Designing Secure IoT Products

Nordic Tech Webinar

Tiago Monte / Developer Marketing Manager

April 2023

Today's hosts

Tiago Monte

Developer Marketing Manager

Practicalities

- Duration: 45 min presentation, 15 min Q&A
- Questions are encouraged!
 - Please type questions on the top of the right sidebar
 - All questions are anonymous
 - Try to keep them relevant to the topic
 - We will answer them toward the end
- The chat on the bottom of the right sidebar is not anonymous, and it should not be used for questions.
- Go to DevZone if you have more questions
- A recording of the webinar will be available together with the presentation at webinars.nordicsemi.com/on-demand

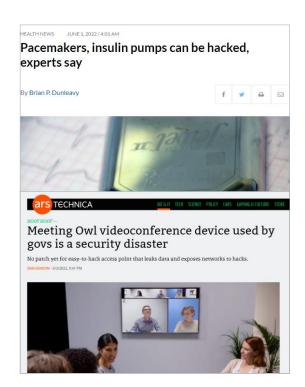
Agenda

Why The importance of security

How The approach to security

What PSA Certified IoT Security Framework

Embedded security is nothing new


SIM and Payment Cards have been getting things right for 20+ years

But still, many get it wrong...

 Security incidents are wide-ranging, from data leakage to potential loss of life

 Consumer confidence can decrease for the entire product category of affected devices

 The more devices come online, the larger the attack surface, and the higher the risk

Security costs, but insecurity costs more

 First half of 2021 saw 1.5 billion attacks on smart/IoT devices

 By 2025 the impact of cybercrime is predicted to reach \$10.5 trillion

 IoT-related attacks account for a significant portion of that total

Regulations, Standards, Certifications

- Regulations: mandatory and enforceable
 - Developed by governments

Regulations may rely on a standard, which defines the requirements.

- Standards: optional, a choice, many of them
 - Created by standardisation bodies:

Standards may rely on external or self-certification, as evidence of compliance

- Certifications: optional, many of them
 - Awarded by private organisations (usually)

Varied regulation landscape

For many product categories - there are no mandatory security requirements

Regulators are catching up

Product manufacturers will soon be **required** to meet baseline Product Security requirements for market access – i.e the right to sell their products.

Globally fragmented process -> with many common requirements.

Radio Equipment Directive - Delegated Act Article 3 EU Cybersecurity Act EU Cyber resilience Act

Singapore Cybersecurity Labelling Scheme Voluntary

Product Security and Telecommunications Infrastructure Act

Finnish Cybersecurity Label Voluntary

Executive Order on Improving the Nations Cybersecurity: Cybersecurity Labelling for Consumers: IoT

Australian Cybersecurity Label Proposed

No product is 100% secure

- With enough:
 - Time
 - Money
 - Motivation

Your system can be broken

Security is a balance ...

Cost of protection

- Memory
- Data consumption
- Power consumption
- Secure production

Risk

=

Impact

Χ

Probability

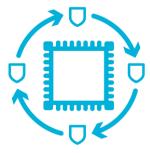
Less security

More security

... with a few simple objectives ...

Secure boot and secure update with anti-rollback

Isolation between secure and non-secure environments



Secure storage

... every product should meet

Attestation and unique identification

Security Lifecycle

Cryptographic services

Arm Platform Security Architecture (PSA)

A framework for Secure Product Development

- Platform Security Architecture is a framework to develop a product that integrates the best practices in IoT security.
- It covers design, implementation, and evaluation:

Analyze

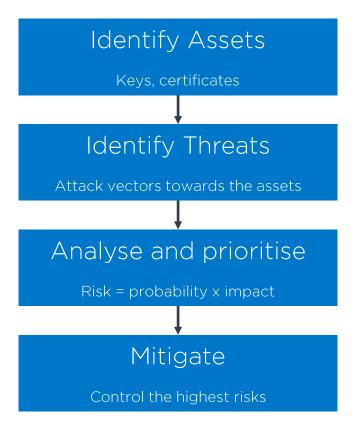
Threat models & security analysis

Architect

Hardware & firmware specifications

Implement

Firmware source code


Certify

Independently tested

Analyze - Threat modeling

Threat Model and Security Analysis examples available from PSA Certified:

- Asset tracker
- Smart water meter
- Network camera

Search "threat model" on psacertified.org

Analyze - Threat modeling example

Asset	Security Requirement	Threat	Entry point of Threat	Impact of vulnerability	Severity (CVSS Rating)	Mitigation
Firmware	Integrity	Tamper	Malware, bug, mass storage access, JTAG, network update	Install malware	Critical: 9	Secure boot
		Escalation of privilege		Launch DDoS		Enforce principal of least privilege
Credentials	Confidentiality	Disclosure (Tamper)	Malware, bug, mass storage, JTAG, network	Device usurpation	High: 8.7	Secure storage in Trusted Execution Environment (TEE)
		Escalation of privelege		Modify firmware and install malware		
Logs	Integrity	Tamper	Malware, bug, mass storage	Supress critical alerts and events	Medium: 4.9	Enforce access control and principle of least privilege
	Confidentiality	Impersonation		Gain access to system info		Secure storage in TEE

Architect - HW & FW specifications

Identify hardware and firmware which can support the needs of the threat model:

-> Hardware Cryptographic Accelerator, Secure Storage, Isolation

Hardware

nRF9160, nRF5340 and nRF52840

PSA Certified SoC and SiP

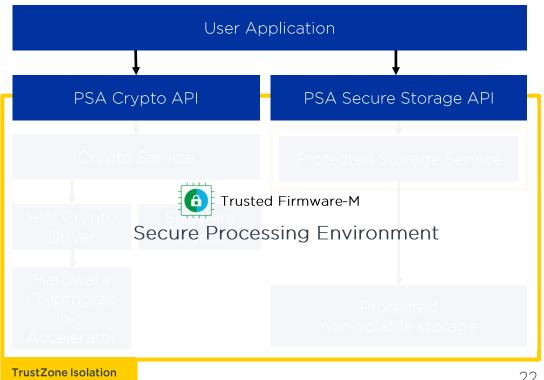
Certified to meet security best-practice requirements

Firmware

nRF Connect SDK

Flexible, enabling the right security to be applied for your application

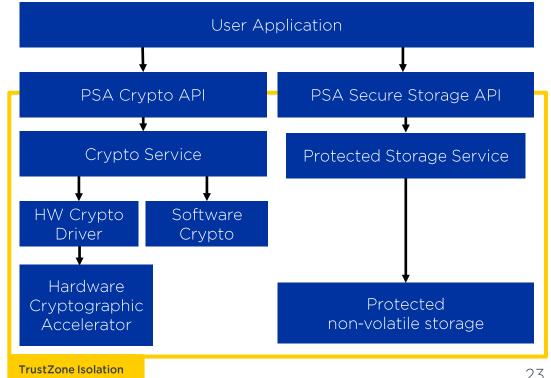
Provides Trusted Firmware-M, a reference implementation of Secure Processing Environment

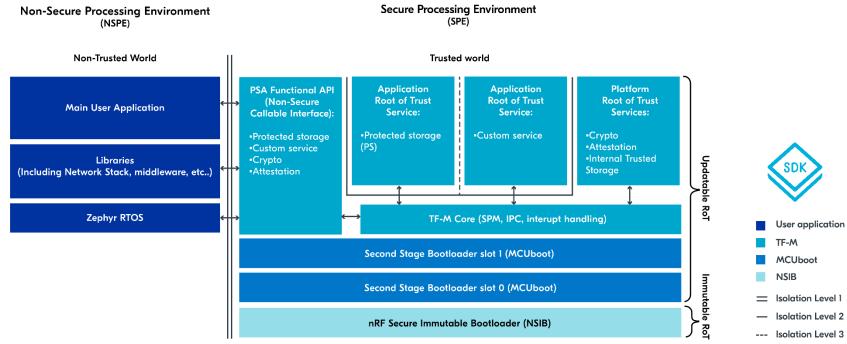

Implement - Firmware

PSA APIs

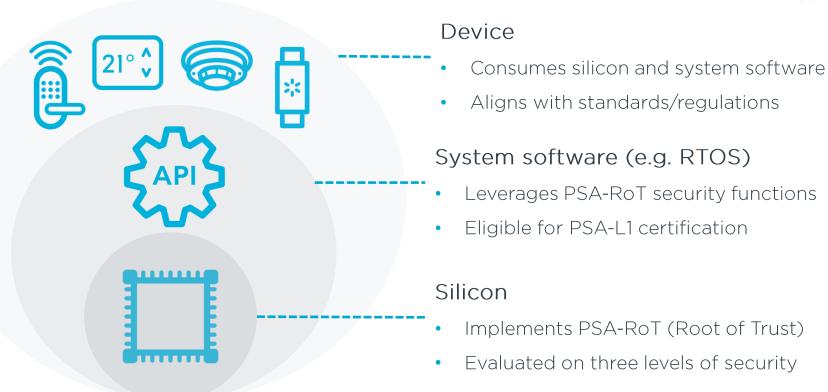
Standardised interface towards security services.

- Enhanced security enabling devices to meet industry-standard security
- Implementation agnostic Abstracts hardware/software implementation differences between platforms.
- Flexible and scalable Supports a variety of use cases, from simple to complex systems
- Future proof PSA APIs are designed to be updated as security threats evolve


Implement - Firmware


Trusted Firmware-M (TF-M)

- TF-M is a secure processing environment
- Runs on TrustZone enabled hardware
- Isolates critical security services and data from non-secure user application
- Provides PSA Root of Trust and secure services implementation, such as:
 - Cryptographic services
 - Secure storage
 - Attestation service


TF-M in nRF Connect SDK

Certify - From silicon to device

Certify - Independently tested

- PSA Certified offers security certification for silicon, system software and end devices.
- Independent lab evaluation.
- Global certification programme, aligned with:
 - Existing IoT security standards:
 - ETSI EN 303645
 - NIST 8259A
 - Emerging eco-systems and labelling programmes

PSA Certified Silicon and Root of Trust

nRF9160

Cellular SiP

LTE-M and NB-IoT

nRF5340

Dual-core Bluetooth LE and 15.4 SoC

nRF52840

Bluetooth LE and 15.4 SoC

PSA Certified Level 1

Assurance of silicon implementing a hardware RoT

Independently reviewed by security evaluation lab and certification body

Aligns with latest baseline cybersecurity requirements and regulations with mapping to:
ETSI EN 303645 and NIST 8259A


Nordic continues to invest in product security in its hardware, software and services.

Security should be considered early in your design.

nordicsemi.com/security

Learn more from Nordic - be self-driven

devzone.nordicsemi.com

academy.nordicsemi.com

webinars.nordicsemi.com

Thank you

Get started with security today

nRF Connect SDK - security