

Introduction to Bluetooth Low Energy

Petter Myhre

Today's host

Petter Myhre

Product Marketing Manager

Practicalities

- Duration: 50-60 min
- Questions are encouraged!
- Please type questions in the top of the right sidebar
 - All questions are anonymous
 - Try to keep them relevant to the topic
- I will answer questions towards the end
- The chat is not anonymous, and should not be used for questions
- If you have more questions please use DevZone
- A recording of the webinar will be available together with the presentation at webinars.nordicsemi.com

Content

- Basics
- Architecture
- Topology and roles
- Security
- Throughput and range
- Direction Finding
- LE Audio

Basics

Key features

- Wireless personal area network technology
- Open standard -> interoperability
- Ubiquitous
- Efficient and ultra-low power
 - Small packets and short RX and TX windows
 - Use radio as little as possible
- Low RAM footprint (5.6 KB)
- Up to 1.4 Mbps throughput or more than 1000 m range

Bluetooth SIG

- Bluetooth Special Interest Group
- Develop and license Bluetooth Low Energy technology
- Network of member organizations
- Founded in September 1998
- Non-profit
- 36000 member companies
- 4.2 billion Bluetooth product shipments in 2019
- Nordic is an associate member
 - Involved in several working groups
 - Help develop specifications

The evolution of Bluetooth Low Energy

- 2010 Bluetooth 4.0
- 2013 Bluetooth 4.1
 - Concurrent Peripheral/Central
- 2014 Bluetooth 4.2
 - LE Secure Connections
 - Data Length Extension
- 2016 Bluetooth 5
 - 2 Mbps
 - Long Range
 - Advertising Extensions
 - 10 -> 20 dBm max TX power

- 2017 Bluetooth mesh Profile
- 2019 Bluetooth 5.1
 - Direction Finding
- 2020 Bluetooth 5.2
 - Isochronous channels
 - LE Power Control
 - Enhanced Attribute Protocol
- Soon LE Audio

Profiles

- Profiles
 - Describes how two or more devices can discover and communicate with each other
 - Implements a specific application
 - Standard or proprietary
 - Each profile has its own specification

Host

- Upper layers of the Bluetooth LE protocol stack
- Logical Link Control and Adaption Protocol
- Attribute Protocol (ATT)
 - Simple client-server model
 - Client device can access attributes on the server device
- Security manager Protocol (SMP)
 - Defines protocol for pairing and key distribution

Host - GATT

- Generic Attribute Profile (GATT)
- Highest data layer
- Uses ATT to discover and access attributes
- Specifies a hierarchical structure of attributes
 - Services
 - Characteristics
 - Descriptors

Host - GAP

- Generic Access Profile (GAP)
 - Highest control layer
 - Defines device roles
 - Defines how devices discover and connect to each other
 - Defines security modes and procedures

Controller

- Physical layer
 - Defines how two radios can send bits to each other
- Link Layer
 - Defines Link Layer states
 - Defines device address
 - Packet format

Physical layer

- 2.4 GHz ISM band
- 40 RF channels (2 MHz)
- GFSK modulation
 - 1 or 2 Msps
- Max 20 dBm TX power

GAP roles and Link Layer states

GAP role	Link Layer state
Broadcaster	Advertising
Observer	Scanning
Peripheral	Advertising Connection (Slave)
Central	Scanning Initiating Connection (Master)

All roles can also be in the standby state

- B Broadcaster
- Observer
- P Peripheral
- c Central

Broadcaster Observer Peripheral Central

Roles (GAP) Broadcaster Observer Peripheral

Central

Roles (GAP) Broadcaster Observer Peripheral Central

Roles (GAP) Broadcaster Observer Peripheral Central

Roles (GAP) B Broadcaster O Observer

- B Broadcaster
- Observer
- P Peripheral
- c Central

- B Broadcaster
- Observer
- P Peripheral
- C Central

Roles (GAP) - Example

Pairing and bonding

- Pairing is authenticating another device by establishing temporary shared secret keys which can be used to encrypt a link
- Bonding is pairing followed by distribution of keys which can be used to encrypt the link in future reconnections

Authentication and Encryption procedures

Each time two devices connect - connection operate with no security. A higher level of security achieved by performing:

- Authentication procedure
 - Type of pairing determines security level
- Encryption procedure
 - Connection encrypted with encryption keys already available
 - Typically if keys were shared and stored after previously bonding
 - Original pairing determines achieved security level

Legacy Pairing

- Introduced in Bluetooth 4.0
- Three methods
 - Just works
 - Passkey entry
 - Out-of-Band (OOB)
- Not recommended by the Bluetooth SIG
 - If you must use it, use OOB

LE Secure Connections

- Added in the Bluetooth Core Specification version 4.2 (2014)
- Provides protection against eavesdropping
- Provides better protection against MITM attacks
- FIPS-approved algorithms
- Uses Elliptic Curve Diffie-Hellman (ECDH) key agreement
 - Allows two peers, each having public-private key pair, to establish shared secret key over insecure channel
 - Secret key used in derivation of encryption keys
- Recommended by the Bluetooth SIG
 - Not Just Works

LE Secure Connections pairing methods

- Just Works
- Passkey Entry
 - A 6-digit value shared between devices using their IO capabilities
- Numeric Comparison
 - A 6-digit value displayed on both devices and confirmed on both sides by user pressing "OK"
- OOB
 - Encryption keys based on data transferred by other means, for example NFC

Throughput and range

Throughput

- Bluetooth 4.0/4.1
 - 1 Mbps
 - 27 byte payload

Throughput

305 kbps

- Bluetooth 4.0/4.1
 - 1 Mbps
 - 27 byte payload

- Bluetooth 4.2
 - Data Length Extension
 - 251 byte payload

Throughput

305 kbps

- Bluetooth 4.0/4.1
 - 1 Mbps
 - 27 byte payload

803 kbps

- Bluetooth 4.2
 - Data Length Extension
 - 251 byte payload

- Bluetooth 5
 - High-throughput2 Mbps

Less Time on Air

More connections

Improved coexistence

What is the range?

- It is not a few meters!
- Depends highly on the environment
- TX power
 - Typically 0-8 dBm
 - Max 20 dBm
- RX sensitivity
- Bluetooth Long Range

Bluetooth Long Range

- Introduced in Bluetooth 5
- Standard 1 Msps modulation
- 8 symbols per bit
 - 125 kbps data rate
- 12 dB increased sensitivity
 - 400% range increase
- Reduces efficiency
- No increase in peak currents
- No increase in BOM.

Bluetooth Long Range

Flexibility

2 Mbps

1434 kbps

1 Mbps

803 kbps

Long Range

Direction Finding

Direction Finding

- Hallmark feature of Bluetooth 5.1
 Core Specification
- Adopted January 29th 2019
- Requires radio changes
- Optional feature
- Enables positioning solutions to not only rely on received signal strength indicator (RSSI), but also the actual direction of a signal

Direction Finding – use cases

Asset tracking

Real-Time Location Systems (RTLS)

Wayfinding

Indoor positioning

Point of interest

Proximity marketing

Item finding

More advanced item finding solutions

Positioning systems

Proximity solutions

Angle of Arrival (AoA)

Transmitter

- Simple beacon
- Single antenna
- No I/Q calculations needed

Receiver

- Advanced
- Antenna array and RF switch
- I/Q data needed for angle estimation

Angle of Departure (AoD)

Transmitter

- Simple beacon
- Antenna array and RF switch
- No I/Q calculations needed

Receiver

- Scanner / Observer
- Single antenna
- I/Q data needed for angle estimation

Direction Finding - use cases with AoA/AoD

Asset tracking

AoA

Multiple receivers at fixed locations

Transmitter can be beacon or smart phone

Wayfinding

AoD

Multiple transmitters at fixed locations Receiver typically a smart phone

Point of interest

AoD

Only relative direction needed

Receiver typically a smart phone

Item finding

AoD

Only relative direction needed

Receiver typically a smart phone

Asset tracking - RTLS

- Real-time location system
- AoA method
- Tag is a simple transmitter
- Multiple locators at fixed locations
- Each locator determines the direction of the signal
- The location engine determines the position of the tag

LE Audio

- Announced January 6th 2020
- Isochronous channels
- New audio codec
- Multi-stream audio for earbuds
- Broadcast audio for Audio Sharing

Isochronous channels (ISOC)

- Audio streaming to one or more connected devices
 - Channels are synchronized

Audio broadcasting to multiple devices

New audio codec - LC3

- Low Complexity Communication
 Codec (LC3)
- High-quality, low-power codec
- Mandatory for LE Audio
- 50% improvement in perceived audio quality
 - 240 kbps
- Offers the flexibility to trade-off audio quality with longer battery life or smaller products (batteries)

Multi-stream audio for earbuds

- Better performing earbuds
- Multiple, independent, synchronized audio streams
- Smoother transitions between audio source devices

Broadcast audio for Audio Sharing

- Unlimited number of sink devices.
- Personal Audio Sharing
 - Shared Listening
 - Shared Watching
- Location Audio Sharing
 - Public TVs
 - Translation Services
 - Hearing assistance

Support and community

