/* Copyright (c) 2013 Nordic Semiconductor. All Rights Reserved. * * Use of this source code is governed by a BSD-style license that can be * found in the license.txt file. */ /** * This file is the main file for the application described in application note * nAN-36 Creating Bluetooth® Low Energy Applications Using nRF51822. */ #include #include #include #include "nordic_common.h" #include "nrf.h" #include "app_error.h" #include "nrf_gpio.h" #include "nrf_delay.h" #include "nrf51_bitfields.h" #include "ble.h" #include "ble_hci.h" #include "ble_srv_common.h" #include "ble_advdata.h" #include "ble_conn_params.h" #include "boards.h" #include "app_scheduler.h" #include "softdevice_handler.h" #include "app_timer_appsh.h" #include "ble_error_log.h" #include "app_gpiote.h" #include "app_button.h" #include "ble_debug_assert_handler.h" #include "pstorage.h" #include "ble_lbs.h" #include "nrf_drv_twi.h" #include "nrf_drv_config.h" #include "app_util_platform.h" #include "bsp.h" #include "ble_gap.h" //#include "SEGGER_RTT.h" #define BTN_PRESSED 0 #define BTN_RELEASED 1 //static int x; static app_timer_id_t m_test_timer_id; #define TEST_EVENT_INTERVAL APP_TIMER_TICKS(5000, APP_TIMER_PRESCALER) //5 sec #define IS_SRVC_CHANGED_CHARACT_PRESENT 0 /**< Include or not the service_changed characteristic. if not enabled, the server's database cannot be changed for the lifetime of the device*/ #define WAKEUP_BUTTON_PIN BSP_BUTTON_0 /**< Button used to wake up the application. */ #define SLEEP BSP_BUTTON_1 #define RELAY_PIN 02 #define ADVERTISING_LED_PIN_NO BSP_LED_0 /**< Is on when device is advertising. */ #define CONNECTED_LED_PIN_NO BSP_LED_1 /**< Is on when device has connected. */ #define LEDBUTTON_LED_PIN_NO3 BSP_LED_2 #define LEDBUTTON_LED_PIN_NO4 BSP_LED_3 #define LEDBUTTON_BUTTON_PIN_NO BSP_BUTTON_0 #define DEVICE_NAME "Smart Switch" /**< Name of device. Will be included in the advertising data. */ #define APP_ADV_INTERVAL 64 /**< The advertising interval (in units of 0.625 ms. This value corresponds to 40 ms). */ #define APP_ADV_TIMEOUT_IN_SECONDS 180 /**< The advertising timeout (in units of seconds). */ #define APP_TIMER_PRESCALER 0 /**< Value of the RTC1 PRESCALER register. */ #define APP_TIMER_MAX_TIMERS 10 /**< Maximum number of simultaneously created timers. */ #define APP_TIMER_OP_QUEUE_SIZE 4 /**< Size of timer operation queues. */ #define MIN_CONN_INTERVAL MSEC_TO_UNITS(100, UNIT_1_25_MS) /**< Minimum acceptable connection interval (0.5 seconds). */ #define MAX_CONN_INTERVAL MSEC_TO_UNITS(200, UNIT_1_25_MS) /**< Maximum acceptable connection interval (1 second). */ #define SLAVE_LATENCY 0 /**< Slave latency. */ #define CONN_SUP_TIMEOUT MSEC_TO_UNITS(4000, UNIT_10_MS) /**< Connection supervisory timeout (4 seconds). */ #define FIRST_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(20000, APP_TIMER_PRESCALER) /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (15 seconds). */ #define NEXT_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(5000, APP_TIMER_PRESCALER) /**< Time between each call to sd_ble_gap_conn_param_update after the first call (5 seconds). */ #define MAX_CONN_PARAMS_UPDATE_COUNT 3 /**< Number of attempts before giving up the connection parameter negotiation. */ #define APP_GPIOTE_MAX_USERS 1 /**< Maximum number of users of the GPIOTE handler. */ #define BUTTON_DETECTION_DELAY APP_TIMER_TICKS(50, APP_TIMER_PRESCALER) /**< Delay from a GPIOTE event until a button is reported as pushed (in number of timer ticks). */ #define SEC_PARAM_TIMEOUT 30 /**< Timeout for Pairing Request or Security Request (in seconds). */ #define SEC_PARAM_BOND 1 /**< Perform bonding. */ #define SEC_PARAM_MITM 1 /**< Man In The Middle protection not required. */ #define SEC_PARAM_IO_CAPABILITIES BLE_GAP_IO_CAPS_DISPLAY_ONLY /**< No I/O capabilities. */ #define SEC_PARAM_OOB 0 /**< Out Of Band data not available. */ #define SEC_PARAM_MIN_KEY_SIZE 7 /**< Minimum encryption key size. */ #define SEC_PARAM_MAX_KEY_SIZE 16 /**< Maximum encryption key size. */ #define DEAD_BEEF 0xDEADBEEF /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */ static ble_gap_sec_params_t m_sec_params; /**< Security requirements for this application. */ static uint16_t m_conn_handle = BLE_CONN_HANDLE_INVALID; /**< Handle of the current connection. */ static ble_lbs_t m_lbs; static void timers_start(void); #define SCHED_MAX_EVENT_DATA_SIZE sizeof(app_timer_event_t) /**< Maximum size of scheduler events. Note that scheduler BLE stack events do not contain any data, as the events are being pulled from the stack in the event handler. */ #define SCHED_QUEUE_SIZE 10 /**< Maximum number of events in the scheduler queue. */ char str[20]; int k=0; uint8_t dummy_data1[8],val[8]; static uint8_t dummy_data[8] = {0x00,0x80,0x52,0x18,0x21,0x14,0x12,0x15}; ret_code_t ret_code; const nrf_drv_twi_t p_twi_instance = NRF_DRV_TWI_INSTANCE(1); static void twi_event_handler(nrf_drv_twi_evt_t *evt){ // Light up LED 1 if device found if(evt->type == NRF_DRV_TWI_TX_DONE) { // nrf_gpio_pin_set(LED_3); // nrf_gpio_pin_clear(LED_3); } } uint32_t retval; uint8_t TM_DS1307_Bin2Bcd(uint8_t bin); uint8_t TM_DS1307_Bcd2Binsec(uint8_t bcd); uint8_t TM_DS1307_Bcd2BinHM(uint8_t bcd); uint8_t TM_DS1307_Bcd2BinDM(uint8_t bcd); struct { uint8_t seconds; /*!< Seconds parameter, from 00 to 59 */ uint8_t minutes; /*!< Minutes parameter, from 00 to 59 */ uint8_t hours; /*!< Hours parameter, 24Hour mode, 00 to 23 */ uint8_t day; /*!< Day in a week, from 1 to 7 */ uint8_t date; /*!< Date in a month, 1 to 31 */ uint8_t month; /*!< Month in a year, 1 to 12 */ uint8_t year; /*!< Year parameter, 00 to 99, 00 is 2000 and 99 is 2099 */ } time; void power_manage(void); void rtc_init(void);void RTC_write(void);void RTC_read(void); /**@brief Function for error handling, which is called when an error has occurred. * * @warning This handler is an example only and does not fit a final product. You need to analyze * how your product is supposed to react in case of error. * * @param[in] error_code Error code supplied to the handler. * @param[in] line_num Line number where the handler is called. * @param[in] p_file_name Pointer to the file name. */ void app_error_handler(uint32_t error_code, uint32_t line_num, const uint8_t * p_file_name) { // This call can be used for debug purposes during application development. // @note CAUTION: Activating this code will write the stack to flash on an error. // This function should NOT be used in a final product. // It is intended STRICTLY for development/debugging purposes. // The flash write will happen EVEN if the radio is active, thus interrupting // any communication. // Use with care. Un-comment the line below to use. ble_debug_assert_handler(error_code, line_num, p_file_name); // On assert, the system can only recover with a reset. //NVIC_SystemReset(); } /**@brief Callback function for asserts in the SoftDevice. * * @details This function will be called in case of an assert in the SoftDevice. * * @warning This handler is an example only and does not fit a final product. You need to analyze * how your product is supposed to react in case of Assert. * @warning On assert from the SoftDevice, the system can only recover on reset. * * @param[in] line_num Line number of the failing ASSERT call. * @param[in] file_name File name of the failing ASSERT call. */ void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name) { app_error_handler(DEAD_BEEF, line_num, p_file_name); } /**@brief Function for the LEDs initialization. * * @details Initializes all LEDs used by the application. */ static void leds_init(void) { nrf_gpio_cfg_output(ADVERTISING_LED_PIN_NO); nrf_gpio_cfg_output(CONNECTED_LED_PIN_NO); nrf_gpio_cfg_output(LEDBUTTON_LED_PIN_NO3); nrf_gpio_cfg_output(LEDBUTTON_LED_PIN_NO4); nrf_gpio_cfg_output(RELAY_PIN ); } uint8_t flag=0; static void test_timeout_handler(void * p_context) { uint32_t err_code; //nrf_gpio_pin_set(LEDBUTTON_LED_PIN_NO3); err_code = sd_power_system_off(); APP_ERROR_CHECK(err_code); // nrf_gpio_pin_set(LEDBUTTON_LED_PIN_NO3); // ++x; } /**@brief Function for the Timer initialization. * * @details Initializes the timer module. */ static void timers_init(void) { // // Initialize timer module, making it use the scheduler // APP_TIMER_APPSH_INIT(APP_TIMER_PRESCALER, APP_TIMER_MAX_TIMERS, APP_TIMER_OP_QUEUE_SIZE, true); APP_TIMER_INIT(APP_TIMER_PRESCALER, APP_TIMER_MAX_TIMERS, APP_TIMER_OP_QUEUE_SIZE, false); } /**@brief Function for the GAP initialization. * * @details This function sets up all the necessary GAP (Generic Access Profile) parameters of the * device including the device name, appearance, and the preferred connection parameters. */ static void gap_params_init(void) { uint32_t err_code; ble_gap_conn_params_t gap_conn_params; ble_gap_conn_sec_mode_t sec_mode; BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode); err_code = sd_ble_gap_device_name_set(&sec_mode, (const uint8_t *)DEVICE_NAME, strlen(DEVICE_NAME)); APP_ERROR_CHECK(err_code); memset(&gap_conn_params, 0, sizeof(gap_conn_params)); gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL; gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL; gap_conn_params.slave_latency = SLAVE_LATENCY; gap_conn_params.conn_sup_timeout = CONN_SUP_TIMEOUT; err_code = sd_ble_gap_ppcp_set(&gap_conn_params); APP_ERROR_CHECK(err_code); } /**@brief Function for initializing the Advertising functionality. * * @details Encodes the required advertising data and passes it to the stack. * Also builds a structure to be passed to the stack when starting advertising. */ static void advertising_init(void) { uint32_t err_code; ble_advdata_t advdata; ble_advdata_t scanrsp; ble_uuid_t adv_uuids[] = {{LBS_UUID_SERVICE, m_lbs.uuid_type}}; // Build and set advertising data memset(&advdata, 0, sizeof(advdata)); advdata.name_type = BLE_ADVDATA_FULL_NAME; advdata.include_appearance = true; advdata.flags = BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE; memset(&scanrsp, 0, sizeof(scanrsp)); scanrsp.uuids_complete.uuid_cnt = sizeof(adv_uuids) / sizeof(adv_uuids[0]); scanrsp.uuids_complete.p_uuids = adv_uuids; err_code = ble_advdata_set(&advdata, &scanrsp); APP_ERROR_CHECK(err_code); } static void led_write_handler(ble_lbs_t * p_lbs, uint8_t *led_state) { //uint32_t err_code; if (*led_state!=0){ str[k]=*led_state; k++; } switch(*led_state){ case 03 : RTC_write(); nrf_gpio_pin_set(LEDBUTTON_LED_PIN_NO3); break; case 04 : nrf_gpio_pin_set(LEDBUTTON_LED_PIN_NO3); break; case 06 : nrf_gpio_pin_set(RELAY_PIN ); break; case 05 : RTC_read(); break; case 00 : nrf_gpio_pin_clear(RELAY_PIN); nrf_gpio_pin_clear(LEDBUTTON_LED_PIN_NO3); break; } *led_state=0; } /**@brief Function for initializing services that will be used by the application. */ static void services_init(void) { uint32_t err_code; ble_lbs_init_t init; init.led_write_handler = led_write_handler; err_code = ble_lbs_init(&m_lbs, &init); APP_ERROR_CHECK(err_code); } /**@brief Function for initializing security parameters. */ static void sec_params_init(void) { m_sec_params.bond = SEC_PARAM_BOND; m_sec_params.mitm = SEC_PARAM_MITM; m_sec_params.io_caps = SEC_PARAM_IO_CAPABILITIES; m_sec_params.oob = SEC_PARAM_OOB; m_sec_params.min_key_size = SEC_PARAM_MIN_KEY_SIZE; m_sec_params.max_key_size = SEC_PARAM_MAX_KEY_SIZE; } /**@brief Function for handling the Connection Parameters Module. * * @details This function will be called for all events in the Connection Parameters Module which * are passed to the application. * @note All this function does is to disconnect. This could have been done by simply * setting the disconnect_on_fail config parameter, but instead we use the event * handler mechanism to demonstrate its use. * * @param[in] p_evt Event received from the Connection Parameters Module. */ static void on_conn_params_evt(ble_conn_params_evt_t * p_evt) { uint32_t err_code; if(p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED) { err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE); APP_ERROR_CHECK(err_code); } } /**@brief Function for handling a Connection Parameters error. * * @param[in] nrf_error Error code containing information about what went wrong. */ static void conn_params_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } /**@brief Function for initializing the Connection Parameters module. */ static void conn_params_init(void) { uint32_t err_code; ble_conn_params_init_t cp_init; memset(&cp_init, 0, sizeof(cp_init)); cp_init.p_conn_params = NULL; cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY; cp_init.next_conn_params_update_delay = NEXT_CONN_PARAMS_UPDATE_DELAY; cp_init.max_conn_params_update_count = MAX_CONN_PARAMS_UPDATE_COUNT; cp_init.start_on_notify_cccd_handle = BLE_GATT_HANDLE_INVALID; cp_init.disconnect_on_fail = false; cp_init.evt_handler = on_conn_params_evt; cp_init.error_handler = conn_params_error_handler; err_code = ble_conn_params_init(&cp_init); APP_ERROR_CHECK(err_code); } /**@brief Function for starting timers. */ static void timers_start(void) { uint32_t err_code = 0; err_code = app_timer_create(&m_test_timer_id, APP_TIMER_MODE_REPEATED, test_timeout_handler); APP_ERROR_CHECK(err_code); // err_code = app_timer_start(m_test_timer_id, TEST_EVENT_INTERVAL, NULL); // APP_ERROR_CHECK(err_code); } /**@brief Function for starting advertising. */ static void advertising_start(void) { uint32_t err_code; ble_gap_adv_params_t adv_params; // Start advertising memset(&adv_params, 0, sizeof(adv_params)); adv_params.type = BLE_GAP_ADV_TYPE_ADV_IND; adv_params.p_peer_addr = NULL; adv_params.fp = BLE_GAP_ADV_FP_ANY; adv_params.interval = APP_ADV_INTERVAL; adv_params.timeout = APP_ADV_TIMEOUT_IN_SECONDS; err_code = sd_ble_gap_adv_start(&adv_params); APP_ERROR_CHECK(err_code); nrf_gpio_pin_set(LEDBUTTON_LED_PIN_NO3); } /**@brief Function for handling the Application's BLE Stack events. * * @param[in] p_ble_evt Bluetooth stack event. */ static void on_ble_evt(ble_evt_t * p_ble_evt) { uint32_t err_code; volatile ble_gap_evt_auth_status_t m_auth_status; static ble_gap_master_id_t p_master_id; static ble_gap_sec_keyset_t keys_exchanged; switch (p_ble_evt->header.evt_id) { case BLE_GAP_EVT_CONNECTED: // nrf_gpio_pin_set(LEDBUTTON_LED_PIN_NO3); nrf_gpio_pin_clear(LEDBUTTON_LED_PIN_NO3); m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle; err_code = app_button_enable(); APP_ERROR_CHECK(err_code); break; case BLE_GAP_EVT_DISCONNECTED: nrf_gpio_pin_set(LEDBUTTON_LED_PIN_NO3); m_conn_handle = BLE_CONN_HANDLE_INVALID; err_code = app_button_disable(); APP_ERROR_CHECK(err_code); advertising_start(); break; case BLE_GAP_EVT_SEC_PARAMS_REQUEST: err_code = sd_ble_gap_sec_params_reply(m_conn_handle, BLE_GAP_SEC_STATUS_SUCCESS, &m_sec_params,&keys_exchanged); APP_ERROR_CHECK(err_code); break; case BLE_GATTS_EVT_SYS_ATTR_MISSING: err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0,BLE_GATTS_SYS_ATTR_FLAG_USR_SRVCS); APP_ERROR_CHECK(err_code); break; case BLE_GAP_EVT_AUTH_STATUS: m_auth_status = p_ble_evt->evt.gap_evt.params.auth_status; break; case BLE_GAP_EVT_SEC_INFO_REQUEST: //p_enc_info = keys_exchanged.keys_central.p_enc_key if (p_master_id.ediv == p_ble_evt->evt.gap_evt.params.sec_info_request.master_id.ediv) { err_code = sd_ble_gap_sec_info_reply(m_conn_handle, &keys_exchanged.keys_central.p_enc_key->enc_info, &keys_exchanged.keys_central.p_id_key->id_info, NULL); APP_ERROR_CHECK(err_code); p_master_id.ediv = p_ble_evt->evt.gap_evt.params.sec_info_request.master_id.ediv; } else { // No keys found for this device err_code = sd_ble_gap_sec_info_reply(m_conn_handle, NULL, NULL,NULL); APP_ERROR_CHECK(err_code); } break; case BLE_GAP_EVT_TIMEOUT: if (p_ble_evt->evt.gap_evt.params.timeout.src == BLE_GAP_TIMEOUT_SRC_ADVERTISING) { nrf_gpio_pin_clear(ADVERTISING_LED_PIN_NO); // Configure buttons with sense level low as wakeup source. nrf_gpio_cfg_sense_input(WAKEUP_BUTTON_PIN, BUTTON_PULL, NRF_GPIO_PIN_SENSE_LOW); // Go to system-off mode (this function will not return; wakeup will cause a reset) err_code = sd_power_system_off(); APP_ERROR_CHECK(err_code); } break; default: // No implementation needed. break; } } /**@brief Function for dispatching a BLE stack event to all modules with a BLE stack event handler. * * @details This function is called from the scheduler in the main loop after a BLE stack * event has been received. * * @param[in] p_ble_evt Bluetooth stack event. */ static void ble_evt_dispatch(ble_evt_t * p_ble_evt) { on_ble_evt(p_ble_evt); ble_conn_params_on_ble_evt(p_ble_evt); ble_lbs_on_ble_evt(&m_lbs, p_ble_evt); } /**@brief Function for dispatching a system event to interested modules. * * @details This function is called from the System event interrupt handler after a system * event has been received. * * @param[in] sys_evt System stack event. */ static void sys_evt_dispatch(uint32_t sys_evt) { pstorage_sys_event_handler(sys_evt); } /**@brief Function for initializing the BLE stack. * * @details Initializes the SoftDevice and the BLE event interrupt. */ static void ble_stack_init(void) { uint32_t err_code; // Initialize the SoftDevice handler module. SOFTDEVICE_HANDLER_INIT( NRF_CLOCK_LFCLKSRC_XTAL_20_PPM, false); // Enable BLE stack ble_enable_params_t ble_enable_params; memset(&ble_enable_params, 0, sizeof(ble_enable_params)); ble_enable_params.gatts_enable_params.service_changed = IS_SRVC_CHANGED_CHARACT_PRESENT; err_code = sd_ble_enable(&ble_enable_params); APP_ERROR_CHECK(err_code); ble_gap_addr_t addr; err_code = sd_ble_gap_address_get(&addr); APP_ERROR_CHECK(err_code); sd_ble_gap_address_set(BLE_GAP_ADDR_CYCLE_MODE_NONE, &addr); APP_ERROR_CHECK(err_code); // Subscribe for BLE events. err_code = softdevice_ble_evt_handler_set(ble_evt_dispatch); APP_ERROR_CHECK(err_code); // Register with the SoftDevice handler module for BLE events. err_code = softdevice_sys_evt_handler_set(sys_evt_dispatch); APP_ERROR_CHECK(err_code); } /**@brief Function for the Event Scheduler initialization. */ static void scheduler_init(void) { APP_SCHED_INIT(SCHED_MAX_EVENT_DATA_SIZE, SCHED_QUEUE_SIZE); } static void button_event_handler(uint8_t pin_no, uint8_t button_action) { uint32_t err_code; switch (pin_no) { case LEDBUTTON_BUTTON_PIN_NO: err_code = ble_lbs_on_button_change(&m_lbs, button_action); if (err_code != NRF_SUCCESS && err_code != BLE_ERROR_INVALID_CONN_HANDLE && err_code != NRF_ERROR_INVALID_STATE) { APP_ERROR_CHECK(err_code); } break; default: APP_ERROR_HANDLER(pin_no); break; } } /**@brief Function for initializing the GPIOTE handler module. */ static void gpiote_init(void) { APP_GPIOTE_INIT(APP_GPIOTE_MAX_USERS); } /**@brief Function for initializing the button handler module. */ static void buttons_init(void) { // Note: Array must be static because a pointer to it will be saved in the Button handler // module. static app_button_cfg_t buttons[] = { {WAKEUP_BUTTON_PIN, false, BUTTON_PULL, NULL}, {LEDBUTTON_BUTTON_PIN_NO, false, BUTTON_PULL, button_event_handler} }; app_button_init(buttons, sizeof(buttons) / sizeof(buttons[0]), BUTTON_DETECTION_DELAY); } /**@brief Function for the Power manager. */ void power_manage(void) { uint32_t err_code = sd_app_evt_wait(); APP_ERROR_CHECK(err_code); } /**@brief Function for application main entry. */ static void passkey(void) { uint8_t passkey[] = "000007"; ble_opt_t ble_opt; ble_opt.gap_opt.passkey.p_passkey = &passkey[0]; (void) sd_ble_opt_set(BLE_GAP_OPT_PASSKEY, &ble_opt); } int main(void) { // Initialize leds_init(); rtc_init(); RTC_write(); for(k=0;k<2;k++){ nrf_gpio_pin_set(LEDBUTTON_LED_PIN_NO3); nrf_delay_ms(400); RTC_read(); nrf_gpio_pin_clear(LEDBUTTON_LED_PIN_NO3); } time.seconds=0;time.hours=0;time.minutes=0;time.day=0;time.date=0;time.month=0;time.year=0; // RTC_read(); timers_init(); gpiote_init(); buttons_init(); ble_stack_init(); scheduler_init(); gap_params_init(); passkey(); //setting passkey as 000007 for bonding services_init(); advertising_init(); conn_params_init(); sec_params_init(); // Start execution timers_start(); advertising_start(); // Enter main loop for (;;) { app_sched_execute(); // power_manage(); } } void rtc_init(void){ nrf_drv_twi_config_t p_twi_config; p_twi_config.scl = 7; p_twi_config.sda = 30; p_twi_config.frequency = NRF_TWI_FREQ_400K; p_twi_config.interrupt_priority = APP_IRQ_PRIORITY_LOW; ret_code = nrf_drv_twi_init(&p_twi_instance, &p_twi_config, twi_event_handler); // Initiate twi driver with instance and configuration values APP_ERROR_CHECK(ret_code); // Check for errors in return value nrf_drv_twi_enable(&p_twi_instance); // Enable the TWI instance } void RTC_write(void){ ret_code= nrf_drv_twi_tx(&p_twi_instance, 0x6F,dummy_data, 8, false); nrf_delay_ms(500); } void RTC_read(void){ ret_code= nrf_drv_twi_tx(&p_twi_instance, 0x6F,dummy_data, 1, true); nrf_delay_ms(50); ret_code= nrf_drv_twi_rx(&p_twi_instance, 0x6F,dummy_data1, 8, false); // nrf_gpio_pin_clear(LED_3); // Do nothing time.seconds=TM_DS1307_Bcd2Binsec(dummy_data1[0]); time.minutes=TM_DS1307_Bcd2BinHM(dummy_data1[1]); time.hours=TM_DS1307_Bcd2BinHM(dummy_data1[2]); time.day=TM_DS1307_Bcd2BinDM(dummy_data1[3]); time.date=TM_DS1307_Bcd2BinHM(dummy_data1[4]); time.month=TM_DS1307_Bcd2BinHM(dummy_data1[5]); time.year=TM_DS1307_Bcd2BinHM(dummy_data1[6]); nrf_delay_ms(50); } uint8_t TM_DS1307_Bin2Bcd(uint8_t bin) { uint8_t high = 0; high=((bin/10)<<4)+(bin)%10; /* Return */ return high; } uint8_t TM_DS1307_Bcd2Binsec(uint8_t bcd) { uint8_t dec ; bcd=bcd^(1<<7); dec =( bcd & 0x0F)+(bcd >> 4)*10; return dec; } uint8_t TM_DS1307_Bcd2BinHM(uint8_t bcd) { uint8_t dec = 10 * (bcd >> 4); dec += bcd & 0x0F; return dec; } uint8_t TM_DS1307_Bcd2BinDM(uint8_t bcd) { bcd=bcd^(1<<5); uint8_t dec = 10 * (bcd >> 4); dec += bcd & 0x0F; return dec; } /** * @} */