
28.02.2018

Development with GCC and
Eclipse

Troubleshooting guide

1

Contents
Introduction .. 2

Build errors.. 3

Wrong search paths .. 4

Cannot run program “”: Launching failed .. 6

Auto discovery of symbols, include paths and compiler settings ... 6

Verbose build logging not enabled ... 7

Partial discovery .. 8

Cannot open debug session .. 9

Application will not run ... 11

Error in linker configuration (memory layout) .. 11

Code assertions ... 12

Hardfault exception .. 12

2

Introduction

This is a brief guide on how to troubleshoot some of the common problems related to Eclipse and

GCC setup with the Nordic SDK. I recommend doing a quick search on the forum and in the comment

section if you experience a problem not mentioned in this guide, you may find others who have

encountered the exact same problem, but do not hesitate to post a new question on the forum if

not.

3

Build errors

The CDT Build Console window in Eclipse will show errors or warnings reported by the build process

if there are any. It is important to note the difference between errors reported here, and errors that

are only shown in the code editor; Eclipse may show errors in the source code despite there being

no build errors. If this is the case it likely means that there is a problem with the auto discovery

configuration mentioned in the “Enable auto discovery of symbols, include paths and compiler

settings” section of the tutorial. Please skip to the next chapter if this is the symptom.

Below image illustrates an actual build error caused by undeclared variable in the source code. In

this case, Eclipse is correctly identifying this coding mistake based on the feedback from the build

process (build output).

Figure 1: Build error: referencing an undeclared variable.

Figure 2 on the other hand shows an example where the project is built without errors, but unable

to resolve the macros and variables because of missing include paths and pre-processor definitions,

which indicates a problem with the auto discovery configuration.

4

Figure 2: Successful build without errors.

Wrong search paths

A common cause of build errors is that Eclipse fails to invoke the build tools (GNU make, mkdir or

rm) or that GNU Make fails to invoke the toolchain because of wrong search paths. To troubleshoot

these kinds of errors we need to analyze the output in the CDT Build Console.

Toolchain path

The GNU_INSTALL_ROOT variable declared in Makefile.windows/posix must point to the install

directory for the GCC toolchain. Please refer to the “before we begin” section for more details.

Figure 3 and 4 shows the build output when the GNU_INSTALL_ROOT variable is pointing to a non-

existent directory. Edit the Makefile.windows or Makefile.posix file (depending on OS) in

$(SDK_ROOT)/components/toolchain/gcc so that GNU_INSTALL_ROOT corresponds with the version

you have installed if you are seeing this.

Figure 3: console ouput with SDK version 12 and later where the toolchain path is not set correctly. Should have been
C:/Program Files (x86)/GNU Tools ARM/5.4 2016q3/bin/arm-none-eabi-gcc to correspond with this particular setup.

5

Figure 4: same as shown figure 3, but with SDK releases prior to version 12.

Path to build tools

Errors such as “Cannot run program “make”, Cannot run program “mkdir”, etc. typically means that

Eclipse is not finding the executable in provided search paths.

Figure 5: GNU Make is found in path

First, make sure that GNU make is installed on the system as explained in the «before we begin»

section, then verify that the Build tools folder field contains the correct path in Eclipse preferences.

Figure 6: Add path to build tools folder.

6

Cannot run program “”: Launching failed

This error may occur if the build command is not set, or contains an empty variable (e.g., if

${cross_make} is not set).

Make sure to set the Build command to make VERBOSE=1 in project properties.

Figure 7: Set build command.

Auto discovery of symbols, include paths and compiler settings

Eclipse’s built-in build output parser enables auto discovery of symbols and include paths for

Makefile managed projects so you do not have to add them manually when creating new or

modifying existing projects. Unfortunately, it does not provide much feedback when configured

incorrectly, besides failing to collect information from the build output.

Screenshot below shows an example where Auto discovery has not been enabled properly. Notice

how the project built successfully according to the CDT Build Console yet there are multiple errors

shown in the code view.

http://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.cdt.doc.user%2Freference%2Fcdt_u_pref_build_scanner_discovery.htm

7

Figure 8: Build output is not parsed.

Verbose build logging not enabled

The build output parser relies on verbose build log to extract relevant information. Check if build log

contains enough information to retrieve necessary information about the project. The SDK makefile

have an option for producing verbose build output, which is enabled by setting the ‘VERBOSE’

makefile variable to ‘1’. Screenshots below illustrates the difference.

Figure 9: verbose build log not enabled.

8

Figure 10: verbose build output enabled.

Change the build command as shown in Figure 7 if verbose build output is not enabled. Assuming

everything else related to the discovery feature is configured correctly, it should be sufficient to do a

clean build followed by a rebuild of the index (right click on project and click index->rebuild) to

resolve the errors.

Note, with SDK version 12 or newer it is necessary to use the patched Makefile.common file included

in the tutorial to work around what looks to be a limitation with the build output parser.

Partial discovery

The output parser may in some cases discover the include paths, but not the preprocessor symbols.

This will also lead to unresolved errors in Eclipse. Verify that the build is using the patched

Makefile.common file attached at the end of the tutorial.

It is possible to inspect the include paths and symbols that where added by the build output parser

as shown in Figure 11 (select properties for one of the source files. This can be compared against the

Makefile to determine what is missing.

Figure 11: Inspect include paths and symbols added by output parser.

9

Cannot open debug session

Below are some screenshots showing the debug configuration for the nRF52 series, but it would be

the same for an nrf51 device expect from the device name. Please go through the configurations

shown here, and make sure they correspond with your configuartion.

Figure 12: Main tab - check that *.out file is set in C/C++ Application field

10

Figure 13: Debugger configuration

Figure 14: Startup configuration - semihosting and SWO are enabled by default, but not implemented in code examples.

11

Please post a new question on the forum that includes the error message(s) if does not work with

the settings shown above.

Application will not run

Project builds without errors, but the FW does not work as expected after being loaded to the chip.

Error in linker configuration (memory layout)

nRF5x series ICs comes in several different memory variants while the SDK examples are only

configured for those used on the development kits. Typical symptom of incorrect memory layout is

that a hardfault exception occurs before the program reaches main. An overview of the different

variants can be found on the infocenter.

Verify that RAM and ROM settings in the. ld file invoked by the makefile are in accordance to the IC

variant used on target board.

Example of a typical memory layout for the nRF51x22_xxAC (256/32) variant:

MEMORY

{

 /*FLASH and RAM ORIGIN depends on softdevice series and version. Check SD release

notes for appropriate values. Set ORIGIN to 0x0 and 0x20000000 for examples that

do not run on top of softdevice stack or similar */

 FLASH (rx) : ORIGIN = 0x1B000, LENGTH = 0x25000

 RAM (rwx) : ORIGIN = 0x20002000, LENGTH = 0x6000

}

And the same for nRF51x22_xxAA (256/16):

MEMORY

{

 FLASH (rx) : ORIGIN = 0x1B000, LENGTH = 0x25000

 RAM (rwx) : ORIGIN = 0x20002000, LENGTH = 0x2000

}

12

As a side note, development kits includes the optional LF crystal, which is enabled by default in the

SDK examples. This is often not the case with custom boards and modules due to cost/size

constraints. Remember to use the internal LF oscillator if this is the case, otherwise the program will

get stuck in an endless loop waiting for the crystal to start.

Code assertions

The SDK examples uses code assertions to catch error conditions at runtime (i.e., unexpected return

values from function calls), please refer to the SDK documentation for more details (link). Assertions

will by default lead to a system reset unless –DDEBUG is added to the list of preprocessor symbols

(CFLAGS variable in Makefile).

Example:

Assert condition when starting an application timer instance.

 err_code = app_timer_start(m_timer_id,
 INTERVAL, // INTERVAL = 0, illegal value
 NULL);

 APP_ERROR_CHECK(err_code); // Error handler invoked if err_code != NRF_SUCCESS

The interrupt interval is set to zero in the function call above, which is an illegal value. Thus, the

function will return NRF_ERROR_INVALID_PARAM:

Figure 15: NRF_ERROR_INVALID_PARAM error. Error codes are listed in nrf_error.h header.

Hardfault exception

The default handler for the hardfault exception is an infinite loop, so the program will be stuck if the

program triggers this exception. One quick way to determine if this has happened is to read out the

interrupt status register and check if the ISR number is set ‘3’.

http://infocenter.nordicsemi.com/topic/com.nordic.infocenter.sdk5.v12.2.0/lib_error.html?cp=4_0_1_3_10

13

Figure 16: Check interrupt status register

Hardfault exceptions are often caused by incorrect memory layout, but can also be caused by errors

in the application code such as illegal memory access. Please post a question on the forum if help is

needed to debug the hardfault.

