Determing capacitor size and maximum sampling frequency for a nRF51 ADC voltage divider

The nRF51 ADC voltage divider model

The voltage divider circuit is as shown in figure 1.

Figure 1. Voltage divider circuit for the nRF51 ADC

$t_{SAMPLE} - 8$ bit resolution	20 µs
$t_{SAMPLE} - 9$ bit resolution	36 µs
$t_{SAMPLE} - 10$ bit resolution	68 µs
$R_{AIN} - 1/1$ prescale	129.7 kΩ
$R_{AIN} - 2/3$ prescale	194.6 kΩ
$R_{AIN} - 1/3$ prescale	389.2 kΩ
U_{ADC} – VBG reference	0.6 V
1 bit voltage for 8 bit resolution	4.71 mV
1 bit voltage for 9 bit resolution	2.35 mV
1 bit voltage for 10 bit resolution	1.17 mV

Table 1. nRF51 ADC values

Before ADC sampling, the capacitor C will charge up since the input to the ADC is high impedance, i.e. $R_{AIN} = \infty$. When the ADC samples, R_{AIN} will have value as shown in table 1. Duration of each sample is t_{SAMPLE} , also shown in table 1.

When sampling, current will flow from capacitor C into the ADC through resistor R_{AIN} . The charge of the capacitor will hold U_{AIN} steady during the sampling period, therefore eliminating the error caused by the high impedance voltage divider. The capacitor will of course discharge a little when sampling but the capacitor needs to be dimensioned so that the voltage error is less than what corresponds to 1 bit.

Deriving general equations

Steady state voltages for the circuit in Figure 1 are:

 $U_{AIN_SS_sampling} = U_{BATT} * \frac{R_2 ||R_{AIN}}{R_2 ||R_{AIN} + R_1} + U_{ADC} * \frac{R_1 ||R_2}{R_1 ||R_2 + R_{AIN}}$

 $U_{AIN_SS_not_sampling} = U_{BATT} * \frac{R_2}{R_1 + R_2}$

where:

$$R_1||R_2 = \frac{R_1 * R_2}{R_1 + R_2}$$

The discharge voltage for the capacitor in Figure 1 is: $U_{C_discharge} = U_0(e^{-t/_{RC}})$

Setting the discharge boundary equal to 1 bit voltage gives:

$$U_0 - U_{1bit} = U_0(e^{-t/_{RC}})$$

Isolating for C gives

$$C = \frac{-t}{R*\ln(\frac{U_0 - U_{1bit}}{U_0})} \quad (equation \ 1)$$

where: $U_0 = U_{AIN_SS_not_sampling} - U_{AIN_SS_sampling}$ $t = t_{SAMPLE}$ $R = R_2 ||R_{AIN}||R_1$ $U_{1bit} = 1$ bit voltage

Finding the maximum sampling frequency

Capacitor charging equation is

$$U_{C_charge} = U_0(1 - e^{-t/_{RC}})$$

The capacitor is estimated to be fully charged after 5*RC (99.3%). Maximum sampling frequency is therefore $f_{max} = \frac{1}{5*RC}$

where: $\mathbf{R} = R_2 || R_1$

Calculation example

For the example, following values are selected: $U_{BATT} = 4.2 \text{V}$ $R_1 = 10 \text{M}\Omega$ $R_2 = 2.2 \text{M}\Omega$ ADC prescaler: 1/1 ($R_{AIN} = 129.7 \text{k}\Omega$) ADC resolution: 10 bit (68µs sampling period)

To find the capacitor value we insert the selected values into equation 1:

$$\begin{split} &U_{AIN_SS_sampling} = 4.2 * \frac{2.2M||129.7k}{2.2M||129.7k+10M} + 0.6 * \frac{10M||2.2M}{10M||2.2M+129.7k} = 0.0508 + 0.5597 = 0.6106 \text{ V} \\ &U_{AIN_SS_not_sampling} = 4.2 * \frac{2.2M}{2.2M+10M} = 0.7574 \text{ V} \\ &U_0 = U_{AIN_SS_not_sampling} - U_{AIN_SS_sampling} = 0.7574 - 0.6106 = 0.1468 \text{ V} \\ &t = t_{SAMPLE} - 10 \text{ bit resolution} = 68 \ \mu \text{s} \\ &R = R_2 ||R_{AIN}||R_1 = (\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_{AIN}})^{-1} = (\frac{1}{10M} + \frac{1}{2.2M} + \frac{1}{129.7k})^{-1} = 121.0 \text{ k}\Omega \\ &U_{1bit} = 1 \text{ bit voltage for 10 bit resolution} = 1.17 \text{ mV} \end{split}$$

$$C = \frac{-68\mu}{121.0k*\ln(\frac{146.8m-1.17m}{146.8m})} = 70.3 \text{ nF}$$

The maximum sampling frequency for this setup is:

$$f_{max} = \frac{1}{5*R_C} = \frac{1}{5*R_2 ||R_1*C} = \frac{1}{5*1.803M*70.3n} = 1.58 \text{ Hz}$$