28.02.2018

Development with GCC and
Eclipse

Troubleshooting guide

Contents

T dgoTe [V AT] o HUU T TP UPTOPPT 2
BUII @ITOFS. .. ettt ettt s h e sttt et e e bt e sb e e saeesab e st e e bt e b e e bt e beesaeeenteentean 3
WIONE SEAICN PANS ..eeiiiiiieee e e et e e et e e s e bt e e e e ebteeeeebteeesebteeeeereneeeannes 4
Cannot run program “”: Launching failed.........cooiviiiiiiiiiii e 6
Auto discovery of symbols, include paths and compiler settings.......cccoeeeciiiiiiiieicicciee e, 6
Verbose build 10ggIiNg NOt @NabIEdcooceiiiiieee e aae e 7
Y A= e [oo V=T oY R 8
(0 gTgTel deY o1l a o [=] o 0Tyt o] o (PSP 9
APPlICAtioN WIll NOT FUN ... e e st te e e e st te e e e sbeeeeesbaeeeesbeeeeesnnes 11
Error in linker configuration (Memory [aYOUL).......c.eecciiieiiieiiie et e 11
(6o oI 1= o d o] o SO STV PPTRRROPRR 12
L E e | = 1] L) ol=T o1 To] o IR RS 12

Introduction

This is a brief guide on how to troubleshoot some of the common problems related to Eclipse and
GCC setup with the Nordic SDK. | recommend doing a quick search on the forum and in the comment
section if you experience a problem not mentioned in this guide, you may find others who have
encountered the exact same problem, but do not hesitate to post a new question on the forum if
not.

Build errors

The CDT Build Console window in Eclipse will show errors or warnings reported by the build process
if there are any. It is important to note the difference between errors reported here, and errors that
are only shown in the code editor; Eclipse may show errors in the source code despite there being
no build errors. If this is the case it likely means that there is a problem with the auto discovery
configuration mentioned in the “Enable auto discovery of symbols, include paths and compiler
settings” section of the tutorial. Please skip to the next chapter if this is the symptom.

Below image illustrates an actual build error caused by undeclared variable in the source code. In
this case, Eclipse is correctly identifying this coding mistake based on the feedback from the build
process (build output).

[&l main.c 22 : =8 ® Make Target = 5 = 0
- am F G 5 "
20 * This file contains the source code for a sample application to blink LEDs. B
21 * ¥ blinky_pcal0028

22 */f

23

24 #include <stdbool.h>
25 #include <stdint.h>
26 #include "nrf_delay.h"
27 #include "bsp.h"

29 static const uint8_t leds_list[LEDS_NUMBER] = LEDS_LIST;

0
1= f#*

2 ¥ @brief Function for application main entry.

3 #/
?-‘-’:' int main(void) =

b5 ¢ =

1136 /* Configure LED-pins as outputs. =/

37 LEDS_COMFIGURE(LEDS MASK);

Hag H
429 yavigble = 10;

::‘V‘ . 3 'variable’ undeclared (first use in this function)

4 /* Toggle L

a2 while (truey

43

24’: for (int i = @; i < LEDS_NUMBER; i++)

45 {

1146 LEDS_INVERT(1 << leds_list[i]);

a7 nrf_delay_ms(500);

48 } -

)
#. Problems | Tasks | B Console i [[] Properties =¥ Disassembly %% Debug = Packs <’ Search U ('l LB BB H|#B~civ =0
CDT Build Console [blinky_pcal0028] _ _ _ _
.o/ /main.c: In function ‘main’: -
o.f../../main.c:39:5: error: "variable' undeclared (first use in this function)
variable = 10;

..f../../main.c:39:5: note: each undeclared identifier is reported only once for each function it appears in =
make: *** [build/nrf51422_ xxac_main.c.o] Error 1
oSl S f . S . [components/toolchain/gcc/Makefile. common:189: recipe for target '_build/nrf51422_xxac_main.c.o" failed

12:38:03 Build Finished (took 231ms) -
4 1] »

Figure 1: Build error: referencing an undeclared variable.

Figure 2 on the other hand shows an example where the project is built without errors, but unable
to resolve the macros and variables because of missing include paths and pre-processor definitions,
which indicates a problem with the auto discovery configuration.

[main.c =a @® Make Target =08

Loy wiaan

14 * & @ € [y
15 * @deferoup blinky example_main main.c » & blinky_pcal0028

16 =@

17 * @ingroup blinky_example

18 * @brief Blinky Example Application main file.

g x

20 * This file contains the source code for a sample application to blink LEDs.

21 *

22 */

23

224 #include <stdbool.h>
2125 #include <stdint.h>
226 #include "nrf_delay.h" o
227 #include "bsp.h"

il

29 static const uint8_t leds_list[LEDS MUMBER] = LEDS LIST;

316 /=%

32 * @brief Function for application main entry.
33 */ =
4= int main(void)

6 /* Configure LED-pins as outputs. */
7 LEDS_CONFIGURE(LEDS MASK);
8
9 /* Toggle LEDs. */
5] while (true)
2 for (int i = @; i < LEDS_NUMBER; i++) -
<)
£ Problems ¥ Tasks & Console i% [Properties =¥ Disassembly % Debug ® Packs - Search & ﬁ| wf &l % *E8~-civ=0

CDT Build Console [blinky_pcal0028]

text data bss dec hex filename
4336 112 84 4532 11b4 _build/nrf51422_xxac.out

Preparing: _build/nrf51422_xxac.hex
Preparing: _build/nrf51422_ xxac.bin

1 L

12:52:46 Build Finished (took 3s.508ms)

4 b

Figure 2: Successful build without errors.

Wrong search paths

A common cause of build errors is that Eclipse fails to invoke the build tools (GNU make, mkdir or
rm) or that GNU Make fails to invoke the toolchain because of wrong search paths. To troubleshoot
these kinds of errors we need to analyze the output in the CDT Build Console.

Toolchain path

The GNU_INSTALL_ROOT variable declared in Makefile.windows/posix must point to the install
directory for the GCC toolchain. Please refer to the “before we begin” section for more details.

Figure 3 and 4 shows the build output when the GNU_INSTALL_ROQOT variable is pointing to a non-
existent directory. Edit the Makefile.windows or Makefile.posix file (depending on OS) in
S(SDK_ROOQT)/components/toolchain/gcc so that GNU_INSTALL_ROOT corresponds with the version

you have installed if you are seeing this.

CDT Build Console [blinky_pcal0028]

13:23:22 **¥* Incremental Build of configuration Default for project blinky_pcal@@2g ****

make VERBOSE=1 all

process_begin: CreateProcess(NULL, "C:/Program Files (x86)/GNU Tools ARM Embedded/5.6 2016q3/bin/arm-none-eabi-gcc" --version, ...) failed.
Cannot find: 'C:/Program Files (x86)/GMNU Tools ARM Embedded/5.6 2016q3/bin/arm-none-eabi-gcc'.

Please set values in: "C:/eclipse_neon/nordic/nRF5_SDK_12.1.8/components/toolchain/gcc/Makefile.windows"

according to the actual configuration of your system.

make: ../../../../../../components/toolchain/gcc/Makefile.common:26: pipe: Mo error

oo/ /o /.. /.. [components/toolchain/gcc/Makefile. common:26: *** Cannot continue. Stop.

13:23:22 Build Finished (took 114ms})

Figure 3: console ouput with SDK version 12 and later where the toolchain path is not set correctly. Should have been
C:/Program Files (x86)/GNU Tools ARM/5.4 2016q3/bin/arm-none-eabi-gcc to correspond with this particular setup.

CDT Build Console [blinky_blank_pcal0028]

14:@5:53 **** Incremental Build of configuration Default for project blinky_blank pcal@e2g ****

make VERBOSE=1 all

rm -rf _build

make -f Makefile -C ./ -e cleanobj

make[1]: Entering directory 'C:/Eclipse_tutorial/eclipse-cpp-mars-1-win32-x86_64/eclipse/nordic/nRF5_SDK_11.0.0/examples/peripheral/blinky/pcal@028/blank/arm
rm -rf _build/*.o

make[1]: Leaving directory 'C:/Eclipse_tutorial/eclipse-cpp-mars-1-win32-x86_64/eclipse/nordic/nRF5_SDK_11.0.0/examples/peripheral/blinky/pcal@@28/blank/armg
make -f Makefile -C ./ -e nrf51422_xxac

make[1]: Entering directory 'C:/Eclipse_tutorial/eclipse-cpp-mars-1-win32-x86_64/eclipse/nordic/nRF5_SDK_11.0.0/examples/peripheral/blinky/pcalee28/blank/arm
echo Makefile

Makefile

mkdir _build

Compiling file: system nrf51.c

'C:/Program Files (x86)/GNU Tools ARM Embedded/5.6 201693/bin/arm-none-eabi-gcc' -DNRF51 -DBOARD_PCA10028 -DBSP_DEFINES_ONLY -mcpu=cortex-m@ -mthumb -mabi=aa
Makefile:131: recipe for target '_build/system nrf51.o' failed

process_begin: CreateProcess(NULL, "C:/Program Files (x86)/GNU Tools ARM Embedded/5.6 2016g3/bin/arm-none-eabi-gcc™ -DNRF51 -DBOARD_PCA10028 -DBSP_DEFINES_ON
make[1]: Leaving directory 'C:/Eclipse_tutorial/eclipse-cpp-mars-1-win32-x86_64/eclipse/nordic/nRF5_SDK_11.8.0/examples/peripheral/blinky/pcalee28/blank/armg
make (e=2): The system cannot find the file specified.

Makefile:95: recipe for target 'all' failed

make[1]: *** [_build/system_nrf51.0] Error 2
make: *** [all] Error 2

14:05:53 Build Finished (took 155ms)

Figure 4: same as shown figure 3, but with SDK releases prior to version 12.
Path to build tools

Errors such as “Cannot run program “make”, Cannot run program “mkdir”, etc. typically means that
Eclipse is not finding the executable in provided search paths.

CDT Build Console [ble_app_hrs_pcal0040_s132]

14:52:50 **** Tncremental Build of configuration Default for project ble app hrs_pcal@@4@ s132 ****
make all

Cannot run program "make": Launching failed

Error: Program "make" not found in PATH

Figure 5: GNU Make is found in path

First, make sure that GNU make is installed on the system as explained in the «before we begin»
section, then verify that the Build tools folder field contains the correct path in Eclipse preferences.

< Preferences (=] > S
i -

type filter text Global Tools Paths Ty
Global Tools Path o
L © ? o0s s The locations where various GNU ARM Eclipse tools are installed. Unless defined more specifically, they are
0gg9ing used for all projects in all workspaces.
Make Targets
. Makefile Editor Build tools folder: IC:\Program Files\GNU ARM Eclipse\Build Tools\2.?—201610281058\binI[Browse...]
Settings W Default toolchain: [GNU Tools for ARM Embedded Processors 'l
Workspac-e Tools Paths Toolchain name: (GNU Tools for ARM Embedded Processors
Code Analysis
. Code Style Toolchain folder: C:\Program Files (x86)\GNU Taols ARM Embedded\d.9 2015g3\bin
> Debug =
> Editor
i File Types
Indexer

Language Mappings | 4
New C/C++ Project Wizard
Profiling

Property Pages Settings

Task Tags

Template Default Values
Changelog -

[Restme Defaults] [Apply]

@' @:‘ I OK l [Cancel l

L 4

Figure 6: Add path to build tools folder.

“wn,

Cannot run program “”: Launching failed

This error may occur if the build command is not set, or contains an empty variable (e.g., if
S{cross_make} is not set).

Make sure to set the Build command to make VERBOSE=1 in project properties.

& Properties for blinky =
type filter text C/C++ Build S ow
Resaurce
[EBuilders
I C/C++ Build Configuration; | Default [Active] - | |Manage Cunl’lguratil:lns..]

4 CfC++ General
Code Analysis

Preprocessor Inclu [
Makefile generation

Documentation E Guilder Settings (= Behavior | +* Refresh Policy
File Types Builder

I Formatter Builder type: Extarnal builder -
Indlexer

| Language Mappine || Use default build command .

| Paths and Symbols Build command:] make VERBOSE=1 Varia hles..]

Profiling Categaorie
| Linux Toals Path Generate Makefiles automatically Expand Enw, Variable Refs in Makefiles
Project Referendes Build lacation
Run/Debug Settings
Task Repositary
[WikiText |WDMpace_. File system... | Variables..

Build directory: $(workspace_loc/blinky]s

| Restore De’fauhﬁ. [Apply

@ oK [cancel

Figure 7: Set build command.

Auto discovery of symbols, include paths and compiler settings

Eclipse’s built-in build output parser enables auto discovery of symbols and include paths for
Makefile managed projects so you do not have to add them manually when creating new or
modifying existing projects. Unfortunately, it does not provide much feedback when configured
incorrectly, besides failing to collect information from the build output.

Screenshot below shows an example where Auto discovery has not been enabled properly. Notice
how the project built successfully according to the CDT Build Console yet there are multiple errors
shown in the code view.

http://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.cdt.doc.user%2Freference%2Fcdt_u_pref_build_scanner_discovery.htm

¢ main.c 5

il 1w

15 * @deferoup blinky example_main main.c

16 * @

17 * @ingroup blinky_example

18 * @brief Blinky Example Application main file.
19

5

*

20 * This file contains the source code for a sample application to blink LEDs.

71 *

22 */

224 #include <stdbool.h>
2125 #include <stdint.h>
226 #include "nrf_delay.h"
227 #include "bsp.h"

29 static const uint8_t leds_list[LEDS MUMBER] = LEDS LIST;

316 /=%

32 * @brief Function for application main entry.
33 */

4= int main(void)

/* Configure LED-pins as outputs. */
LEDS_CONFIGURE(LEDS_MASK) ;

/* Toggle LEDs. */
while (true)

[= SRR

for (int i = @; i < LEDS_NUMBER; i++)

4

CDT Build Console [blinky_pcal0028]

text data bss dec hex filename
4336 112 84 4532 11b4 _build/nrf51422_xxac.out

Preparing: _build/nrf51422_xxac.hex
Preparing: _build/nrf51422_ xxac.bin

12:52:46 Build Finished (took 3s.508ms)

4

Figure 8: Build output is not parsed.

Verbose build logging not enabled

il

@® Make Target =08

- 5 blinky_pcal0028

4GBl EE-&I#Brmr =0

-

|

The build output parser relies on verbose build log to extract relevant information. Check if build log
contains enough information to retrieve necessary information about the project. The SDK makefile
have an option for producing verbose build output, which is enabled by setting the ‘VERBOSE’
makefile variable to ‘1’. Screenshots below illustrates the difference.

CDT Build Console [ble_app_hrs_pcal0040_s132]

15:36:09 ****% Build of configuration Default for project ble_app_hrs_pcal@edd _s132 **x*

make all

Compiling file: nrf_drv_clock.c
Compiling file: nrf_drv_common.c
Compiling file: nrf_drv_gpiote.c
Compiling file: nrf_drv_uart.c
Compiling file: bsp.c

Compiling file: bsp_btn_ble.c
Compiling file: bsp_nfc.c
Compiling file: main.c

Figure 9: verbose build log not enabled.

CDT Build Console [ble_app_hrs_pcal0040_s132]

15:34:57 **%% Build of configuration Default for project ble_app_hrs_pcal@04d_s132 *¥x*

make VERBOSE=1 all

mkdir _build

Compiling file: nrf_log_backend_serial.c

"C:/Program Files (x86)/GNU Tools ARM Embedded/4.9 2015g3/bin/arm-none-eabi-gcc' -MP -MD -std=c99 -DNRF52 -DNRF52_PAN_36 -DNRF52_PAN_64 -DSOFTDEVICE_PRESENT -DBOARD_PCALE
Compiling file: nrf_log_frontend.c

"C:/Program Files (x86)/GNU Tools ARM Embedded/4.9 2015g3/bin/arm-none-eabi-gcc' -MP -MD -std=c99 -DNRF52 -DNRF52 PAN_36 -DNRF52_PAN_64 -DSOFTDEVICE_PRESENT -DBOARD_PCAlt
Compiling file: app_button.c

'C:/Program Files (x86)/GNU Tools ARM Embedded/4.9 2015g3/bin/arm-none-eabi-gcc' -MP -MD -std=c99 -DNRF52 -DNRF52 PAN_36 -DNRF52_PAN_64 -DSOFTDEVICE_PRESENT -DBOARD_PCAlt
Compiling file: app_error.c

"C:/Program Files (x86)/GNU Tools ARM Embedded/4.9 2015g3/bin/arm-none-eabi-gcc' -MP -MD -std=c99 -DNRF52 -DNRF52 PAN_36 -DNRF52_PAN_64 -DSOFTDEVICE_PRESENT -DBOARD_PCAlE
Compiling file: app_error_weak.c

"C:/Program Files (x86)/GNU Tools ARM Embedded/4.9 2015g3/bin/arm-none-eabi-gcc' -MP -MD -std=c99 -DNRF52 -DNRF52_PAN_36 -DNRF52_PAN_64 -DSOFTDEVICE_PRESENT -DBOARD_PCALE
Compiling file: app_timer.c

"C:/Program Files (x86)/GNU Tools ARM Embedded/4.9 2015g3/bin/arm-none-eabi-gcc' -MP -MD -std=c99 -DNRF52 -DNRF52_PAN_36 -DNRF52_PAN_64 -DSOFTDEVICE_PRESENT -DBOARD_PCALE
Compiling file: app_util platform.c

"C:/Program Files (x86)/GNU Tools ARM Embedded/4.9 2015g3/bin/arm-none-eabi-gcc' -MP -MD -std=c99 -DNRF52 -DNRF52_PAN_36 -DNRF52_PAN_64 -DSOFTDEVICE_PRESENT -DBOARD_PCAL¢

Figure 10: verbose build output enabled.

Change the build command as shown in Figure 7 if verbose build output is not enabled. Assuming
everything else related to the discovery feature is configured correctly, it should be sufficient to do a
clean build followed by a rebuild of the index (right click on project and click index->rebuild) to
resolve the errors.

Note, with SDK version 12 or newer it is necessary to use the patched Makefile.common file included
in the tutorial to work around what looks to be a limitation with the build output parser.

Partial discovery

The output parser may in some cases discover the include paths, but not the preprocessor symbols.
This will also lead to unresolved errors in Eclipse. Verify that the build is using the patched
Makefile.common file attached at the end of the tutorial.

It is possible to inspect the include paths and symbols that where added by the build output parser
as shown in Figure 11 (select properties for one of the source files. This can be compared against the
Makefile to determine what is missing.

& Properties for main.c = X
type filter text Preprocessor Include Paths, Macros etc. VE s
Resource
» C/C++ Build
4 C/Cs+ Geneal Configuration: |Default [Active] + | Manage Configurations..

Language Mappin¢

Paths and Symbols | [7] Exclude resource from build
Preprocessor Inclu¢

Run/Debug Settings Entries
Languages Setting Entries i
GNU C @ C:/Eclipse_tutorialfeclipse-cpp-mars-1-win32-x86_64/eclipse/nordic/nRF5_SDK_12.2.0/components/ble/ble_servic

] C:/Eclipse_tutorial/eclipse-cpp-mars-1 2-%86_64/eclipse/nordic/nRF5_SDK_12.2.0/components/ble/ble_racp
(= C:/Eclipse_tutorialfeclipse-cpp-mars-1-win32-x86_64/eclipse/nordic/nRFS_SDK_12.2.0/components/toolchain/gce
(£ C/Eclipse_tutorial/eclipse-cpp-mars-1 2-x86_64/eclipse/nordic/nRF5_SDK_12.2.0/components/libraries/fds .
(2 C/Eclipse_tutorial/eclipse-cpp-mars-1 2-x86_64/eclipse/nordic/nRF5_SDK_12.2.0/components/libraries/twi oo
] C:/Eclipse_tutorialfeclipse-cpp-mars-1-win32-x86_64/eclipse/nordic/nRF5_SDK_12.2.0/components/drivers_nrf/clc -
B C:/Eclipse_tutorial/eclipse-cpp-mars-1 2-%86_64/eclipse/nordic/nRF5_SDK_12.2.0/components/ble/ble_servic Move Up
(2 C:/Eclipse_tutorialfeclipse-cpp-mars-1 2-%86_64/eclipse/nordic/nRF5_SDK_12.2.0/components/drivers_nrf/usl Move Dov
(= C/Eclipse_tutorial /eclipse-cpp-mars-1-win32-x86_64/eclipse/nordic/nRF5_SDK_12.2.0/components/softdevice/co
(2 C/Eclipse_tutorialfeclipse-cpp-mars-1 2-x86_64/eclipse/nordic/nRF5_SDK_12.2.0/components/ble/ble_servic
Ec /Eclipse_tutorial/eclipse-cpp-mars-1-win32-x86_64/eclipse/nordic/nRF5_SDK_12.2.0/components/libraries/log/¢
BLE_STACK_SUPPORT_REQD=
BOARD_PCA10040=
CONFIG_GPIO_AS_PINRESET=
- NRESD Include paths
NRF52832=
NRF52_PAN_12= \
NRF52_PAN_15= Pre-processor Symbols
NRF52_PAN_20=
NRF52_PAN_31= =
NRF52_PAN_36=
NRF52_PAN_51=
NRF52_PAN_34=
NRF52_PAN_35= L

@ Setting entries for this provider are supplied by the system and are not editable

Show built-in values
= Restore Defaults] [Apply

Figure 11: Inspect include paths and symbols added by output parser.

8

Cannot open debug session

Below are some screenshots showing the debug configuration for the nRF52 series, but it would be
the same for an nrf51 device expect from the device name. Please go through the configurations
shown here, and make sure they correspond with your configuartion.

Create, manage, and run configurations

o@ xl B3~ Name: ble_app_hrs_pcal0040_s132 Default

type filter text

Main ~_#5 Debugger] [Startup] 7 Sourcew i=] Commun]

[E] C/C++ Application

[€] C/C++ Attach to Application
[€] C/C++ Postmortem Debugger
[€] C/C++ Remote Application
[c] GDB Hardware Debugging

(] GDB Open0OCD Debugging

Project:
ble_app_hrs_pcal0040_s132
C/C++ Application:
_build\nrf52832_xxaa.out

Browse...

€] GDB QEMU Debugging Variables... I l Search Project...] [Browse... I
4 [£] GDB SEGGER J-Link Debugging Build (if required) before launching
[E] ble_app_hrs_pcal0040_s132 Def; i X i

Launch Group Build configuration: | Default v]
() Enable auto build () Disable auto build
(@) Use workspace settings Configure Workspace Settings...

< | 11 »
Filter matched 10 of 23 items HElE Gonly
® Debug | [Close

Figure 12: Main tab - check that *.out file is set in C/C++ Application field

| 2 oo conturarn: TR

Create, and run configurations ,ﬁ\

CExX =3~
|type filter text

Name: ble_app_hrs_pcal0040_s132 Default

Main % Debugger i Startup} 2 Source} =] Common]
J-Link GDB Server Setup bl

[£] C/C++ Application

(6] C/C++ Attach to Application Start the J-Link GDB server locally Connect to running target
[€] C/C++ Postmortem Debugger . .
[£1C/C++ Remote Application Executable: ${jlink_gdbserver}/${jlink_gdbserver} Confirm that variables are Browse...| | Variables...
(€] GDB Hardware Debugging Device name: [nRFs2 | pointing to JLinkGDBServerClsupparted device names
[£] GDB OpenOCD Debugging Endianness: @ Little (T Big on your Setup
[£] GDB QEMU Debugging C ction: @ USB @1r USB serial or IP dd
4 [©] GDB SEGGER J-Link Debugging TICSARNE - (USB serial or IP name/address)
ble_app_hrs_pcal0040_s132 Def, ||| Interface: @swD (CITAG
¥ Launch Group Initial speed: () Auto () Adaptiv @ Fixed 1000 kHz
GDB port: 2331 T
SWO port: 2332 Verify downloads Initialize registers on start
Telnet port: 2333 Lacal host only Silent
Log file: add -nogui option if more than one defugsel
P
Other options: | -singlerun -strict -timeout 0 -nogui|/ iS con nected
Allocate console for the GDB server Allocate console for semihosting and SWO
GDB Client Setup Specify arm-none-eabi-gdb to

Executable: |arm-none-eabi-gdb|_ ensure that regular GDB iS not Browse...| | Variables...

Other options: used instead

Commands: set mem inaccessible-by-default off -
= -
< | 1 >
Filter matched 10 of 23 items [Reven [appy |
@ [Debug |[close |

Figure 13: Debugger configuration

Create, manage, and run configurations

X| =3~

O Name: ble_app_hrs_pcal0040_s132 Default

[tye filter text | Main 3 Debugger & Startup 1 Source|] Common|
[2] ¢/C++ Application ation Commands -
[E] C/C++ Attach to Application
[E] C/C++ Postmortem Debugger

] Initial Reset and Halt. Type: Low speed: 1000 kHz

[£] ¢/C++ Remote Application JTAG/SWD Speed: @ Auto () Adaptive) Fixed | | kHz
[£] GDB Hardware Debugging Enable flash breakpoints.

[=] GDB OpenOCD Debugging Enable semihosting. Console routed to: || Telnet [GDB client
[€] GDB QEMU Debugging Enable SWO. CPUfreq:| 0 |Hz SWOfreq: 0 | Hz Portmask:
4 [£] GDB SEGGER J-Link Debugging
(€] ble_app_hrs_pcal0040_s132 Def, w
¥ Launch Group

Load Symbols and Executable
Load symbols
@) Use project binary: nrf52832_xxaa.out

) Use file: |[workspace.. |[File System..

Symbols offset (hex):
Load executable
(@) Use project binary: nrf52832_xoaa.out

1

@) Use file: | ‘ Workspace... | ‘ File System...

Executable offset (hex):

Runtime Options
RAM application (reload after each reset/restart)
Run/Restart Commands

Pre-run/Restart reset. Type: (always executed at Restart)

Set program counter at (hex): :

Set breakpoint at: main

Continue

Restore defaults |

Figure 14: Startup configuration - semihosting and SWO are enabled by default, but not implemented in code examples.

10

Please post a new question on the forum that includes the error message(s) if does not work with
the settings shown above.

Application will not run

Project builds without errors, but the FW does not work as expected after being loaded to the chip.

Error in linker configuration (memory layout)

nRF5x series ICs comes in several different memory variants while the SDK examples are only
configured for those used on the development kits. Typical symptom of incorrect memory layout is
that a hardfault exception occurs before the program reaches main. An overview of the different
variants can be found on the infocenter.

Verify that RAM and ROM settings in the. Id file invoked by the makefile are in accordance to the IC
variant used on target board.

Example of a typical memory layout for the nRF51x22_xxAC (256/32) variant:
MEMORY
{

/*FLASH and RAM ORIGIN depends on softdevice series and version. Check SD release
notes for appropriate values. Set ORIGIN to ©x0 and ©x20000000 for examples that
do not run on top of softdevice stack or similar */

FLASH (rx) : ORIGIN = 0x1B000, LENGTH = 0x25000
RAM (rwx) : ORIGIN = 0x20002000, LENGTH = 0x6000

}
And the same for nRF51x22_xxAA (256/16):

MEMORY

{
FLASH (rx) : ORIGIN = 0x1B000, LENGTH = 0x25000

RAM (rwx) : ORIGIN = 0x20002000, LENGTH = 0x2000

11

As a side note, development kits includes the optional LF crystal, which is enabled by default in the
SDK examples. This is often not the case with custom boards and modules due to cost/size
constraints. Remember to use the internal LF oscillator if this is the case, otherwise the program will
get stuck in an endless loop waiting for the crystal to start.

Code assertions

The SDK examples uses code assertions to catch error conditions at runtime (i.e., unexpected return
values from function calls), please refer to the SDK documentation for more details (link). Assertions
will by default lead to a system reset unless -DDEBUG is added to the list of preprocessor symbols
(CFLAGS variable in Makefile).

Example:
Assert condition when starting an application timer instance.

err_code = app_timer_start(m_timer_id,
INTERVAL, // INTERVAL = @, illegal value
NULL);
APP_ERROR_CHECK(err_code); // Error handler invoked if err_code != NRF_SUCCESS

The interrupt interval is set to zero in the function call above, which is an illegal value. Thus, the
function will return NRF_ERROR_INVALID PARAM:

& Makefile main.c 2 | € ble_hrsc T boards.h l¢) softdevice_h... Tl ble.h app_timerc l app_timerh [£]0x0 l¢) ble_advertis... ‘T ble_advertis... =B
5522 /**@brief Function for starting application timers. -
553 */

554~ static void application_timers_start(void)

555

556 uint32_t err_code;

557

// Start application timers.
err_code = app_timer_start(m_battery timer_id, @, MULL); //BATTERY_LEVEL_MEAS_TNTERVAL

Expression Type Value
@)= err_code uint32_t 7

m

Name : err_code -
Details:7 PLLy;
Default:7
Decimal:7
Hex :8x7
Binary:111 s

m

< 11l r

Figure 15: NRF_ERROR_INVALID_PARAM error. Error codes are listed in nrf_error.h header.

Hardfault exception

The default handler for the hardfault exception is an infinite loop, so the program will be stuck if the
program triggers this exception. One quick way to determine if this has happened is to read out the
interrupt status register and check if the ISR number is set ‘3’.

12

http://infocenter.nordicsemi.com/topic/com.nordic.infocenter.sdk5.v12.2.0/lib_error.html?cp=4_0_1_3_10

C:\Users\vibe>nrfjprog --readregs -f nrf52

: Ox000252B8
Ox0081FDBD
Ox0001FOBE
Ox0002CEBCB
Ox20000093
Ox00000000
OxEQDOEQBD
Ox2000FF30
Ox00000000
Ox00000000
Ox20000000
Ox00000000
Ox00000000
Ox2000FF10
BxFFFFFFF1
Ox0082CBCA

: Bx21000C03
Ox2000FF10
Ox00000000

Figure 16: Check interrupt status register

Hardfault exceptions are often caused by incorrect memory layout, but can also be caused by errors
in the application code such as illegal memory access. Please post a question on the forum if help is
needed to debug the hardfault.

13

