

NORDICTECH WEBINARS

Understanding DECT NR+:

The first non-cellular

5G standard

Today's hosts

Heidi Sollie

Product Marketing Engineer

Lauri Piikivi

Technical Product Manager DECT NR+

Practicalities

- Duration: about 45 minutes
- Questions are encouraged!
 - Please type questions in the top of the right sidebar
 - All questions are anonymous
 - Try to keep them relevant to the topic
 - We will answer towards the end
- The chat is not anonymous, and do not use for questions
- Go to DevZone if you have more questions
- A recording of the webinar will be available together with the presentation at webinars.nordicsemi.com

Agenda

- NR+: What is it and why should I care?
- Targeted applications and benefits
- NR+: How?
 - Upper layers, no physical stuff
- Status of the standard
- Status of the Implementation
- Q&A

The What NR+, aka DECT-2020 NR

- O

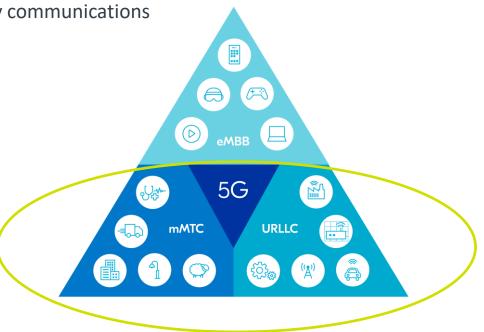
.....

HOW STANDARDS PROLIFERATE: (SEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC.)

SITUATION: THERE ARE 14 COMPETING STANDARDS.

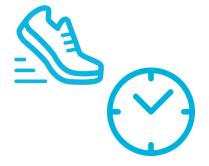
14?! RIDICULOUS! WE NEED TO DEVELOP ONE UNIVERSAL STANDARD THAT COVERS EVERYONE'S USE CASES. YEAH!

SITUATION: THERE ARE 15 COMPETING STANDARDS.



Targeted applications

Made for massive IoT networks and low latency communications


1. Massive IoT

- Networks of thousands of nodes
- Use case: Smart energy, smart city applications
- 2. Low latency communications
 - Latency 1 ms
 - Use case: Speech and audio, automation control

The benefits of NR+

Speed and latency

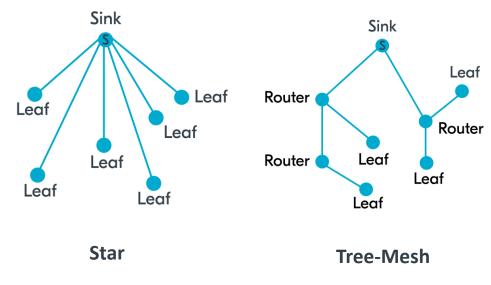
- Speed: 1 to 3.4 Mbps on HW, standard up to gigabits
- Latency: 1 ms on star, 10ms per hop minimum for mesh

Low-power

 Long sleep times for devices are possible

Mesh network

- Self healing
- Self load-balancing


Frequency spectrum

- Minimal cost of ownership
- No subscription costs
- Global spectrum 1900MHz, minimal regional variation
- Avoid congested 2.4GHz

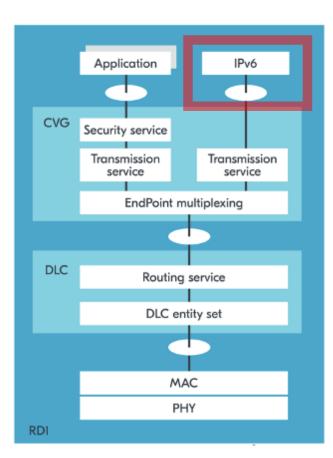
The How Diving into the protocol layers

Vocabulary

"A mesh network is a local area network topology in which the infrastructure nodes connect directly, dynamically and non-hierarchically to as many other nodes as possible and cooperate with one another to efficiently route data to and from clients." Wikipedia

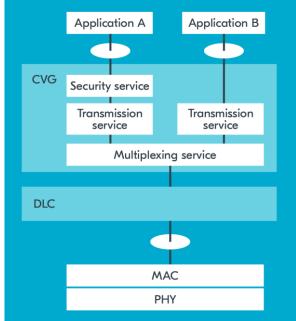
NR+ is a partial mesh, clustered tree topology

Synonyms

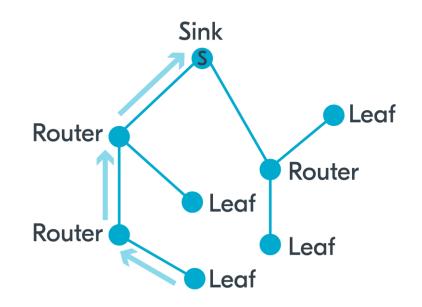

1. Sink = Gateway / Border Router

2. FT = Relay Node / Router Node / Parent Node

3. PT = Leaf Node / Node / Child Node

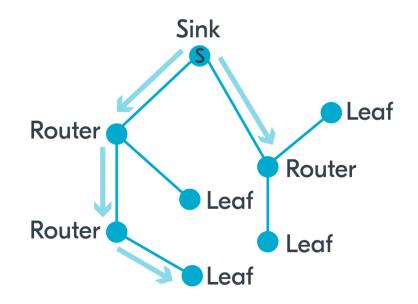

Network protocol layers

- Convergence (CVG) layer: Application multiplexing
- Data Link Control (DLC) layer: Routing, segmentation
- Medium Access Control (MAC) layer: Radio resource control
- Physical (PHY) layer: OFDM, HARQ, etc.

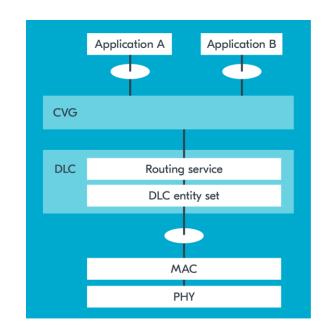

NR+: Convergence (CVG) layer And Data link control (DLC)

- CVG Provides application layer data identification and multiplexing between multiple applications
 - Mesh E2E security
- DLC provides transport service selection
 - 0 Transparent
 - 1 Segmentation
 - 2 ARQ
 - 3 Segmentation and ARQ
- DLC handles routing of packets

DLC: Network routing


- Up: To sink
 - Forward to parewnt until it reaches sink
- Sink can forward to internet

DLC: Network routing


Down: Flooding

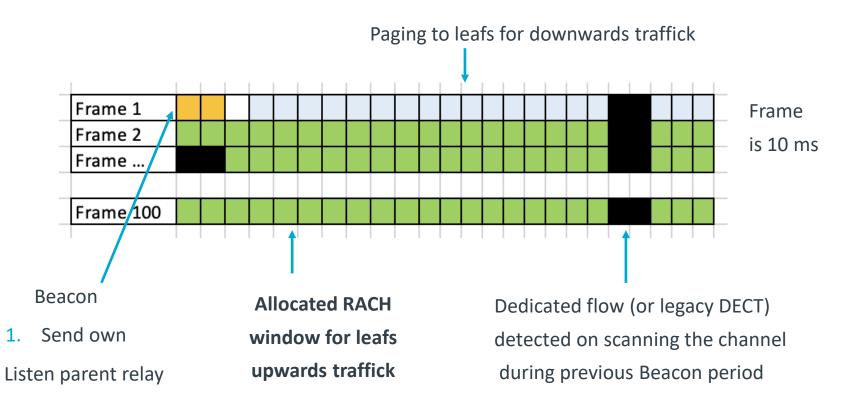
- From sink, forward to all child relays
- Relays forward to child relays
- Relay that has the destination as a direct leaf sends only to that leaf
- Flooding with hop limit also for Node-to-Node communication
- Routing is very resilient to changes in network
- Leafs moving to other Relays is instantenous

NR+: MAC layer

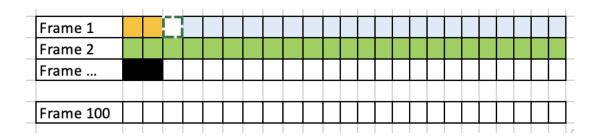
- Central, lots of features in MAC for the radio resource control
- Broadcast / multicast / unicast
- Dedicated resource or random access
- Radio addresses
 - 32bit network wide address
 - 16bit cluster (link) address
- Beacons for radio resource control
- Hybrid ARQ ACK/NACK to PHY

MAC: Radio Channel Resource Control (RRC)

Relay, a routing FT device, manages radio resource with Beacons


- Every beacon period need to scan channel, update reservations for next beacon
- Allocating TX time for leafs in beacons

Leaf follows relay beacon

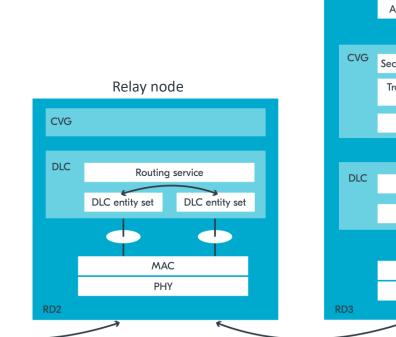

- Following the beacon avoids dedicated reservations, no scans needed
- Listen before talk on random access channel to relay

2.

RRC: Beacon is the basis

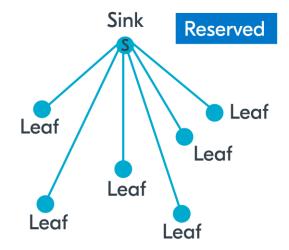
RRC: Power optimization of beacon

Extreme power save, low data, long latency


Beacon period can be from 10 ms to 32 secs

Moderate power save moderate data, low latency

Summary


Leaf node Application IPv6 CVG Security service Transmission Transmission service service EndPoint multiplexing DLC Routing service DLC entity set MAC PHY RDI

Sink node Application IPv6 Security service Transmission Transmission service service EndPoint multiplexing Routing service DLC entity set MAC PHY

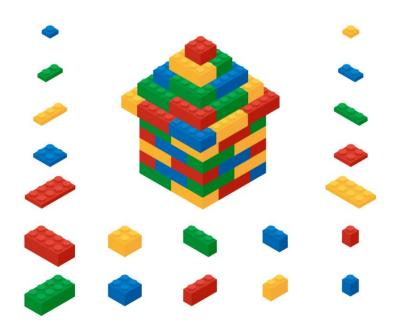
Dedicated flows

- leaf makes an association / modification stating the needed dedicated flow resource
 - How many slots, period, what is the validity period for reservation
- relay verifies the capacity exists and acknowledges
- Dedicated flow slots must be used, the data must be ready for sending at the reserved time
- Dedicated flow is over 1 link only

Status of the standard

 \bigcirc

0


 \bigcirc

 \bigcirc

Standard approach

DECT NR+ standard defines features

- Profile is the selection of features for specific application needs
- No general interop standard, application / device specific networks

(c) Lego, they are just great

Standard status

- Core standards are approved by ETSI and ITU, 24 February 2022, now version 1.4.1
 - Overview ETSI TS 103 636-1
 - Radio requirements
 ETSI TS 103 636-2
 - PHY ETSI TS 103 636-3
 - MAC ETSI TS 103 636-4
 - DLC and CVG ETSI TS 103 636-5
- Working on
- Harmonized test specification EN 301 406-2
- Application Profile, Metering TS 103 874
- Gathering requirements for Rel 2 update

Status of the implementation

 \bigcirc

0

 \bigcirc

 \bigcirc

Status of the implementation, as of April -23

- Nordic will release a DECT NR+ PHY SW Variant for nRF91 series end of 2023
- Our partner in standardization and development Wirepas has a full mesh stack solution on top of the Nordic PHY

 For audio and low latency communications Nordic is working with several early access customers

Learn more from Nordic – be self-driven

devzone.nordicsemi.com

academy.nordicsemi.com

webinars.nordicsemi.com

