
MCUmgr Bluetooth protocol (SMP)
About
SMP Service
Simple Management Protocol

SMP Header
Payload

Commands
Device Firmware Upgrade

Modes
Test and Confirm
Test only
Confirm only

Algorithm
Mobile clients

About
Implementation of mcumgr may be found here: https://github.com/apache/mynewt-mcumgr

Supported are Mynewt and Zephyr.

SMP Service
SMP stands for Simple Management Protocol.

The GATT SMP service details:

Overview Characteristics

https://github.com/apache/mynewt-mcumgr


Name:

SMP Service

UUID:

8D53DC1D-1DB7-4CD3-868B-8A527460AA84

Requirement:

Mandatory

Overview Properties Security Descriptors

Name:

SMP 
Characteristic

UUID:

DA2E7828-FBCE-
4E01-AE9E-
261174997C48

Requirement:

Mandatory

Prope
rty

Re
qui
re
me
nt

Read Excl
uded

Write Excl
uded

WriteWi
thoutRe
sponse

Man
dato
ry

Signed
Write

Excl
uded

Notify Man
dato
ry

Indicate Excl
uded

Writable
Auxiliari
es

Excl
uded

Broadca
st

Excl
uded

Extende
dProper
ties

None

Overview

Client 
Characteristic 
Configuration 
Descriptor

UUID:

0x2902

Type:

https://www.
bluetooth.com
/specifications
/gatt/viewer?
attributeXmlFile
=org.bluetooth.
descriptor.gatt.
client_characte
ristic_configura
tion.xml

Requirement:

Mandatory

Simple Management Protocol
Each SMP packet consists of 8-byte header and optional payload.

The server must respond to each SMP packet with a notification.

SMP Header
Bytes Comment Possible Values

0 Operation.

An outgoing command will either be a 
READ or a WRITE
which will trigger a READ RSP or WRITE 
RSP from the end device. 

Big Endian

Links:

https://github.com/apache/mynewt-mcumgr
/blob/master/mgmt/include/mgmt/mgmt.h

READ 0

READ RSP 1

WRITE 2

WRITE RSP 3

1 Optional flags fro this command.

Not used. Shall be 0.

N/A

2-3 Payload length, in bytes.

UINT16, Big Endian.

https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.descriptor.gatt.client_characteristic_configuration.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.descriptor.gatt.client_characteristic_configuration.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.descriptor.gatt.client_characteristic_configuration.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.descriptor.gatt.client_characteristic_configuration.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.descriptor.gatt.client_characteristic_configuration.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.descriptor.gatt.client_characteristic_configuration.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.descriptor.gatt.client_characteristic_configuration.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.descriptor.gatt.client_characteristic_configuration.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.descriptor.gatt.client_characteristic_configuration.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.descriptor.gatt.client_characteristic_configuration.xml
https://github.com/apache/mynewt-mcumgr/blob/master/mgmt/include/mgmt/mgmt.h
https://github.com/apache/mynewt-mcumgr/blob/master/mgmt/include/mgmt/mgmt.h


4-5 Group ID.

The Command ID (see below) references 
the subcommand of this group.
Group IDs up to unsigned integer 64 are 
reserved for system level McuMgr 
commands. Per-user commands can be 
implemented for Group IDs above 64.

UINT16, Big Endian.

Links:

https://github.com/apache/mynewt-mcumgr
/blob/master/mgmt/include/mgmt/mgmt.h - 
group IDs

https://github.com/apache/mynewt-mcumgr
/tree/master/cmd - groups implementation 
folder

OS* 0

IMAGE* 1

STAT* 2

CONFIG 3

LOG 4

CRASH 5

SPLIT 6

RUN 7

FS* 8

PER USER 64

* Partially or fully implemented in Zephyr

6 Sequence Number.

The sequence number in the request shall 
match sequence number in the response. 
This allows, in theory, to sent multiple 
requests one after each other without 
waiting for the response, and then receiving 
responses with matching sequence 
numbers. However, this does not guarantee 
that the protocol sent using this mechanism 
will support it, e.g. DFU in NCS 1.7 seems 
to be sending wrong responses (incorrect 
offset) even though the sequence numbers 
are returned correctly, making the DFU 
much slower due to unnecessary 
repetitions. In Android library this may be 
utilized using https://github.com
/NordicSemiconductor/Android-nRF-
Connect-Device-Manager/blob
/a61a0294fb4241ffcf4c91621c1a8ede3d4c4
643/mcumgr-core/src/main/java/io/runtime
/mcumgr/dfu/FirmwareUpgradeManager.
java#L308

N/A

7 Command ID.

The Command ID identifies the 
subcommand for the group set by Group ID 
field.

Command IDs may be found in https://github
.com/apache/mynewt-mcumgr/tree/master
/cmd  Group  include  [group]_mgmt.h

See below.

Payload
Payload shall be encoded using CBOR protocol. CBOR is a JSON but for embedded.

Link: http://cbor.io

CBOR 2 JSON converter: http://cbor.me

Example:

JSON:

https://github.com/apache/mynewt-mcumgr/blob/master/mgmt/include/mgmt/mgmt.h
https://github.com/apache/mynewt-mcumgr/blob/master/mgmt/include/mgmt/mgmt.h
https://github.com/apache/mynewt-mcumgr/tree/master/cmd
https://github.com/apache/mynewt-mcumgr/tree/master/cmd
https://github.com/NordicSemiconductor/Android-nRF-Connect-Device-Manager/blob/a61a0294fb4241ffcf4c91621c1a8ede3d4c4643/mcumgr-core/src/main/java/io/runtime/mcumgr/dfu/FirmwareUpgradeManager.java#L308
https://github.com/NordicSemiconductor/Android-nRF-Connect-Device-Manager/blob/a61a0294fb4241ffcf4c91621c1a8ede3d4c4643/mcumgr-core/src/main/java/io/runtime/mcumgr/dfu/FirmwareUpgradeManager.java#L308
https://github.com/NordicSemiconductor/Android-nRF-Connect-Device-Manager/blob/a61a0294fb4241ffcf4c91621c1a8ede3d4c4643/mcumgr-core/src/main/java/io/runtime/mcumgr/dfu/FirmwareUpgradeManager.java#L308
https://github.com/NordicSemiconductor/Android-nRF-Connect-Device-Manager/blob/a61a0294fb4241ffcf4c91621c1a8ede3d4c4643/mcumgr-core/src/main/java/io/runtime/mcumgr/dfu/FirmwareUpgradeManager.java#L308
https://github.com/NordicSemiconductor/Android-nRF-Connect-Device-Manager/blob/a61a0294fb4241ffcf4c91621c1a8ede3d4c4643/mcumgr-core/src/main/java/io/runtime/mcumgr/dfu/FirmwareUpgradeManager.java#L308
https://github.com/NordicSemiconductor/Android-nRF-Connect-Device-Manager/blob/a61a0294fb4241ffcf4c91621c1a8ede3d4c4643/mcumgr-core/src/main/java/io/runtime/mcumgr/dfu/FirmwareUpgradeManager.java#L308
https://github.com/NordicSemiconductor/Android-nRF-Connect-Device-Manager/blob/a61a0294fb4241ffcf4c91621c1a8ede3d4c4643/mcumgr-core/src/main/java/io/runtime/mcumgr/dfu/FirmwareUpgradeManager.java#L308
https://github.com/apache/mynewt-mcumgr/tree/master/cmd
https://github.com/apache/mynewt-mcumgr/tree/master/cmd
https://github.com/apache/mynewt-mcumgr/tree/master/cmd
http://cbor.io
http://cbor.me


{ "len": 11, "offset": 0, "data": "hello world" }

CBOR:

A3                                   # map(3)
     63                              # text(3)
          6C656E                     # "len"
     0B                              # unsigned(11)
     66                              # text(6)
          6F6666736574               # "offset"
     00                              # unsigned(0)
     64                              # text(4)
          64617461                   # "data"
     6B                              # text(11)
          68656C6C6F20776F726C64     # "hello world"

Links:

http://cbor.me/?diag={%20%22len%22:%2011,%20%22offset%22:%200,%20%22data%22:%20%22hello%20world%22%20}

Commands
Each Command ID requires some fields in the packet and responds with some other. Here's the full list of all groups, commands and their 
parameters that are supported by Zephyr or Mynewt.

Group ID Command ID Operation Required fields Fields in response

OS (0)

Links:

os_mgmt.h

ECHO (0)

Links:

os_mgmt.c

WRITE d - String

Example:

{"d":"Hello!"}

r - String

Example:

{"r":"Hello!"}

CONSOLE ECHO CTRL (1)

TASKSTAT (2)

Not implemented in Zephyr

READ N/A tasks - map of:

prio - uint
tid - uint
state - uint
stkuse - uint
stksiz - uint
cswcnt - uint
runtime - uint
last_checkin - uint
next_checkin - uint

MPSTAT (3)

DATETIME STR (4)

RESET (5) WRITE N/A N/A

IMAGE (1)

Links:

img_mgmt.h

STATE (0)

Links:

img_mgmt.c

READ N/A images - map of:

image - uint (image number 
(core id), mainly for nRF53, 
otherwise 0 or absent). Since 
NCS 1.7.
slot - uint (0 (primary) or 1 
(secondary))
version - String (any, 
unknown length limit)
hash - byte array (SHA-256 of 
the image)
bootable - boolean
pending - boolean (true if test 
or confirm cmd has been sent 
to that image)
confirmed - boolean (true if 
the image has booted 
(confirmed) successfully)
active - boolean (true if 
currently active, running)
permanent - boolean (true if 
confirm cmd has been sent to 
that image)

splitStatus - uint (only used in 
Mynewt)

https://github.com/apache/mynewt-mcumgr/blob/master/cmd/os_mgmt/include/os_mgmt/os_mgmt.h
https://github.com/apache/mynewt-mcumgr/blob/master/cmd/os_mgmt/src/os_mgmt.c
https://github.com/apache/mynewt-mcumgr/blob/master/cmd/img_mgmt/include/img_mgmt/img_mgmt.h
https://github.com/apache/mynewt-mcumgr/blob/master/cmd/img_mgmt/src/img_mgmt.c


WRITE hash - byte array (optional if 
confirm = true to confirm the 
currently running image)

confirm - boolean

Same as for READ

UPLOAD (1) WRITE data - byte array

len - uint (only when off = 0)

off - uint

image - image number (core id), 
Since NCS 1.7.

sha - byte array (3 first bytes of 
32 byte long SHA-256) (impl in 

)Java

rc - uint

off - uint

FILE (2)

CORELIST (3)

CORELOAD (4)

ERASE (5) WRITE image - image number (core id), 
Since NCS 1.7.

rc - uint

ERASE STATE (6)

Links:

Android library - I couldn't find it 
anywhere else

iOS Library - same here

STAT (2)

Links:

stat_mgmt.h

SHOW (0)

Links:

stat_mgmt.c

READ name - String rc - uint

name - String

fields - map of:

[entry name] - uint

LIST (1) READ N/A stat_list - array or Strings

CONFIG (3)

LOG (4)

Links:

log_mgmt.h

Not implemented in Zephyr

SHOW (0)

Links:

log_mgmt.c

READ log_name - String

ts - timestamp (int)

index - uint

next_index - uint

logs - array of:

name - String
type - uint
entries - array of:

msg - String
ts - timestamp (int)
level - uint
index - uint
module - uint

rc - uint

CLEAR (1) WRITE log_name - String rc - uint 

APPEND (2)

MODULE LIST (3) READ N/A rc - uint

module_map - map of:

[module name] - uint

LEVEL LIST (4) READ N/A rc - uint

level_map - map of:

[level name] - uint (level)

LOGS LIST (5) READ N/A rc - uint

log_list - array of Strings (log 
names)

CRASH (5)

SPLIT (6)

RUN (7)

https://github.com/NordicSemiconductor/Android-nRF-Connect-Device-Manager/blob/a61a0294fb4241ffcf4c91621c1a8ede3d4c4643/mcumgr-core/src/main/java/io/runtime/mcumgr/managers/ImageManager.java#L225
https://github.com/NordicSemiconductor/Android-nRF-Connect-Device-Manager/blob/a61a0294fb4241ffcf4c91621c1a8ede3d4c4643/mcumgr-core/src/main/java/io/runtime/mcumgr/managers/ImageManager.java#L225
https://github.com/JuulLabs-OSS/mcumgr-android/blob/c82edba55122f2c26c2ad3b5fc7857b192d5235c/mcumgr-core/src/main/java/io/runtime/mcumgr/managers/ImageManager.java#L69
https://github.com/JuulLabs-OSS/mcumgr-ios/blob/4c752eeb260bba31772513d71adb1144d1755bfc/Source/Managers/ImageManager.swift#L27
https://github.com/apache/mynewt-mcumgr/blob/master/cmd/stat_mgmt/include/stat_mgmt/stat_mgmt.h
https://github.com/apache/mynewt-mcumgr/blob/master/cmd/stat_mgmt/src/stat_mgmt.c
https://github.com/apache/mynewt-mcumgr/blob/master/cmd/log_mgmt/include/log_mgmt/log_mgmt.h
https://github.com/apache/mynewt-mcumgr/blob/master/cmd/log_mgmt/src/log_mgmt.c


FS (8)

Links:

fs_mgmt.h

FILE (0)

Links:

fs_mgmt.c

READ name - String

off - uint

data - byte array

len - uint (only when off = 0)

off - uint

rc - uint

WRITE name - String

data - byte array

len - uint (only when off = 0)

off - uint

rc - uint

off - uint

BASIC (63) - Added in NCS 1.7 
to erase app settings

Links:

zephyr_groups.h

ERASE_STORAGE (0)

Links:

basic_mgmt.c

WRITE N/A rc - uint

PERUSER (64) - reserved for 
users

Errors
An invalid command or an error on the device will be reported with a notification with  (uint) field in the payload.rc

List of possible return codes:

Name Return Code Description

OK 0 OK

UNKNOWN 1 Unknown error

NOMEM 2 No memory

INVAL 3 Invalid value

TIMEOUT 4 Operation timeout

NOENT 5 No entity 

BADSTATE 6 Current state disallows command

MSGSIZE 7 Response too large

NOTSUP 8 Command not supported

Links:

https://github.com/apache/mynewt-mcumgr/blob/master/mgmt/include/mgmt/mgmt.h  mcumgr error codes

Device Firmware Upgrade
Update:

Multi core update supported since NCS 1.7. Additional param "image" was added to IMAGE UPLOAD and IMAGE ERASE, where 0 is app 
core (default) and 1 is net core. The change was mainly to support Thingy:53 and other nRF5340 devices. Each image needs to be sent 
separately, than the test/command need to be sent for each image, and only than the device needs to be reset. Bin files for different cores are 
placed in a ZIP file with manifest.json describing which file should be sent with which image parameter.

One of the features of MCU MGR is DFU. A signed image (.bin or .img) file must be created before starting DFU, using the proper certificate. 
Signing adds the firmware hash and signature to a header before the firmware. Also, a MAGIC value is added that must match to one on the end 
device.

DFU uses commands from 2 Group IDs: OS (0) and IMAGE (1).

https://github.com/apache/mynewt-mcumgr/blob/master/cmd/fs_mgmt/include/fs_mgmt/fs_mgmt.h
https://github.com/apache/mynewt-mcumgr/blob/master/cmd/fs_mgmt/src/fs_mgmt.c
https://github.com/nrfconnect/sdk-zephyr/blob/da440523664ec81bf2b3710f2ad9501da6480332/include/mgmt/mcumgr/zephyr_groups.h
https://github.com/nrfconnect/sdk-zephyr/blob/da440523664ec81bf2b3710f2ad9501da6480332/subsys/mgmt/mcumgr/zephyr_grp/basic_mgmt.c
https://github.com/apache/mynewt-mcumgr/blob/master/mgmt/include/mgmt/mgmt.h


1.  
2.  
3.  

1.  
2.  
3.  

1.  

2.  
4.  

5.  
6.  
7.  
8.  

9.  

Name Group ID Command ID Operation Parameters

Validate (list image slots) IMAGE (1) STATE (0) READ

Upload image IMAGE (1) UPLOAD (1) WRITE All required

Test (test image with given hash) IMAGE (1) STATE (0) WRITE confirm = false

hash

Confirm (confirm image with given hash) IMAGE (1) STATE (0) WRITE confirm = true

hash

Verify (confirm current slot) IMAGE (1) STATE (0) WRITE confirm = true

(no hash)

Reset OS (0) RESET (5) WRITE

Modes
There are 3 modes that an image may be sent:

Test and Confirm 
Test only
Confirm only

Test and Confirm
This mode should be used by default if the firmware supports text/confirm. The client should validate the current slot information, send the new 
image, send Test command, reset the end device, reconnect to the new image and send Verify command.

Test only
This mode allows only to test the image. It will not be confirmed and will be reverted to the original one after next reset. The client should validate, 
send image, send Test command and reset.

Confirm only
This mode should be used by default if the firmware confirms itself and does not support test. E.g. multi core update in NCS 1.7 does not allow to 
revert net-core update, so this is the only supported mode for multi-core update. 
This may also be used if the new image does not support Bluetooth (reconnecting would not be possible), or we are sure it will work. Client 
should validate, send image, send Confirm command and reset.

Algorithm
Read hash of the firmware to be sent.
Ensure the MTU is set to highest possible value.
Send  command to receive current slot information.Verify

Check if slot 0's hash matches with the hash. If so, based on the mode and the image properties it could be  or DFU is Verified
complete.
Check if slot 1's (if there is such) hash matches with the hash. If so, send  or  command, based on the mode.Test Confirm

Send the new image using  command. Many commands will have to be sent. As a response to each one the end device will Upload
confirm the offset.
Send  or  command, based on the mode.Test Confirm
Send  command.Reset
If  mode was used, reconnect to the device. Otherwise upload is complete.Test and Confirm
Send  command. This will confirm the image in slot 0. If the test succeeded, and images were successfully swapped on reset, this Verify
will confirm the tested image. Otherwise it will confirm already confirmed image and the invalid one (e.g. signed with a wrong certificate) 
has been removed and slot 1 is empty.
Based on the result - it's either success, or some failure. Device may be test again to apply changes, but it's already running the proper 
image.

Mobile clients



iOS MCUMGR Library and Sample app may be found here:  https://github.com/JuulLabs-OSS/mcumgr-ios https://github.com
 /NordicSemiconductor/IOS-nRF-Connect-Device-Manager

Android MCUMGR Library and Sample app may be found here:  https://github.com/JuulLabs-OSS/mcumgr-android https://github.com
 /NordicSemiconductor/Android-nRF-Connect-Device-Manager

https://github.com/JuulLabs-OSS/mcumgr-ios
https://github.com/NordicSemiconductor/IOS-nRF-Connect-Device-Manager
https://github.com/NordicSemiconductor/IOS-nRF-Connect-Device-Manager
https://github.com/JuulLabs-OSS/mcumgr-android
https://github.com/NordicSemiconductor/Android-nRF-Connect-Device-Manager
https://github.com/NordicSemiconductor/Android-nRF-Connect-Device-Manager

	MCUmgr Bluetooth protocol (SMP)

