

Cellular Antenna Certification

May 25, 2022

Practicalities

- Duration: 50-60 mins
- Questions are encouraged!
- Please type questions in the top of the right sidebar
 - All questions are anonymous
 - Try to keep them relevant to the topic
- We will answer questions towards the end
- The chat is not anonymous, and should **not** be used for questions
- If you have more questions:
 - Go to <u>DevZone</u> for Nordic related questions
 - Go to Taoglas website www.taoglas.com
- A recording of the webinar will be available together with the presentation at webinars.nordicsemi.com

Ask a question	
Type something	
	Ask Question

DevZone

Speaker Intro

Baha Badran Global Head of Engineering

Patrick Frank Principal RF Engineer

Agenda

- 1. About Taoglas
- 2. Cellular Certification
- 3. Antenna Integration
- 4. Designing for TIS
- 5. Preparation for Certification

6. Q&A

Delivering Trusted Technology

Focused on best-in-class, high-performance antenna and RF design with advanced positioning, imaging, audio and artificial intelligence technologies, *Taoglas* has unique expertise in integrating and commercializing highly complex technology solutions.

Design and Expertise

We have enabled thousands of successful IoT/M2M hardware and software projects globally since 2004

Innovation

We drive innovation on the road to 5G, unmanned autonomy and IoT. 90 patents approved and 120+ pending

Global Presence

Currently, over 430+ employees based in design and manufacturing centers spread across the globe

Customer support

Located close to customers globally with the latest test, design and support services

Satimo 24 SGL, 400 – 6000MHz Chamber in Minneapolis, USA

Taoglas Centers of Excellence

Minneapolis, USA R&D Test Lab, Engineering and Sales

Florida, USA Engineering

Enniscorthy, Ireland Full Test Lab, Engineering and Sales

Dublin, Ireland Full Test Lab, Engineering and Sales

Gdansk, Poland Engineering

Tainan, Taiwan Taoglas Manufacturing and Engineering

Taoyuan, Taiwan Full RF Test Lab, Environmental Test Lab, Engineering and Sales

Shanghai, China Full RF Test Lab, Engineering and Sales

Australia, Brisbane Engineering and Sales

Cellular Certification

Basics & Terminology

Regional...

- way
- Every market is different! Modular certifications go a long
- https://www.nordicsemi.com/Products/Lowpower-cellular-IoT/nRF9160-Certifications

Nordic has good references:

https://blog.nordicsemi.com/getconnected/cer tifying-a-cellular-iot-device

Specifically...

- Regulatory certification:
 - Inter-device/Inter-system Coexistence
 - Safety (RF and otherwise)
 - Basic functionality
- Industry cellular certification:
 - Enable inter-operator roaming
 - Baseline performance measurements
- Carrier certification:
 - More rigorous network behavior testing
 - Enforced performance metrics

OTA: TRP

- TRP = Total Radiated Power
- Radiated power given set input power
- Highly dependent on antenna total efficiency

TRPWatts = Power_{Total} = **Power**_{Conducted} Efficiency_{Antenna}

 $TRP_{dBm} = Power_{Total,dBm} = Power_{Conducted,dBm} - Efficiency_{Antenna,dB}$

 $TRP_{dBm} = Power_{Total,dBm} = Power_{Conducted,dBm} - LOSS_{tline,dB} - LOSS_{mismatch,dB}$ -Rad Efficiency_{Antenna,dB}

FIGURE E-2 TRP

Credit: CTIA OTA Test Plan V3.8.1

{ed} Efficiency{Antenna} _{dBm} - Efficiency_{Antenna,}dB -LOSS_{mismatch,dB} -Rad Efficiency_{Antenna},

OTA: TIS

- TIS = Total Isotropic sensitivity
- Dependent on antenna total efficiency
- TIS is *also* highly influenced by interference

$$TIS = \frac{4\pi}{\int_{\theta=0}^{\pi} \int_{\varphi=0}^{2\pi} \left[\frac{1}{EIS_{\theta}(\theta,\varphi)} + \frac{1}{EIS_{\varphi}(\theta,\varphi)}\right] \sin(\theta) \, d\varphi d\theta} \quad \text{where} \quad EIS_{\chi}(\theta,\varphi)$$

Credit: CTIA OTA Test Plan V3.8.1

 $(\varphi) = P_S G_{x,EUT}(\theta,\varphi)$

>
$$TIS \cong \frac{P_S}{\eta_{antenna}P_{interference}}$$

Sample OTA Requirements

Requirement		LTE Cat 1+	LTE Cat-M1 (Power Class 3)	LTE Cat-M1, Small Form-factor
TRP	Band 2	+20 dBm	+20 dBm	+12 dBm
	Band 4	+20 dBm	+20 dBm	+12 dBm
	Band 12	+18 dBm	+18 dBm	+10 dBm
TIS	Band 2	-91 dBm	-96 dBm	-88 dBm
	Band 4	-93 dBm	-98 dBm	-90 dBm
	Band 12	-91 dBm	-93 dBm	-85 dBm

- Each carrier has their own requirements (if any) ask your carrier!!!
- Some variations of OTA requirements for new classes
- Small form-factor devices (< 107mm in length) have a lower bar
- Power Class 5 TRP requirements = 3 dB lower than Power Class 3
- Contact your carrier yours may have different requirements
- Ref: <u>https://iotdevices.att.com/</u>

Antenna Integration

Designing for TRP

Typical Examples

Key Considerations

- Ground Plane Length
- Keep Out Areas
- Proximity to Metal

Ground Plane Length

- #1 most common issue for antenna performance
- **Target**: ¹/₄ free-space wavelength

Ground Plane Size

- Performance of on-board antennas depends on ground plane length
- Efficiency AND Bandwidth decrease rapidly as ground plane length drops below ¼wavelength
- 699MHz \rightarrow ¼ wave =~ 107mm

Keep Out Areas <u>Top View</u>

- Maintaining the "keep-out area" is key to achieving good performance
- The antenna has a physical volume, i.e. dimensions associated with it
- The realized antenna performance requires a VOLUME greater than the size of the antenna
- Follow the datasheet!

Proximity to Metal

Keep-out area is 3D! Target > 20mm for cellular

Placing antennas over large sheets of metal requires much more than 20mm of clearance, unless using a monopole!

Impedance Matching

- Make sure the antenna (and all transmission lines) are impedancematched
- Target 6dB return loss or better diminishing returns after 10 dB
- If already matched to 10 dB return loss and TRP/efficiency is STILL low...there are other problems

Mismatch Loss vs Return Loss

Impedance Matching Concept

- resonance; this acts as a high pass filter
- resonance; this acts as a low pass filter

Dynamic Tuning

- As antenna volume shrinks, so does bandwidth
- Dynamic tuning allows a smaller bandwidth to "cover" more bands than if statically-tuned
- Solid-state switch network adjusts tuning "on the fly"

Dynamic Tuning – Nordic Thingy:91

- Taoglas' PCS.50 + Nordic's nRF9160 support dynamic tuning
 - Nordic nRF9160 module supports antenna tuning control
 - Taoglas PCS.50A supports aperture tuning (700-2700 MHz).

53X53 mm

Design for TIS

RF Noise/Interference Mitigation

How noise affects TIS

- Electro-magnetic noise (often cause by power supply) can be emitted from the device itself and received by its own antenna.
 - This is called *self interference*.

Mitigated using same methods, but power levels are lower

Noise: Narrowband

- Narrowband generates CW-like interferers
- Real signals have jitter, real rise & fall times: both odd and even harmonics

0.7

Noise: Broadband

VIN

Self-Interference Requirements

- Performance targets can be estimated for self-interference
- Narrowband systems like GSM are equally sensitive to narrowband and broadband interference
- **Techn** GSM/GP LTE

• OFDM systems like LTE are less sensitive to narrowband but more sensitive to broadband interference

ology	Maximum Narrowband Interferer Power	Maximum Broadband Interferer Power
RS (2G)	-108 dBm	-108 dBm
4G)	-82 dBm	-117 dBm

Mitigating SMPS Noise

- Ensure tight switching loop PCB layout
- Make sure switching loop has clean and clear return path (and does not change reference plane!)
 - Typically, two loops: minimize area of both!
- Plan for shielding SMPS
- Add high-frequency capacitors to both input & output to minimize broadband area.

Mitigating Digital Switching Noise

- Power supply bypassing!
- The "full" loop includes the power supply
- Keep impedance of the bypassing/"Power Distribution Network" (PDN) low at the fundamental and harmonic frequencies
- Keep PCB trace routing clean good ground planes and layer transitions

Shielding

- Plan for shielding around high-frequency digital electronics and switch-mode power supplies
- Shields should be connected directly to the PCB ground planes
- Minimize openings/gaps/apertures in shields

Interfaces

- Pay close attention to off-board interfaces
 - Cables, connectors, board-to-boards
- Power & Differential Lines: common-mode choke
- Single-Ended Lines: RC or LC filtering

PCB Stack-ups & Other Notes

- At least one ground plane
- Stitch grounds together! At board edge and throughout the board
- If using power plane/pours: couple tightly to ground plane
- Examples are presented below. Every implementation will be different, so always check!

Substrate Stack-Up: 6-layer

Keeping the ground planes from the 4-layer, we can add two signal layers in the middle. These signal layers are well-shielded!

Substrate Stack-Up: 4-layer

Using two ground planes allows clean routing on top & bottom: no worry about routing across a break in the reference plane

Substrate Stack-Up: 8-layer

- Ground
- Bottom

Keeping two signal layers but adds a power layer. Good for high-speed designs. Internal signals are shielded and provided with clean reference planes.

Design for Test

How to make your test lab like you

- Don't interfere with the LTE modem module operation
 - Turn it on and let it run in its default state
- Don't let it fall asleep
- Enable auto-registration
- Enable auto-answer (when applicable)
- Provide test lab AT command access
- ... #1 solution: instructions!

Pretesting

- "Pretesting" or "Precertification testing" is a shortened form of testing, focused on high-risk areas
- A great way to gain confidence (or identify problems) early
- TRP and TIS are tested but often shortened
 - TIS: mid channel only
 - TRP: reduced spatial sampling $(15^\circ \rightarrow 30^\circ)$
 - No Intermediate Channel testing
- Radiated Spurious Emissions
 - Intentional Radiator harmonics of transmitted signal
 - Unintentional Radiator radio off, 30MHz 1GHz
- Perform as soon as you have a functional unit!

Recap

Take-aways

- Identify your target markets & carriers early
- Talk to your target carriers early (if known)
- Design for TRP
 - Ground plane/device size is critical
 - Give your antenna volume
- Design for TIS
 - Design for low emissions
- Test early
- Reach out to Taoglas & Nordic for help

arly 'n)

More Information

- Antenna Integration Application Note
- Taoglas/Nordic Web Release
- Nordic Partner Program: Taoglas
- <u>nRF9160 Antenna and RF Interface</u>
 <u>Guidelines</u>
- HW files reference layout and BOM (<u>nRF9160 DK</u>, Thingy:91)

Register for upcoming Nordic Tech Webinars

www.nordicsemi.com/webinars

Register for upcoming Nordic Tech Webinars

www.nordicsemi.com/webinars