Best practices for cellular IoT development

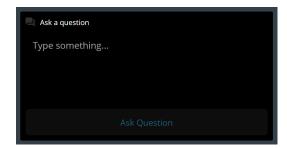
Nordic Tech Webinar

Bjørn Kvaale / Product Marketing Engineer

June 2022

Today's hosts

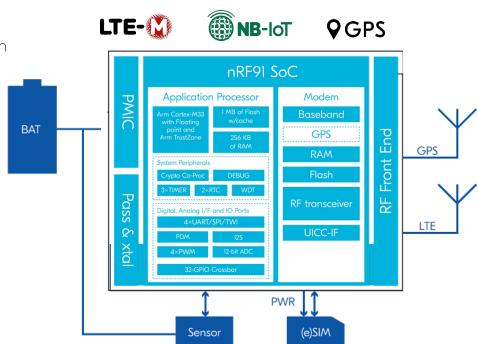
Bjørn Kvaale



Product Marketing Engineer

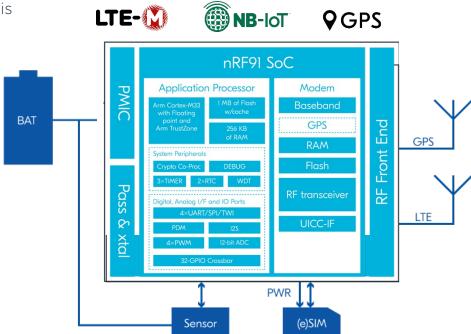
Practicalities

- Duration: 45 min presentation, 15 min Q&A
- Questions are encouraged!
 - Please type questions in the top of the right sidebar
 - All questions are anonymous
 - Try to keep them relevant to the topic
 - We will answer them towards the end
- The chat is not anonymous, and should not be used for questions
- Go to DevZone if you have more questions
- A recording of the webinar will be available together with the presentation at webinars.nordicsemi.com/on-demand

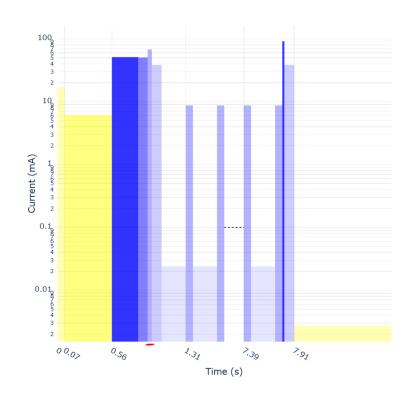

Agenda

- 1: Hardware Architecture
- 2: Low-power application design through radio focus
- 3: LTE technology
- 4: Network coverage and SIM cards
- 5: IP transport options
- 6: Security protocols
- 12: Antenna design

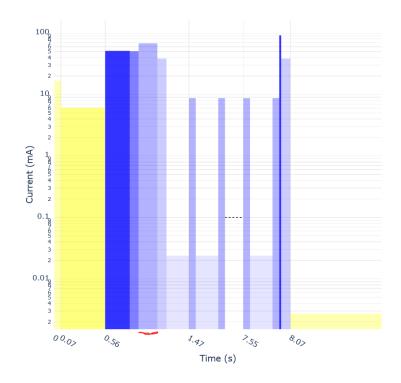
 Best Practices for Cellular IoT white paper (nWPO44) for Chapters 7-11


2: Hardware Architecture

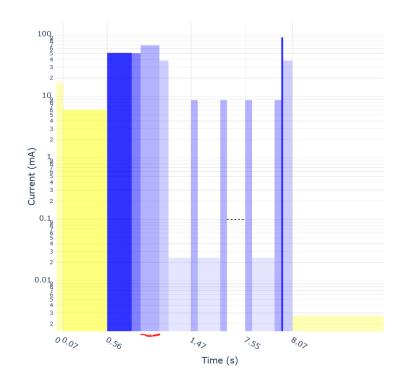
- Based on Nordic Dual Core SoC:
- Arm® Cortex® M33 processor for the application
- Multiband LTE-M/NB-IoT modem with GNSS
- Small form factor includes PMIC, RF FEM, passives and crystals
- Multiband support for global coverage
- Pre-certified System-in-Package (SiP)
 - More information on our website


2: Hardware Architecture

- Better technical support since the entire module is provided by one vendor
 - Nordic DevZone
- Can use the nRF9160 SiP in a single-chip implementation or as a serial modem
- <u>Serial LTE modem</u> application
 - Quickly transition from 2G or 3G to LTE-M/NB-IoT


3: Low-power app design through radio focus

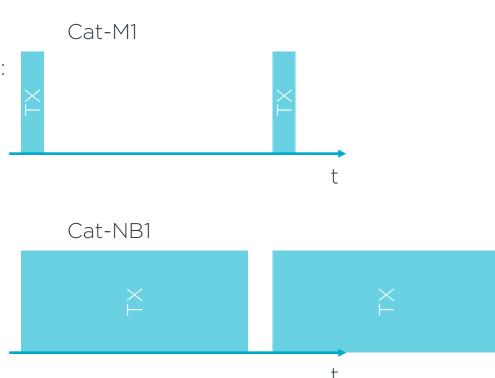
- LTE-M or NB-IoT, transport and application protocols, data transfer frequency and payload size influence power consumption
- Overhead for each cloud connection
 - Starting modem, connecting to network, app protocol headers, etc
- Online power profiler


3: Low-power app design through radio focus

- Value the data you send vs the cost of sending it!
- Local processing on nRF9160 SiP
 - Only transfer important information to the cloud
 - Bulk data transfer up to AI or ML (Edge Impulse with Thingy:91)

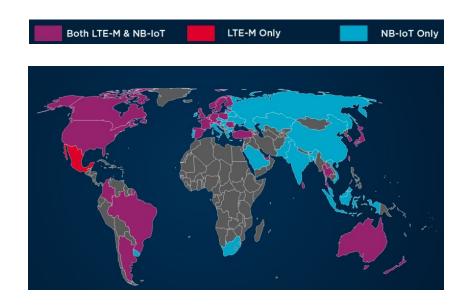
Sending 100 bytes vs 1000 bytes (bulk transfer)

- Value/cost=bytes sent/overhead charge (I*t)
- Sending 1000 bytes vs 100 bytes in one interval provides 10x the value/cost
- Key points
 - Only turn on the radio when necessary
- Send time-critical data immediately
- Send deferrable data in bulk transfers



4: LTE technology

Features	LTE-M	NB	-loT
Also known as	LTE CAT-M1, Enhanced Machine Type Communication (eMTC)	LTE Cat-NB1 (3GPP rel 13)	LTE Cat-NB2 (3GPP rel 14)
Bandwidth	1.4 MHz	200 kHz	200 kHz
Max throughput (DL/UL)	300/375 kbps	30/60 kbps	127/169 kbps
Latency	50-100ms	1.5-10s	
Typical range	<11 km	<15 km	<15 km
Mobility/cell reselection	Yes	No	Limited
Roaming	Yes	Limited	Limited
Deployment density	Up to 50 000 per cell	Up to 50 000 per cell	Up to 50 000 per cell
Battery lifetime	Up to 12 years ¹		


4: LTE technology

- Peak current Cat-M1 (TX, 23 dBm): 255-290 mA
- Peak current Cat-NB1 (TX, 23 dBm): 230-275 mA
- An nRF9160-based design using Cat-M1 uses less power than Cat-NB1 (good to reasonable radio conditions)

4: LTE technology

- Most operators support both Cat-M1 and Cat-NB1
 - Not the case in all countries though
- nRF9160 SiP SICA variant most popular
- Cat-M1 > Cat-NB1 unless you need high penetration or lower data throughput

GSMA Mobile IoT Deployment Map

5: Network coverage and SIM cards

- Is your product global or regional?
- You need an LPWAN SIM, not a regular 2G-4G SIM
- If deploying in multiple countries, a roaming SIM may be useful (<u>Cellular Connectivity Partners</u>)
- Roaming SIMs can be used on multiple networks where contracts have been negotiated

5: Network coverage and SIM cards

- Local SIMs may only work in specific regions
 - Can sign contracts with multiple operators, but this can be timeintensive
- Most local SIMs have eDRX/PSM features

- Roaming SIMs may be easier to use in global operation
- Roaming SIMs may not have eDRX/PSM features
 - Arkessa and iBasis have these features

6: IP transport options

Option	Advantages	Disadvantages
TCP/IP	Data retransmissions Congestion control In-order delivery Error detection	Slow handshake Larger overhead Repetition if data is not received Not suited for NB-IoT
UDP/IP	No handshake needed Better suited for low-power devices	Not guaranteed delivery Not all major cloud vendors support UDP yet
NIDD	Removes the IP overhead Network optimized	Not many networks support it Only supported on NB-IoT Not many cloud vendors support it

6: IP transport options

- Is ultra-low power and data cost a high priority in your design?
- Do you know which IP protocol your cloud service supports?

7: Security protocols

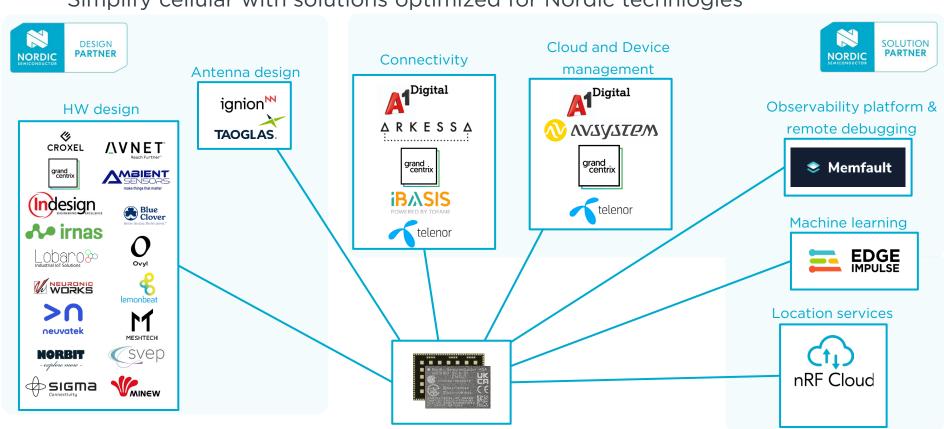
- TLS for TCP, DTLS for UDP on transport layer in modem firmware
- Adding TLS/DTLS increases data overhead
- Data authentication via a preshared key (PSK)
 - Less overhead than TLS/DTLS
- Trusted Firmware-M implements
 Platform Security Architecture
 (PSA)

7: Security protocols

- ARM® TrustZone®, ARM® TrustZone® CryptoCell®
- FOTA: <u>sign firmware images</u>
 before going to production
 - FOTA supported in <u>nRF Cloud</u>
- Considerations
 - Is ultra-low power and data cost high priority in your design?
 - Will you store keys on your device?

12: Antenna design recommendations

- Start antenna design ASAP! May be costly otherwise when you go to certify
 - Especially if you use LTE and GNSS
- nWP033 nRF9160 Antenna and RF Interface Guidelines
- Hardware files (layout and BOM) for <u>nRF9160 DK</u> and <u>Thingy:91</u> available
- Design partners (<u>Taoglas</u>, <u>Ignion</u>)



Key takeaways

- Read the <u>nWPO44 white paper</u> thoroughly!
- Data value versus data cost.
- Plan well, it will lead to less issues later
- Antenna design very important
- Use Nordic DevZone

Nordic Partner Program

Simplify cellular with solutions optimized for Nordic technlogies

Want to learn more?

- 8: Application protocols
- 9: Cloud services and connections
- 10: Local application processing
- 12: Certifications

Please check out the «Best practices guide for Cellular IoT development» (nWP044) white paper for more details

Get on it

- Sign up for more webinars at **webinars.nordicsemi.com**
- #2 Get tech support and join our community at devzone.nordicsemi.com
- #3 Find out more about our products and services at **nordicsemi.com**

