/* Copyright (c) 2014 Nordic Semiconductor. All Rights Reserved. * * The information contained herein is property of Nordic Semiconductor ASA. * Terms and conditions of usage are described in detail in NORDIC * SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT. * * Licensees are granted free, non-transferable use of the information. NO * WARRANTY of ANY KIND is provided. This heading must NOT be removed from * the file. * */ /** @example examples/ble_peripheral/ble_app_hrs/main.c * * @brief Heart Rate Service Sample Application main file. * * This file contains the source code for a sample application using the Heart Rate service * (and also Battery and Device Information services). This application uses the * @ref srvlib_conn_params module. */ #include #include #include "nordic_common.h" #include "nrf.h" #include "app_error.h" #include "ble.h" #include "ble_hci.h" #include "ble_srv_common.h" #include "ble_advdata.h" #include "ble_advertising.h" #include "ble_bas.h" #include "ble_hrs.h" #include "ble_dis.h" #include "ble_conn_params.h" #include "boards.h" #include "sensorsim.h" #include "softdevice_handler.h" #include "app_timer.h" #include "bsp.h" #include "nrf_delay.h" #include "bsp_btn_ble.h" #include "peer_manager.h" #include "fds.h" #include "fstorage.h" #include "nrf_ble_gatt.h" #include "ble_conn_state.h" #include "nrf_drv_twi.h" #include "nrf_drv_spi.h" #include "ble_nus.h" #include "app_uart.h" #define NRF_LOG_MODULE_NAME "APP" #include "nrf_log.h" #include "nrf_log_ctrl.h" #define DEBUG #define UART_TX_BUF_SIZE 256 /**< UART TX buffer size. */ #define UART_RX_BUF_SIZE 256 /**< UART RX buffer size. */ //static ble_nus_t m_nus; /**< Structure to identify the Nordic UART Service. */ /* Indicates if operation on TWI has ended. */ static volatile bool m_xfer_done = false; /* TWI instance ID. */ #define TWI_INSTANCE_ID 0 #define TWI0_USE_EASY_DMA 0 #define SPI_INSTANCE 0 /**< SPI instance index. */ #define SPI_SCK_PIN 1 #define SPI_MISO_PIN 3 #define SPI_MOSI_PIN 2 #define SPI_SS_PIN 4 static ble_nus_t m_nus; static const nrf_drv_spi_t spi = NRF_DRV_SPI_INSTANCE(SPI_INSTANCE); /**< SPI instance. */ static volatile bool spi_xfer_done; /**< Flag used to indicate that SPI instance completed the transfer. */ #define TEST_STRING "Nordic" static uint8_t m_tx_buf[] = TEST_STRING; /**< TX buffer. */ static uint8_t m_rx_buf[sizeof(TEST_STRING) + 1]; /**< RX buffer. */ static const uint8_t m_length = sizeof(m_tx_buf); /**< Transfer length. */ /* TWI instance. */ static const nrf_drv_twi_t m_twi = NRF_DRV_TWI_INSTANCE(TWI_INSTANCE_ID); /* Buffer for samples read from temperature sensor. */ static uint8_t m_sample; #define IS_SRVC_CHANGED_CHARACT_PRESENT 1 /**< Include or not the service_changed characteristic. if not enabled, the server's database cannot be changed for the lifetime of the device*/ static uint16_t m_conn_handle = BLE_CONN_HANDLE_INVALID; /**< Handle of the current connection. */ #define BLE_UUID_CUSTOM_SERVICE 0x1110 #define BLE_UUID_CUSTOM_CHAR1 0x1111 #define BLE_UUID_CUSTOM_CHAR2 0x1112 #define MODEL_NUMBER "" /**< Model Number string. Will be passed to Device Information Service. */ #define MANUFACTURER_ID 0x55AA55AA55 /**< DUMMY Manufacturer ID. Will be passed to Device Information Service. You shall use the ID for your Company*/ #define ORG_UNIQUE_ID 0xEEBBEE /**< DUMMY Organisation Unique ID. Will be passed to Device Information Service. You shall use the Organisation Unique ID relevant for your Company */ #define CHARACTERISTIC_SIZE 20 //static uint16_t service_handle; //static ble_gatts_char_handles_t char1_handles; //static ble_gatts_char_handles_t char2_handles; #define DEVICE_NAME "Nordic_HRM" /**< Name of device. Will be included in the advertising data. */ #define MANUFACTURER_NAME "NordicSemiconductor" /**< Manufacturer. Will be passed to Device Information Service. */ #define APP_ADV_INTERVAL 300 /**< The advertising interval (in units of 0.625 ms. This value corresponds to 187.5 ms). */ #define APP_ADV_TIMEOUT_IN_SECONDS 180 /**< The advertising timeout in units of seconds. */ #define APP_TIMER_PRESCALER 0 /**< Value of the RTC1 PRESCALER register. */ #define APP_TIMER_OP_QUEUE_SIZE 4 /**< Size of timer operation queues. */ #define BATTERY_LEVEL_MEAS_INTERVAL APP_TIMER_TICKS(2000, APP_TIMER_PRESCALER) /**< Battery level measurement interval (ticks). */ #define MIN_BATTERY_LEVEL 81 /**< Minimum simulated battery level. */ #define MAX_BATTERY_LEVEL 100 /**< Maximum simulated 7battery level. */ #define BATTERY_LEVEL_INCREMENT 1 /**< Increment between each simulated battery level measurement. */ #define HEART_RATE_MEAS_INTERVAL APP_TIMER_TICKS(1000, APP_TIMER_PRESCALER) /**< Heart rate measurement interval (ticks). */ #define MIN_HEART_RATE 140 /**< Minimum heart rate as returned by the simulated measurement function. */ #define MAX_HEART_RATE 300 /**< Maximum heart rate as returned by the simulated measurement function. */ #define HEART_RATE_INCREMENT 10 /**< Value by which the heart rate is incremented/decremented for each call to the simulated measurement function. */ #define RR_INTERVAL_INTERVAL APP_TIMER_TICKS(300, APP_TIMER_PRESCALER) /**< RR interval interval (ticks). */ #define MIN_RR_INTERVAL 100 /**< Minimum RR interval as returned by the simulated measurement function. */ #define MAX_RR_INTERVAL 500 /**< Maximum RR interval as returned by the simulated measurement function. */ #define RR_INTERVAL_INCREMENT 1 /**< Value by which the RR interval is incremented/decremented for each call to the simulated measurement function. */ #define SENSOR_CONTACT_DETECTED_INTERVAL APP_TIMER_TICKS(5000, APP_TIMER_PRESCALER) /**< Sensor Contact Detected toggle interval (ticks). */ #define MIN_CONN_INTERVAL MSEC_TO_UNITS(400, UNIT_1_25_MS) /**< Minimum acceptable connection interval (0.4 seconds). */ #define MAX_CONN_INTERVAL MSEC_TO_UNITS(650, UNIT_1_25_MS) /**< Maximum acceptable connection interval (0.65 second). */ #define SLAVE_LATENCY 0 /**< Slave latency. */ #define CONN_SUP_TIMEOUT MSEC_TO_UNITS(4000, UNIT_10_MS) /**< Connection supervisory timeout (4 seconds). */ #define FIRST_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(5000, APP_TIMER_PRESCALER) /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */ #define NEXT_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(30000, APP_TIMER_PRESCALER) /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */ #define MAX_CONN_PARAMS_UPDATE_COUNT 3 /**< Number of attempts before giving up the connection parameter negotiation. */ #define SEC_PARAM_BOND 1 /**< Perform bonding. */ #define SEC_PARAM_MITM 0 /**< Man In The Middle protection not required. */ #define SEC_PARAM_LESC 0 /**< LE Secure Connections not enabled. */ #define SEC_PARAM_KEYPRESS 0 /**< Keypress notifications not enabled. */ #define SEC_PARAM_IO_CAPABILITIES BLE_GAP_IO_CAPS_NONE /**< No I/O capabilities. */ #define SEC_PARAM_OOB 0 /**< Out Of Band data not available. */ #define SEC_PARAM_MIN_KEY_SIZE 7 /**< Minimum encryption key size. */ #define SEC_PARAM_MAX_KEY_SIZE 16 /**< Maximum encryption key size. */ #define DEAD_BEEF 0xDEADBEEF /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */ #define APP_FEATURE_NOT_SUPPORTED BLE_GATT_STATUS_ATTERR_APP_BEGIN + 2 /**< Reply when unsupported features are requested. */ static volatile uint8_t write_flag = 0; ble_advdata_service_data_t service_data[2]; //static uint16_t m_conn_handle = BLE_CONN_HANDLE_INVALID; /**< Handle of the current connection. */ static ble_bas_t m_bas; /**< Structure used to identify the battery service. */ static ble_hrs_t m_hrs; /**< Structure used to identify the heart rate service. */ static bool m_rr_interval_enabled = true; /**< Flag for enabling and disabling the registration of new RR interval measurements (the purpose of disabling this is just to test sending HRM without RR interval data. */ static nrf_ble_gatt_t m_gatt; /**< Structure for gatt module*/ static sensorsim_cfg_t m_battery_sim_cfg; /**< Battery Level sensor simulator configuration. */ static sensorsim_state_t m_battery_sim_state; /**< Battery Level sensor simulator state. */ static sensorsim_cfg_t m_heart_rate_sim_cfg; /**< Heart Rate sensor simulator configuration. */ static sensorsim_state_t m_heart_rate_sim_state; /**< Heart Rate sensor simulator state. */ static sensorsim_cfg_t m_rr_interval_sim_cfg; /**< RR Interval sensor simulator configuration. */ static sensorsim_state_t m_rr_interval_sim_state; /**< RR Interval sensor simulator state. */ APP_TIMER_DEF(m_battery_timer_id); /**< Battery timer. */ APP_TIMER_DEF(m_heart_rate_timer_id); /**< Heart rate measurement timer. */ APP_TIMER_DEF(m_rr_interval_timer_id); /**< RR interval timer. */ /**< RR interval timer. */ APP_TIMER_DEF(m_sensor_contact_timer_id); /**< Sensor contact detected timer. */ static ble_uuid_t m_adv_uuids[] = {{BLE_UUID_HEART_RATE_SERVICE, BLE_UUID_TYPE_BLE}, {BLE_UUID_BATTERY_SERVICE, BLE_UUID_TYPE_BLE}, {BLE_UUID_DEVICE_INFORMATION_SERVICE, BLE_UUID_TYPE_BLE}}; /**< Universally unique service identifiers. */ /**@brief Callback function for asserts in the SoftDevice. * * @details This function will be called in case of an assert in the SoftDevice. * * @warning This handler is an example only and does not fit a final product. You need to analyze * how your product is supposed to react in case of Assert. * @warning On assert from the SoftDevice, the system can only recover on reset. * * @param[in] line_num Line number of the failing ASSERT call. * @param[in] file_name File name of the failing ASSERT call. */ void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name) { app_error_handler(DEAD_BEEF, line_num, p_file_name); } /**@brief Function for starting advertising. */ void advertising_start(void) { ret_code_t err_code; err_code = ble_advertising_start(BLE_ADV_MODE_FAST); APP_ERROR_CHECK(err_code); } /**@brief Function for handling File Data Storage events. * * @param[in] p_evt Peer Manager event. * @param[in] cmd */ static void fds_evt_handler(fds_evt_t const * const p_evt) { if (p_evt->id == FDS_EVT_GC) { NRF_LOG_DEBUG("GC completed\n"); } } /**@brief Function for handling Peer Manager events. * * @param[in] p_evt Peer Manager event. */ static void pm_evt_handler(pm_evt_t const * p_evt) { ret_code_t err_code; switch (p_evt->evt_id) { case PM_EVT_BONDED_PEER_CONNECTED: { NRF_LOG_INFO("Connected to a previously bonded device.\r\n"); } break; case PM_EVT_CONN_SEC_SUCCEEDED: { NRF_LOG_INFO("Connection secured. Role: %d. conn_handle: %d, Procedure: %d\r\n", ble_conn_state_role(p_evt->conn_handle), p_evt->conn_handle, p_evt->params.conn_sec_succeeded.procedure); } break; case PM_EVT_CONN_SEC_FAILED: { /* Often, when securing fails, it shouldn't be restarted, for security reasons. * Other times, it can be restarted directly. * Sometimes it can be restarted, but only after changing some Security Parameters. * Sometimes, it cannot be restarted until the link is disconnected and reconnected. * Sometimes it is impossible, to secure the link, or the peer device does not support it. * How to handle this error is highly application dependent. */ } break; case PM_EVT_CONN_SEC_CONFIG_REQ: { // Reject pairing request from an already bonded peer. pm_conn_sec_config_t conn_sec_config = {.allow_repairing = false}; pm_conn_sec_config_reply(p_evt->conn_handle, &conn_sec_config); } break; case PM_EVT_STORAGE_FULL: { // Run garbage collection on the flash. err_code = fds_gc(); if (err_code == FDS_ERR_BUSY || err_code == FDS_ERR_NO_SPACE_IN_QUEUES) { // Retry. } else { APP_ERROR_CHECK(err_code); } } break; case PM_EVT_PEERS_DELETE_SUCCEEDED: { advertising_start(); } break; case PM_EVT_LOCAL_DB_CACHE_APPLY_FAILED: { // The local database has likely changed, send service changed indications. pm_local_database_has_changed(); } break; case PM_EVT_PEER_DATA_UPDATE_FAILED: { // Assert. APP_ERROR_CHECK(p_evt->params.peer_data_update_failed.error); } break; case PM_EVT_PEER_DELETE_FAILED: { // Assert. APP_ERROR_CHECK(p_evt->params.peer_delete_failed.error); } break; case PM_EVT_PEERS_DELETE_FAILED: { // Assert. APP_ERROR_CHECK(p_evt->params.peers_delete_failed_evt.error); } break; case PM_EVT_ERROR_UNEXPECTED: { // Assert. APP_ERROR_CHECK(p_evt->params.error_unexpected.error); } break; case PM_EVT_CONN_SEC_START: case PM_EVT_PEER_DATA_UPDATE_SUCCEEDED: case PM_EVT_PEER_DELETE_SUCCEEDED: case PM_EVT_LOCAL_DB_CACHE_APPLIED: case PM_EVT_SERVICE_CHANGED_IND_SENT: case PM_EVT_SERVICE_CHANGED_IND_CONFIRMED: default: break; } } /**@brief Function for performing battery measurement and updating the Battery Level characteristic * in Battery Service. */ static void battery_level_update(void) { uint32_t err_code; uint8_t battery_level; battery_level = (uint8_t)sensorsim_measure(&m_battery_sim_state, &m_battery_sim_cfg); err_code = ble_bas_battery_level_update(&m_bas, battery_level); if ((err_code != NRF_SUCCESS) && (err_code != NRF_ERROR_INVALID_STATE) && (err_code != BLE_ERROR_NO_TX_PACKETS) && (err_code != BLE_ERROR_GATTS_SYS_ATTR_MISSING) ) { APP_ERROR_HANDLER(err_code); } } /**@brief Function for handling the Battery measurement timer timeout. * * @details This function will be called each time the battery level measurement timer expires. * * @param[in] p_context Pointer used for passing some arbitrary information (context) from the * app_start_timer() call to the timeout handler. */ static void battery_level_meas_timeout_handler(void * p_context) { UNUSED_PARAMETER(p_context); battery_level_update(); } /**@brief Function for handling the Heart rate measurement timer timeout. * * @details This function will be called each time the heart rate measurement timer expires. * It will exclude RR Interval data from every third measurement. * * @param[in] p_context Pointer used for passing some arbitrary information (context) from the * app_start_timer() call to the timeout handler. */ static void heart_rate_meas_timeout_handler(void * p_context) { static uint32_t cnt = 0; uint32_t err_code; uint16_t heart_rate; UNUSED_PARAMETER(p_context); heart_rate = (uint16_t)sensorsim_measure(&m_heart_rate_sim_state, &m_heart_rate_sim_cfg); cnt++; err_code = ble_hrs_heart_rate_measurement_send(&m_hrs, heart_rate); if ((err_code != NRF_SUCCESS) && (err_code != NRF_ERROR_INVALID_STATE) && (err_code != BLE_ERROR_NO_TX_PACKETS) && (err_code != BLE_ERROR_GATTS_SYS_ATTR_MISSING) ) { APP_ERROR_HANDLER(err_code); } // Disable RR Interval recording every third heart rate measurement. // NOTE: An application will normally not do this. It is done here just for testing generation // of messages without RR Interval measurements. m_rr_interval_enabled = ((cnt % 3) != 0); } /**@brief Function for handling the RR interval timer timeout. * * @details This function will be called each time the RR interval timer expires. * * @param[in] p_context Pointer used for passing some arbitrary information (context) from the * app_start_timer() call to the timeout handler. */ static void rr_interval_timeout_handler(void * p_context) { UNUSED_PARAMETER(p_context); if (m_rr_interval_enabled) { uint16_t rr_interval; rr_interval = (uint16_t)sensorsim_measure(&m_rr_interval_sim_state, &m_rr_interval_sim_cfg); ble_hrs_rr_interval_add(&m_hrs, rr_interval); rr_interval = (uint16_t)sensorsim_measure(&m_rr_interval_sim_state, &m_rr_interval_sim_cfg); ble_hrs_rr_interval_add(&m_hrs, rr_interval); rr_interval = (uint16_t)sensorsim_measure(&m_rr_interval_sim_state, &m_rr_interval_sim_cfg); ble_hrs_rr_interval_add(&m_hrs, rr_interval); rr_interval = (uint16_t)sensorsim_measure(&m_rr_interval_sim_state, &m_rr_interval_sim_cfg); ble_hrs_rr_interval_add(&m_hrs, rr_interval); rr_interval = (uint16_t)sensorsim_measure(&m_rr_interval_sim_state, &m_rr_interval_sim_cfg); ble_hrs_rr_interval_add(&m_hrs, rr_interval); rr_interval = (uint16_t)sensorsim_measure(&m_rr_interval_sim_state, &m_rr_interval_sim_cfg); ble_hrs_rr_interval_add(&m_hrs, rr_interval); } } /**@brief Function for handling the Sensor Contact Detected timer timeout. * * @details This function will be called each time the Sensor Contact Detected timer expires. * * @param[in] p_context Pointer used for passing some arbitrary information (context) from the * app_start_timer() call to the timeout handler. */ static void sensor_contact_detected_timeout_handler(void * p_context) { static bool sensor_contact_detected = false; UNUSED_PARAMETER(p_context); sensor_contact_detected = !sensor_contact_detected; ble_hrs_sensor_contact_detected_update(&m_hrs, sensor_contact_detected); } /**@brief Function for the Timer initialization. * * @details Initializes the timer module. This creates and starts application timers. */ static void timers_init(void) { uint32_t err_code; // Initialize timer module. APP_TIMER_INIT(APP_TIMER_PRESCALER, APP_TIMER_OP_QUEUE_SIZE, false); // Create timers. err_code = app_timer_create(&m_battery_timer_id, APP_TIMER_MODE_REPEATED, battery_level_meas_timeout_handler); APP_ERROR_CHECK(err_code); err_code = app_timer_create(&m_heart_rate_timer_id, APP_TIMER_MODE_REPEATED, heart_rate_meas_timeout_handler); APP_ERROR_CHECK(err_code); err_code = app_timer_create(&m_rr_interval_timer_id, APP_TIMER_MODE_REPEATED, rr_interval_timeout_handler); APP_ERROR_CHECK(err_code); err_code = app_timer_create(&m_sensor_contact_timer_id, APP_TIMER_MODE_REPEATED, sensor_contact_detected_timeout_handler); APP_ERROR_CHECK(err_code); } /**@brief Function for the GAP initialization. * * @details This function sets up all the necessary GAP (Generic Access Profile) parameters of the * device including the device name, appearance, and the preferred connection parameters. */ static void gap_params_init(void) { uint32_t err_code; ble_gap_conn_params_t gap_conn_params; ble_gap_conn_sec_mode_t sec_mode; BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode); err_code = sd_ble_gap_device_name_set(&sec_mode, (const uint8_t *)DEVICE_NAME, strlen(DEVICE_NAME)); APP_ERROR_CHECK(err_code); err_code = sd_ble_gap_appearance_set(BLE_APPEARANCE_HEART_RATE_SENSOR_HEART_RATE_BELT); APP_ERROR_CHECK(err_code); memset(&gap_conn_params, 0, sizeof(gap_conn_params)); gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL; gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL; gap_conn_params.slave_latency = SLAVE_LATENCY; gap_conn_params.conn_sup_timeout = CONN_SUP_TIMEOUT; err_code = sd_ble_gap_ppcp_set(&gap_conn_params); APP_ERROR_CHECK(err_code); } /**@brief Function for handling the data from the Nordic UART Service. * * @details This function will process the data received from the Nordic UART BLE Service and send * it to the UART module. * * @param[in] p_nus Nordic UART Service structure. * @param[in] p_data Data to be send to UART module. * @param[in] length Length of the data. */ /**@snippet [Handling the data received over BLE] */ static void nus_data_handler(ble_nus_t * p_nus, uint8_t * p_data, uint16_t length) { for (uint32_t i = 0; i < length; i++) { while (app_uart_put(p_data[i]) != NRF_SUCCESS); } while (app_uart_put('\r') != NRF_SUCCESS); while (app_uart_put('\n') != NRF_SUCCESS); } /**@snippet [Handling the data received over BLE] */ /**@brief Function for initializing services that will be used by the application. * * @details Initialize the Heart Rate, Battery and Device Information services. */ static void services_init(uint16_t tmp) { uint32_t err_code; ble_nus_init_t nus_init; memset(&nus_init, 0, sizeof(nus_init)); nus_init.data_handler = nus_data_handler; err_code = ble_nus_init(&m_nus, &nus_init); APP_ERROR_CHECK(err_code); } /**@brief Function for initializing the sensor simulators. */ static void sensor_simulator_init(void) { m_battery_sim_cfg.min = MIN_BATTERY_LEVEL; m_battery_sim_cfg.max = MAX_BATTERY_LEVEL; m_battery_sim_cfg.incr = BATTERY_LEVEL_INCREMENT; m_battery_sim_cfg.start_at_max = true; sensorsim_init(&m_battery_sim_state, &m_battery_sim_cfg); m_heart_rate_sim_cfg.min = MIN_HEART_RATE; m_heart_rate_sim_cfg.max = MAX_HEART_RATE; m_heart_rate_sim_cfg.incr = HEART_RATE_INCREMENT; m_heart_rate_sim_cfg.start_at_max = false; sensorsim_init(&m_heart_rate_sim_state, &m_heart_rate_sim_cfg); m_rr_interval_sim_cfg.min = MIN_RR_INTERVAL; m_rr_interval_sim_cfg.max = MAX_RR_INTERVAL; m_rr_interval_sim_cfg.incr = RR_INTERVAL_INCREMENT; m_rr_interval_sim_cfg.start_at_max = false; sensorsim_init(&m_rr_interval_sim_state, &m_rr_interval_sim_cfg); } /**@brief Function for starting application timers. */ /* static void application_timers_start(void) { uint32_t err_code; // Start application timers. err_code = app_timer_start(m_battery_timer_id, BATTERY_LEVEL_MEAS_INTERVAL, NULL); APP_ERROR_CHECK(err_code); err_code = app_timer_start(m_heart_rate_timer_id, HEART_RATE_MEAS_INTERVAL, NULL); APP_ERROR_CHECK(err_code); err_code = app_timer_start(m_rr_interval_timer_id, RR_INTERVAL_INTERVAL, NULL); APP_ERROR_CHECK(err_code); err_code = app_timer_start(m_sensor_contact_timer_id, SENSOR_CONTACT_DETECTED_INTERVAL, NULL); APP_ERROR_CHECK(err_code); } */ /**@brief Function for handling the Connection Parameters Module. * * @details This function will be called for all events in the Connection Parameters Module which * are passed to the application. * @note All this function does is to disconnect. This could have been done by simply * setting the disconnect_on_fail config parameter, but instead we use the event * handler mechanism to demonstrate its use. * * @param[in] p_evt Event received from the Connection Parameters Module. */ static void on_conn_params_evt(ble_conn_params_evt_t * p_evt) { uint32_t err_code; if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED) { err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE); APP_ERROR_CHECK(err_code); } } /**@brief Function for handling a Connection Parameters error. * * @param[in] nrf_error Error code containing information about what went wrong. */ static void conn_params_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } /**@brief Function for initializing the Connection Parameters module. */ static void conn_params_init(void) { uint32_t err_code; ble_conn_params_init_t cp_init; memset(&cp_init, 0, sizeof(cp_init)); cp_init.p_conn_params = NULL; cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY; cp_init.next_conn_params_update_delay = NEXT_CONN_PARAMS_UPDATE_DELAY; cp_init.max_conn_params_update_count = MAX_CONN_PARAMS_UPDATE_COUNT; cp_init.start_on_notify_cccd_handle = m_hrs.hrm_handles.cccd_handle; cp_init.disconnect_on_fail = false; cp_init.evt_handler = on_conn_params_evt; cp_init.error_handler = conn_params_error_handler; err_code = ble_conn_params_init(&cp_init); APP_ERROR_CHECK(err_code); } /**@brief Function for putting the chip into sleep mode. * * @note This function will not return. */ static void sleep_mode_enter(void) { uint32_t err_code = bsp_indication_set(BSP_INDICATE_IDLE); APP_ERROR_CHECK(err_code); // Prepare wakeup buttons. err_code = bsp_btn_ble_sleep_mode_prepare(); APP_ERROR_CHECK(err_code); // Go to system-off mode (this function will not return; wakeup will cause a reset). err_code = sd_power_system_off(); APP_ERROR_CHECK(err_code); } /**@brief Function for handling advertising events. * * @details This function will be called for advertising events which are passed to the application. * * @param[in] ble_adv_evt Advertising event. */ static void on_adv_evt(ble_adv_evt_t ble_adv_evt) { uint32_t err_code; switch (ble_adv_evt) { case BLE_ADV_EVT_FAST: NRF_LOG_INFO("Fast Advertising\r\n"); err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING); APP_ERROR_CHECK(err_code); break; case BLE_ADV_EVT_IDLE: sleep_mode_enter(); break; default: break; } } /**@brief Function for handling the Application's BLE Stack events. * * @param[in] p_ble_evt Bluetooth stack event. */ static void on_ble_evt(ble_evt_t * p_ble_evt) { uint32_t err_code; switch (p_ble_evt->header.evt_id) { case BLE_GAP_EVT_CONNECTED: NRF_LOG_INFO("Connected\r\n"); err_code = bsp_indication_set(BSP_INDICATE_CONNECTED); APP_ERROR_CHECK(err_code); m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle; break; // BLE_GAP_EVT_CONNECTED case BLE_GAP_EVT_DISCONNECTED: NRF_LOG_INFO("Disconnected, reason %d\r\n", p_ble_evt->evt.gap_evt.params.disconnected.reason); m_conn_handle = BLE_CONN_HANDLE_INVALID; break; // BLE_GAP_EVT_DISCONNECTED case BLE_GATTC_EVT_TIMEOUT: // Disconnect on GATT Client timeout event. NRF_LOG_DEBUG("GATT Client Timeout.\r\n"); err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; // BLE_GATTC_EVT_TIMEOUT case BLE_GATTS_EVT_TIMEOUT: // Disconnect on GATT Server timeout event. NRF_LOG_DEBUG("GATT Server Timeout.\r\n"); err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; // BLE_GATTS_EVT_TIMEOUT case BLE_EVT_USER_MEM_REQUEST: err_code = sd_ble_user_mem_reply(m_conn_handle, NULL); APP_ERROR_CHECK(err_code); break; // BLE_EVT_USER_MEM_REQUEST case BLE_GATTS_EVT_RW_AUTHORIZE_REQUEST: { ble_gatts_evt_rw_authorize_request_t req; ble_gatts_rw_authorize_reply_params_t auth_reply; req = p_ble_evt->evt.gatts_evt.params.authorize_request; if (req.type != BLE_GATTS_AUTHORIZE_TYPE_INVALID) { if ((req.request.write.op == BLE_GATTS_OP_PREP_WRITE_REQ) || (req.request.write.op == BLE_GATTS_OP_EXEC_WRITE_REQ_NOW) || (req.request.write.op == BLE_GATTS_OP_EXEC_WRITE_REQ_CANCEL)) { if (req.type == BLE_GATTS_AUTHORIZE_TYPE_WRITE) { auth_reply.type = BLE_GATTS_AUTHORIZE_TYPE_WRITE; } else { auth_reply.type = BLE_GATTS_AUTHORIZE_TYPE_READ; } auth_reply.params.write.gatt_status = APP_FEATURE_NOT_SUPPORTED; err_code = sd_ble_gatts_rw_authorize_reply(p_ble_evt->evt.gatts_evt.conn_handle, &auth_reply); APP_ERROR_CHECK(err_code); } } } break; // BLE_GATTS_EVT_RW_AUTHORIZE_REQUEST default: // No implementation needed. break; } } /**@brief Function for dispatching a BLE stack event to all modules with a BLE stack event handler. * * @details This function is called from the BLE Stack event interrupt handler after a BLE stack * event has been received. * * @param[in] p_ble_evt Bluetooth stack event. */ static void ble_evt_dispatch(ble_evt_t * p_ble_evt) { ble_conn_state_on_ble_evt(p_ble_evt); pm_on_ble_evt(p_ble_evt); ble_hrs_on_ble_evt(&m_hrs, p_ble_evt); ble_bas_on_ble_evt(&m_bas, p_ble_evt); ble_conn_params_on_ble_evt(p_ble_evt); bsp_btn_ble_on_ble_evt(p_ble_evt); on_ble_evt(p_ble_evt); ble_advertising_on_ble_evt(p_ble_evt); nrf_ble_gatt_on_ble_evt(&m_gatt, p_ble_evt); } /**@brief Function for dispatching a system event to interested modules. * * @details This function is called from the System event interrupt handler after a system * event has been received. * * @param[in] sys_evt System stack event. */ static void sys_evt_dispatch(uint32_t sys_evt) { // Dispatch the system event to the fstorage module, where it will be // dispatched to the Flash Data Storage (FDS) module. fs_sys_event_handler(sys_evt); // Dispatch to the Advertising module last, since it will check if there are any // pending flash operations in fstorage. Let fstorage process system events first, // so that it can report correctly to the Advertising module. ble_advertising_on_sys_evt(sys_evt); } /**@brief Function for initializing the BLE stack. * * @details Initializes the SoftDevice and the BLE event interrupt. */ static void ble_stack_init(void) { uint32_t err_code; nrf_clock_lf_cfg_t clock_lf_cfg = NRF_CLOCK_LFCLKSRC; // Initialize the SoftDevice handler module. SOFTDEVICE_HANDLER_INIT(&clock_lf_cfg, NULL); ble_enable_params_t ble_enable_params; err_code = softdevice_enable_get_default_config(NRF_BLE_CENTRAL_LINK_COUNT, NRF_BLE_PERIPHERAL_LINK_COUNT, &ble_enable_params); APP_ERROR_CHECK(err_code); // Check the ram settings against the used number of links CHECK_RAM_START_ADDR(NRF_BLE_CENTRAL_LINK_COUNT, NRF_BLE_PERIPHERAL_LINK_COUNT); // Enable BLE stack. #if (NRF_SD_BLE_API_VERSION == 3) ble_enable_params.gatt_enable_params.att_mtu = NRF_BLE_GATT_MAX_MTU_SIZE; #endif err_code = softdevice_enable(&ble_enable_params); APP_ERROR_CHECK(err_code); // Register with the SoftDevice handler module for BLE events. err_code = softdevice_ble_evt_handler_set(ble_evt_dispatch); APP_ERROR_CHECK(err_code); // Register with the SoftDevice handler module for BLE events. err_code = softdevice_sys_evt_handler_set(sys_evt_dispatch); APP_ERROR_CHECK(err_code); } /**@brief Function for handling events from the BSP module. * * @param[in] event Event generated by button press. */ void bsp_event_handler(bsp_event_t event) { uint32_t err_code; switch (event) { case BSP_EVENT_SLEEP: sleep_mode_enter(); break; case BSP_EVENT_DISCONNECT: err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); if (err_code != NRF_ERROR_INVALID_STATE) { APP_ERROR_CHECK(err_code); } break; case BSP_EVENT_WHITELIST_OFF: if (m_conn_handle == BLE_CONN_HANDLE_INVALID) { err_code = ble_advertising_restart_without_whitelist(); if (err_code != NRF_ERROR_INVALID_STATE) { APP_ERROR_CHECK(err_code); } } break; default: break; } } /**@brief Function for the Peer Manager initialization. * * @param[in] erase_bonds Indicates whether bonding information should be cleared from * persistent storage during initialization of the Peer Manager. */ static void peer_manager_init(bool erase_bonds) { ble_gap_sec_params_t sec_param; ret_code_t err_code; err_code = pm_init(); APP_ERROR_CHECK(err_code); if (erase_bonds) { err_code = pm_peers_delete(); APP_ERROR_CHECK(err_code); } memset(&sec_param, 0, sizeof(ble_gap_sec_params_t)); // Security parameters to be used for all security procedures. sec_param.bond = SEC_PARAM_BOND; sec_param.mitm = SEC_PARAM_MITM; sec_param.io_caps = SEC_PARAM_IO_CAPABILITIES; sec_param.oob = SEC_PARAM_OOB; sec_param.min_key_size = SEC_PARAM_MIN_KEY_SIZE; sec_param.max_key_size = SEC_PARAM_MAX_KEY_SIZE; sec_param.kdist_own.enc = 1; sec_param.kdist_own.id = 1; sec_param.kdist_peer.enc = 1; sec_param.kdist_peer.id = 1; err_code = pm_sec_params_set(&sec_param); APP_ERROR_CHECK(err_code); err_code = pm_register(pm_evt_handler); APP_ERROR_CHECK(err_code); err_code = fds_register(fds_evt_handler); APP_ERROR_CHECK(err_code); } /**@brief Function for initializing the Advertising functionality. */ static void advertising_init(void) { uint32_t err_code; ble_advdata_t advdata; ble_adv_modes_config_t options; // Build advertising data struct to pass into @ref ble_advertising_init. memset(&advdata, 0, sizeof(advdata)); advdata.name_type = BLE_ADVDATA_FULL_NAME; advdata.include_appearance = true; advdata.flags = BLE_GAP_ADV_FLAGS_LE_ONLY_GENERAL_DISC_MODE; advdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]); advdata.uuids_complete.p_uuids = m_adv_uuids; memset(&options, 0, sizeof(options)); options.ble_adv_fast_enabled = true; options.ble_adv_fast_interval = APP_ADV_INTERVAL; options.ble_adv_fast_timeout = APP_ADV_TIMEOUT_IN_SECONDS; err_code = ble_advertising_init(&advdata, NULL, &options, on_adv_evt, NULL); APP_ERROR_CHECK(err_code); } /**@brief Function for initializing buttons and leds. * * @param[out] p_erase_bonds Will be true if the clear bonding button was pressed to wake the application up. */ static void buttons_leds_init(bool * p_erase_bonds) { bsp_event_t startup_event; uint32_t err_code = bsp_init(BSP_INIT_LED | BSP_INIT_BUTTONS, APP_TIMER_TICKS(100, APP_TIMER_PRESCALER), bsp_event_handler); APP_ERROR_CHECK(err_code); err_code = bsp_btn_ble_init(NULL, &startup_event); APP_ERROR_CHECK(err_code); *p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA); } /**@brief Function for the Power manager. */ static void power_manage(void) { uint32_t err_code = sd_app_evt_wait(); APP_ERROR_CHECK(err_code); } /*GATT generic Event handler*/ void gatt_evt_handler(nrf_ble_gatt_t * p_gatt, nrf_ble_gatt_evt_t * p_evt) { ble_hrs_on_gatt_evt(&m_hrs, p_evt); } /*GATT Module init*/ void gatt_init(void) { ret_code_t err_code = nrf_ble_gatt_init(&m_gatt, gatt_evt_handler); APP_ERROR_CHECK(err_code); } static void my_fds_evt_handler(fds_evt_t const * const p_fds_evt) { switch (p_fds_evt->id) { case FDS_EVT_INIT: if (p_fds_evt->result != FDS_SUCCESS) { // Initialization failed. } break; case FDS_EVT_WRITE: if (p_fds_evt->result == FDS_SUCCESS) { write_flag=1; } break; default: break; } } static ret_code_t fds_test_write(uint32_t tmp) { #define FILE_ID 0x1111 #define REC_KEY 0x2222 // static uint32_t const m_deadbeef[2] = {0xDEADBEEF,0xBAADF00D}; uint32_t m_deadbeef[1] = {tmp}; fds_record_t record; fds_record_desc_t record_desc; fds_record_chunk_t record_chunk; // Set up data. record_chunk.p_data = m_deadbeef; record_chunk.length_words = 1; // Set up record. record.file_id = FILE_ID; record.key = REC_KEY; record.data.p_chunks = &record_chunk; record.data.num_chunks = 1; ret_code_t ret = fds_record_write(&record_desc, &record); if (ret != FDS_SUCCESS) { return ret; } NRF_LOG_INFO("Writing Record ID = %d \r\n",record_desc.record_id); return NRF_SUCCESS; } static ret_code_t fds_read(void) { #define FILE_ID 0x1111 #define REC_KEY 0x2222 fds_flash_record_t flash_record; fds_record_desc_t record_desc; fds_find_token_t ftok ={0};//Important, make sure you zero init the ftok token uint32_t *data; uint32_t err_code; NRF_LOG_INFO("Start searching... \r\n"); // Loop until all records with the given key and file ID have been found. while (fds_record_find(FILE_ID, REC_KEY, &record_desc, &ftok) == FDS_SUCCESS) { err_code = fds_record_open(&record_desc, &flash_record); if ( err_code != FDS_SUCCESS) { return err_code; } NRF_LOG_INFO("Found Record ID = %d\r\n",record_desc.record_id); NRF_LOG_INFO("Data = "); data = (uint32_t *) flash_record.p_data; for (uint8_t i=0;itl.length_words;i++) { NRF_LOG_INFO("%d ",data[i]); } NRF_LOG_INFO("\r\n"); // Access the record through the flash_record structure. // Close the record when done. err_code = fds_record_close(&record_desc); if (err_code != FDS_SUCCESS) { return err_code; } } return NRF_SUCCESS; } static ret_code_t fds_test_find_and_delete (void) { #define FILE_ID 0x1111 #define REC_KEY 0x2222 fds_record_desc_t record_desc; fds_find_token_t ftok; ftok.page=0; ftok.p_addr=NULL; // Loop and find records with same ID and rec key and mark them as deleted. while (fds_record_find(FILE_ID, REC_KEY, &record_desc, &ftok) == FDS_SUCCESS) { fds_record_delete(&record_desc); NRF_LOG_INFO("Deleted record ID: %d \r\n",record_desc.record_id); } // call the garbage collector to empty them, don't need to do this all the time, this is just for demonstration ret_code_t ret = fds_gc(); if (ret != FDS_SUCCESS) { return ret; } return NRF_SUCCESS; } static ret_code_t fds_test_init (void) { ret_code_t ret = fds_register(my_fds_evt_handler); if (ret != FDS_SUCCESS) { return ret; } ret = fds_init(); if (ret != FDS_SUCCESS) { return ret; } return NRF_SUCCESS; } /** * @brief Function for handling data from temperature sensor. * * @param[in] temp Temperature in Celsius degrees read from sensor. */ __STATIC_INLINE void data_handler(uint8_t temp) { NRF_LOG_INFO("Temperature: %d Celsius degrees.\r\n", temp); } /** * @brief TWI events handler. */ void twi_handler(nrf_drv_twi_evt_t const * p_event, void * p_context) { switch (p_event->type) { case NRF_DRV_TWI_EVT_DONE: if (p_event->xfer_desc.type == NRF_DRV_TWI_XFER_RX) { data_handler(m_sample); } m_xfer_done = true; break; default: break; } } static ret_code_t twi_master_init(void) { ret_code_t ret; const nrf_drv_twi_config_t config = { .scl = ARDUINO_SCL_PIN, .sda = ARDUINO_SDA_PIN, .frequency = NRF_TWI_FREQ_400K, .interrupt_priority = APP_IRQ_PRIORITY_HIGH }; do { ret = nrf_drv_twi_init(&m_twi, &config, NULL,NULL); if(NRF_SUCCESS != ret) { break; } nrf_drv_twi_enable(&m_twi); }while(0); return ret; } ret_code_t read_sensor_data(uint8_t slave_addr, uint8_t reg_addr, uint8_t * m_sample, uint32_t bytes) { m_xfer_done = false; ret_code_t err_code = nrf_drv_twi_tx(&m_twi,slave_addr, ®_addr,1,false); if(err_code != NRF_SUCCESS) { return err_code; } /* Read 1 byte from the specified address - skip 3 bits dedicated for fractional part of temperature. */ err_code = nrf_drv_twi_rx(&m_twi,slave_addr, m_sample, bytes); return err_code; // APP_ERROR_CHECK(err_code); } /** * @brief SPI user event handler. * @param event */ void spi_event_handler(nrf_drv_spi_evt_t const * p_event) { spi_xfer_done = true; NRF_LOG_INFO("Transfer completed.\r\n"); if (m_rx_buf[0] != 0) { NRF_LOG_INFO(" Received: \r\n"); NRF_LOG_HEXDUMP_INFO(m_rx_buf, strlen((const char *)m_rx_buf)); } } /**@brief Function for handling app_uart events. * * @details This function will receive a single character from the app_uart module and append it to * a string. The string will be be sent over BLE when the last character received was a * 'new line' i.e '\r\n' (hex 0x0D) or if the string has reached a length of * @ref NUS_MAX_DATA_LENGTH. */ /**@snippet [Handling the data received over UART] */ void uart_event_handle(app_uart_evt_t * p_event) { static uint8_t data_array[BLE_NUS_MAX_DATA_LEN]; static uint8_t index = 0; uint32_t err_code; switch (p_event->evt_type) { case APP_UART_DATA_READY: UNUSED_VARIABLE(app_uart_get(&data_array[index])); index++; if ((data_array[index - 1] == '\n') || (index >= (BLE_NUS_MAX_DATA_LEN))) { err_code = ble_nus_string_send(&m_nus, data_array, index); if (err_code != NRF_ERROR_INVALID_STATE) { APP_ERROR_CHECK(err_code); } index = 0; } break; case APP_UART_COMMUNICATION_ERROR: APP_ERROR_HANDLER(p_event->data.error_communication); break; case APP_UART_FIFO_ERROR: APP_ERROR_HANDLER(p_event->data.error_code); break; default: break; } } /**@snippet [Handling the data received over UART] */ /**@snippet [UART Initialization] */ static void uart_init(void) { uint32_t err_code; const app_uart_comm_params_t comm_params = { RX_PIN_NUMBER, TX_PIN_NUMBER, RTS_PIN_NUMBER, CTS_PIN_NUMBER, APP_UART_FLOW_CONTROL_DISABLED, false, UART_BAUDRATE_BAUDRATE_Baud115200 }; APP_UART_FIFO_INIT( &comm_params, UART_RX_BUF_SIZE, UART_TX_BUF_SIZE, uart_event_handle, APP_IRQ_PRIORITY_LOWEST, err_code); APP_ERROR_CHECK(err_code); } /**@snippet [UART Initialization] */ /**@brief Function for application main entry. */ int main(void) { uint32_t err_code; bool erase_bonds; uint16_t tmp = 287; int count=0; //int i,j; // uint8_t tempInt[2]; // nrf_drv_spi_config_t spi_config = NRF_DRV_SPI_DEFAULT_CONFIG; // spi_config.ss_pin = SPI_SS_PIN; // spi_config.miso_pin = SPI_MISO_PIN; // spi_config.mosi_pin = SPI_MOSI_PIN; // spi_config.sck_pin = SPI_SCK_PIN; // APP_ERROR_CHECK(nrf_drv_spi_init(&spi, &spi_config, spi_event_handler)); // while (1) // Initialize. uart_init(); err_code = NRF_LOG_INIT(NULL); NRF_LOG_INFO("NRF_LOG_INIT- %d", err_code); APP_ERROR_CHECK(err_code); NRF_LOG_INFO("Running\r\n"); twi_master_init(); timers_init(); buttons_leds_init(&erase_bonds); ble_stack_init(); peer_manager_init(erase_bonds); if (erase_bonds == true) { NRF_LOG_INFO("Bonds erased!\r\n"); } gap_params_init(); advertising_init(); gatt_init(); services_init(tmp); sensor_simulator_init(); conn_params_init(); err_code =fds_test_init(); NRF_LOG_INFO("FDS_TEST_INIT- %d", err_code); APP_ERROR_CHECK(err_code); err_code = fds_test_find_and_delete(); APP_ERROR_CHECK(err_code); while(count!=4000) { tmp = 280; read_sensor_data(0x02, 0,(uint8_t*)&tmp, sizeof(tmp)); tmp = (tmp/10); err_code =fds_test_write(tmp); APP_ERROR_CHECK(err_code); // nrf_delay_ms(2000); count++; } NRF_LOG_INFO("FDS_TEST_WRITE- %d", err_code); //wait until the write is finished. while (write_flag==0); err_code = fds_read(); NRF_LOG_INFO("FDS_TEST_READ- %d", err_code); APP_ERROR_CHECK(err_code); //{ // Reset rx buffer and transfer done flag // memset(m_rx_buf, 0, m_length); // spi_xfer_done = false; // APP_ERROR_CHECK(nrf_drv_spi_transfer(&spi, m_tx_buf, m_length, m_rx_buf, m_length)); //} // Start execution. NRF_LOG_INFO("Heart Rate Sensor Start!\r\n"); // application_timers_start(); advertising_start(); nrf_delay_ms(2000); // Enter main loop. for (;;) { if (NRF_LOG_PROCESS() == false) { power_manage(); } } }