()
https://developer.android.com/reference/android/bluetooth/le/AdvertiseSettings.html
https://developer.android.com/reference/android/bluetooth/le/AdvertiseData.Builder.html
https://developer.android.com/reference/android/bluetooth/le/AdvertiseData.Builder.html#addManufacturerData(int,%20byte[])
https://developer.android.com/reference/android/bluetooth/le/AdvertiseData.Builder.html#addServiceData(android.os.ParcelUuid,%20byte[])
https://developer.android.com/reference/android/bluetooth/le/AdvertiseData.Builder.html#addServiceUuid(android.os.ParcelUuid)
https://developer.android.com/reference/android/bluetooth/le/AdvertiseData.Builder.html#setIncludeDeviceName(boolean)
https://developer.android.com/reference/android/bluetooth/le/AdvertiseData.Builder.html#setIncludeTxPowerLevel(boolean)
https://developer.android.com/reference/android/bluetooth/le/AdvertiseSettings.Builder.html#setAdvertiseMode(int)
https://developer.android.com/reference/android/bluetooth/le/AdvertiseSettings.html#ADVERTISE_MODE_LOW_LATENCY
https://developer.android.com/reference/android/bluetooth/le/AdvertiseSettings.html#ADVERTISE_MODE_BALANCED
https://developer.android.com/reference/android/bluetooth/le/AdvertiseSettings.html#ADVERTISE_MODE_LOW_POWER
https://developer.android.com/reference/android/bluetooth/le/AdvertiseSettings.Builder.html#setTxPowerLevel(int)
https://developer.android.com/reference/android/bluetooth/le/AdvertiseSettings.html#ADVERTISE_TX_POWER_HIGH
https://developer.android.com/reference/android/bluetooth/le/AdvertiseSettings.html#ADVERTISE_TX_POWER_MEDIUM
https://developer.android.com/reference/android/bluetooth/le/AdvertiseSettings.html#ADVERTISE_TX_POWER_LOW
https://developer.android.com/reference/android/bluetooth/le/AdvertiseSettings.html#ADVERTISE_TX_POWER_ULTRA_LOW
https://developer.android.com/reference/android/bluetooth/le/AdvertiseSettings.Builder.html#setConnectable(boolean)
https://developer.android.com/reference/android/bluetooth/le/AdvertiseSettings.Builder.html#setTimeout(int)

Advertising

Revision 1.0.1 Page 15 of 15

For more information, see:
https://android.googlesource.com/platform/packages/apps/Bluetooth/+/master/src/com/android/bluetooth/gatt/Ad
vertiseManager.java#258

Usually an Android device can advertise with five–six packets set at the same time. When trying to start the next
advertisement, an error AdvertiseCallback#ADVERTISE_FAILED_TOO_MANY_ADVERTISERS is returned by the callback.

https://android.googlesource.com/platform/packages/apps/Bluetooth/+/master/src/com/android/bluetooth/gatt/AdvertiseManager.java#258
https://android.googlesource.com/platform/packages/apps/Bluetooth/+/master/src/com/android/bluetooth/gatt/AdvertiseManager.java#258
https://developer.android.com/reference/android/bluetooth/le/AdvertiseCallback.html#ADVERTISE_FAILED_TOO_MANY_ADVERTISERS

