/* Copyright (c) 2012 Nordic Semiconductor. All Rights Reserved. * * The information contained herein is property of Nordic Semiconductor ASA. * Terms and conditions of usage are described in detail in NORDIC * SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT. * * Licensees are granted free, non-transferable use of the information. NO * WARRANTY of ANY KIND is provided. This heading must NOT be removed from * the file. * */ /** @file * * @defgroup ble_sdk_app_hids_keyboard_main main.c * @{ * @ingroup ble_sdk_app_hids_keyboard * @brief HID Keyboard Sample Application main file. * * This file contains is the source code for a sample application using the HID, Battery and Device * Information Services for implementing a simple keyboard functionality. * Pressing Button 0 will send text 'hello' to the connected peer. On receiving output report, * it toggles the state of LED 2 on the mother board based on whether or not Caps Lock is on. * This application uses the @ref app_scheduler. * * Also it would accept pairing requests from any peer device. */ #include #include #include "nordic_common.h" #include "nrf.h" #include "nrf_assert.h" #include "nrf_delay.h" #include "app_error.h" #include "nrf_gpio.h" #include "nrf51_bitfields.h" #include "ble.h" #include "ble_hci.h" #include "ble_srv_common.h" #include "ble_advdata.h" #include "ble_hids.h" #include "ble_bas.h" #include "ble_dis.h" #include "ble_conn_params.h" #include "bsp.h" #include "ble_sensorsim.h" #include "app_scheduler.h" #include "softdevice_handler.h" #include "app_timer.h" #include "app_gpiote.h" #include "device_manager.h" #include "app_button.h" #include "pstorage.h" #include "app_trace.h" #if BUTTONS_NUMBER <2 #error "Not enough resources on board" #endif #define IS_SRVC_CHANGED_CHARACT_PRESENT 0 /**< Include or not the service_changed characteristic. if not enabled, the server's database cannot be changed for the lifetime of the device*/ #define KEY_PRESS_BUTTON_ID 0 /**< Button used as Keyboard key press. */ #define BOND_DELETE_BUTTON_ID 1 /**< Button used for deleting all bonded centrals during startup. */ #define SHIFT_BUTTON_ID 1 /**< Button used as 'SHIFT' Key. */ #define DEVICE_NAME "Moonstone" /**< Name of device. Will be included in the advertising data. */ #define MANUFACTURER_NAME "NordicSemiconductor" /**< Manufacturer. Will be passed to Device Information Service. */ #define APP_TIMER_PRESCALER 0 /**< Value of the RTC1 PRESCALER register. */ #define APP_TIMER_MAX_TIMERS (4+BSP_APP_TIMERS_NUMBER) /**< Maximum number of simultaneously created timers. */ #define APP_TIMER_OP_QUEUE_SIZE 4 /**< Size of timer operation queues. */ #define BATTERY_LEVEL_MEAS_INTERVAL APP_TIMER_TICKS(2000, APP_TIMER_PRESCALER) /**< Battery level measurement interval (ticks). */ #define MIN_BATTERY_LEVEL 81 /**< Minimum simulated battery level. */ #define MAX_BATTERY_LEVEL 100 /**< Maximum simulated battery level. */ #define BATTERY_LEVEL_INCREMENT 1 /**< Increment between each simulated battery level measurement. */ #define PNP_ID_VENDOR_ID_SOURCE 0x02 /**< Vendor ID Source. */ #define PNP_ID_VENDOR_ID 0x1915 /**< Vendor ID. */ #define PNP_ID_PRODUCT_ID 0xEEEE /**< Product ID. */ #define PNP_ID_PRODUCT_VERSION 0x0001 /**< Product Version. */ #define APP_ADV_INTERVAL_FAST MSEC_TO_UNITS(25, UNIT_0_625_MS) /**< Fast advertising interval (25 ms.). */ #define APP_ADV_INTERVAL_SLOW MSEC_TO_UNITS(2000, UNIT_0_625_MS) /**< Slow advertising interval (2 seconds). */ #define APP_FAST_ADV_TIMEOUT 30 /**< The duration of the fast advertising period (in seconds). */ #define APP_SLOW_ADV_TIMEOUT 180 /**< The duration of the slow advertising period (in seconds). */ #define APP_DIRECTED_ADV_TIMEOUT 5 /**< number of direct advertisement (each lasting 1.28seconds). */ /*lint -emacro(524, MIN_CONN_INTERVAL) // Loss of precision */ #define MIN_CONN_INTERVAL MSEC_TO_UNITS(7.5, UNIT_1_25_MS) /**< Minimum connection interval (7.5 ms) */ #define MAX_CONN_INTERVAL MSEC_TO_UNITS(30, UNIT_1_25_MS) /**< Maximum connection interval (30 ms). */ #define SLAVE_LATENCY 6 /**< Slave latency. */ #define CONN_SUP_TIMEOUT MSEC_TO_UNITS(300, UNIT_10_MS) /**< Connection supervisory timeout (300 ms). */ #define FIRST_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(5000, APP_TIMER_PRESCALER) /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */ #define NEXT_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(30000, APP_TIMER_PRESCALER) /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */ #define MAX_CONN_PARAMS_UPDATE_COUNT 3 /**< Number of attempts before giving up the connection parameter negotiation. */ #define APP_GPIOTE_MAX_USERS 1 /**< Maximum number of users of the GPIOTE handler. */ #define BUTTON_DETECTION_DELAY APP_TIMER_TICKS(50, APP_TIMER_PRESCALER) /**< Delay from a GPIOTE event until a button is reported as pushed (in number of timer ticks). */ #define SEC_PARAM_TIMEOUT 30 /**< Timeout for Pairing Request or Security Request (in seconds). */ #define SEC_PARAM_BOND 1 /**< Perform bonding. */ #define SEC_PARAM_MITM 0 /**< Man In The Middle protection not required. */ #define SEC_PARAM_IO_CAPABILITIES BLE_GAP_IO_CAPS_NONE /**< No I/O capabilities. */ #define SEC_PARAM_OOB 0 /**< Out Of Band data not available. */ #define SEC_PARAM_MIN_KEY_SIZE 7 /**< Minimum encryption key size. */ #define SEC_PARAM_MAX_KEY_SIZE 16 /**< Maximum encryption key size. */ #define OUTPUT_REPORT_INDEX 0 /**< Index of Output Report. */ #define OUTPUT_REPORT_MAX_LEN 1 /**< Maximum length of Output Report. */ #define INPUT_REPORT_KEYS_INDEX 0 /**< Index of Input Report. */ #define INPUT_REPORT_CONS_INDEX 1 //Consumer Index #define OUTPUT_REPORT_BIT_MASK_CAPS_LOCK 0x02 /**< CAPS LOCK bit in Output Report (based on 'LED Page (0x08)' of the Universal Serial Bus HID Usage Tables). */ //2015 change!! #define INPUT_REP_REF_ID 1 /**< Id of reference to Keyboard Input Report. */ //0 -> 1 #define INPUT_REP_CON_ID 2 //consumer ID #define OUTPUT_REP_REF_ID 0 /**< Id of reference to Keyboard Output Report. */ #define MAX_BUFFER_ENTRIES 5 /**< Number of elements that can be enqueued */ #define BASE_USB_HID_SPEC_VERSION 0x0101 /**< Version number of base USB HID Specification implemented by this application. */ #define INPUT_REPORT_KEYS_MAX_LEN 8 /**< Maximum length of the Input Report characteristic. */ #define INPUT_REPORT_VOLU_MAX_LEN 1 //Consumer Vol data arrayut Report characteristic. */ #define DEAD_BEEF 0xDEADBEEF /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */ #define SCHED_MAX_EVENT_DATA_SIZE MAX(APP_TIMER_SCHED_EVT_SIZE,\ BLE_STACK_HANDLER_SCHED_EVT_SIZE) /**< Maximum size of scheduler events. */ #define SCHED_QUEUE_SIZE 10 /**< Maximum number of events in the scheduler queue. */ #define MODIFIER_KEY_POS 0 /**< Position of the modifier byte in the Input Report. */ #define SCAN_CODE_POS 2 /**< This macro indicates the start position of the key scan code in a HID Report. As per the document titled 'Device Class Definition for Human Interface Devices (HID) V1.11, each report shall have one modifier byte followed by a reserved constant byte and then the key scan code. */ #define SHIFT_KEY_CODE 0x02 /**< Key code indicating the press of the Shift Key. */ #define MAX_KEYS_IN_ONE_REPORT (INPUT_REPORT_KEYS_MAX_LEN - SCAN_CODE_POS) /**< Maximum number of key presses that can be sent in one Input Report. */ ////2015 iPhone App #define S_NOT_CONN 0 #define S_CAMERA 1 //for volume trigger #define S_MUSIC 2 //for up / down key #define S_DEFAULT S_CAMERA static int App_state = S_NOT_CONN ; /**Buffer queue access macros * * @{ */ /** Initialization of buffer list */ #define BUFFER_LIST_INIT() \ do \ { \ buffer_list.rp = 0; \ buffer_list.wp = 0; \ buffer_list.count = 0; \ } while (0) /** Provide status of data list is full or not */ #define BUFFER_LIST_FULL()\ ((MAX_BUFFER_ENTRIES == buffer_list.count - 1) ? true : false) /** Provides status of buffer list is empty or not */ #define BUFFER_LIST_EMPTY()\ ((0 == buffer_list.count) ? true : false) #define BUFFER_ELEMENT_INIT(i)\ do \ { \ buffer_list.buffer[(i)].p_data = NULL; \ } while (0) /** @} */ typedef enum { BLE_NO_ADV, /**< No advertising running. */ BLE_DIRECTED_ADV, /**< Direct advertising to the latest central. */ BLE_FAST_ADV_WHITELIST, /**< Advertising with whitelist. */ BLE_FAST_ADV, /**< Fast advertising running. */ BLE_SLOW_ADV, /**< Slow advertising running. */ BLE_SLEEP, /**< Go to system-off. */ } ble_advertising_mode_t; /** Abstracts buffer element */ typedef struct hid_key_buffer { uint8_t data_offset; /**< Max Data that can be buffered for all entries */ uint8_t data_len; /**< Total length of data */ uint8_t * p_data; /**< Scanned key pattern */ ble_hids_t * p_instance; /**< Identifies peer and service instance */ }buffer_entry_t; STATIC_ASSERT(sizeof(buffer_entry_t) % 4 == 0); /** Circular buffer list */ typedef struct { buffer_entry_t buffer[MAX_BUFFER_ENTRIES]; /**< Maximum number of entries that can enqueued in the list */ uint8_t rp; /**< Index to the read location */ uint8_t wp; /**< Index to write location */ uint8_t count; /**< Number of elements in the list */ }buffer_list_t; STATIC_ASSERT(sizeof(buffer_list_t) % 4 == 0); static ble_hids_t m_hids; /**< Structure used to identify the HID service. */ static ble_bas_t m_bas; /**< Structure used to identify the battery service. */ static bool m_in_boot_mode = false; /**< Current protocol mode. */ static ble_sensorsim_cfg_t m_battery_sim_cfg; /**< Battery Level sensor simulator configuration. */ static ble_sensorsim_state_t m_battery_sim_state; /**< Battery Level sensor simulator state. */ static app_timer_id_t m_battery_timer_id; /**< Battery timer. */ static uint8_t m_advertising_mode; /**< Variable to keep track of when we are advertising. */ static dm_application_instance_t m_app_handle; /**< Application identifier allocated by device manager. */ static dm_handle_t m_bonded_peer_handle; /**< Device reference handle to the current bonded central. */ static uint8_t m_direct_adv_cnt; /**< Counter of direct advertisements. */ static bool m_caps_on = false; /**< Variable to indicate if Caps Lock is turned on. */ static ble_gap_addr_t m_ble_addr; /**< Variable for getting and setting of BLE device address. */ static bool m_memory_access_in_progress = false; /**< Flag to keep track of ongoing operations on persistent memory. */ static uint8_t m_sample_key_press_scan_str[] = /**< Key pattern to be sent when the key press button has been pushed. */ { 0x51, /* Key h 0x0b => Down key*/ 0x50 /* Key e 0x08 => Up key*/ //0x10, /* Key l 0x0f*/ //0x20, /* Key l 0x0f*/ //0x10, /* Key o 0x12*/ //0x20 /* Key Return 0x28*/ }; static uint8_t m_caps_on_key_scan_str[] = /**< Key pattern to be sent when the output report has been written with the CAPS LOCK bit set. */ { 0x06, /* Key C */ 0x04, /* Key a */ 0x13, /* Key p */ 0x16, /* Key s */ 0x12, /* Key o */ 0x11, /* Key n */ }; static uint8_t m_caps_off_key_scan_str[] = /**< Key pattern to be sent when the output report has been written with the CAPS LOCK bit cleared. */ { 0x06, /* Key C */ 0x04, /* Key a */ 0x13, /* Key p */ 0x16, /* Key s */ 0x12, /* Key o */ 0x09, /* Key f */ }; // added!! void nrf_delay_ms(uint32_t volatile number_of_ms) { while(number_of_ms != 0) { number_of_ms--; nrf_delay_us(999); } } void Send_OK_LED(uint32_t tt){ nrf_gpio_pin_set(ADVERTISING_LED_PIN_NO); //added : LED on nrf_delay_ms(tt); nrf_gpio_pin_clear(ADVERTISING_LED_PIN_NO); //added : LED off } /** List to enqueue not just data to be sent, but also related information like the handle, connection handle etc */ static buffer_list_t buffer_list; static void on_hids_evt(ble_hids_t * p_hids, ble_hids_evt_t * p_evt); /**@brief Callback function for asserts in the SoftDevice. * * @details This function will be called in case of an assert in the SoftDevice. * * @warning This handler is an example only and does not fit a final product. You need to analyze * how your product is supposed to react in case of Assert. * @warning On assert from the SoftDevice, the system can only recover on reset. * * @param[in] line_num Line number of the failing ASSERT call. * @param[in] file_name File name of the failing ASSERT call. */ void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name) { app_error_handler(DEAD_BEEF, line_num, p_file_name); } static void vol_media_send(uint8_t bMedia) { uint32_t err_code; if (m_in_boot_mode) { } else { uint8_t buffer[INPUT_REPORT_VOLU_MAX_LEN]; APP_ERROR_CHECK_BOOL(INPUT_REPORT_VOLU_MAX_LEN == 1); buffer[0] = bMedia; err_code = ble_hids_inp_rep_send(&m_hids, INPUT_REPORT_CONS_INDEX, INPUT_REPORT_VOLU_MAX_LEN, buffer); } if ( (err_code != NRF_SUCCESS) && (err_code != NRF_ERROR_INVALID_STATE) && (err_code != BLE_ERROR_NO_TX_BUFFERS) && (err_code != BLE_ERROR_GATTS_SYS_ATTR_MISSING) ) { APP_ERROR_HANDLER(err_code); } else if(bMedia) Send_OK_LED(45); } /**@brief Function for handling Service errors. * * @details A pointer to this function will be passed to each service which may need to inform the * application about an error. * * @param[in] nrf_error Error code containing information about what went wrong. */ static void service_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } /**@brief Function for performing a battery measurement, and update the Battery Level characteristic in the Battery Service. */ static void battery_level_update(void) { uint32_t err_code; uint8_t battery_level; battery_level = (uint8_t)ble_sensorsim_measure(&m_battery_sim_state, &m_battery_sim_cfg); err_code = ble_bas_battery_level_update(&m_bas, battery_level); if ((err_code != NRF_SUCCESS) && (err_code != NRF_ERROR_INVALID_STATE) && (err_code != BLE_ERROR_NO_TX_BUFFERS) && (err_code != BLE_ERROR_GATTS_SYS_ATTR_MISSING) ) { APP_ERROR_HANDLER(err_code); } } /**@brief Function for handling the Battery measurement timer timeout. * * @details This function will be called each time the battery level measurement timer expires. * * @param[in] p_context Pointer used for passing some arbitrary information (context) from the * app_start_timer() call to the timeout handler. */ static void battery_level_meas_timeout_handler(void * p_context) { UNUSED_PARAMETER(p_context); battery_level_update(); } /**@brief Function for the Timer initialization. * * @details Initializes the timer module. */ static void timers_init(void) { uint32_t err_code; // Initialize timer module, making it use the scheduler. APP_TIMER_INIT(APP_TIMER_PRESCALER, APP_TIMER_MAX_TIMERS, APP_TIMER_OP_QUEUE_SIZE, true); // Create battery timer. err_code = app_timer_create(&m_battery_timer_id, APP_TIMER_MODE_REPEATED, battery_level_meas_timeout_handler); APP_ERROR_CHECK(err_code); } /**@brief Function for the GAP initialization. * * @details This function sets up all the necessary GAP (Generic Access Profile) parameters of the * device including the device name, appearance, and the preferred connection parameters. */ static void gap_params_init(void) { uint32_t err_code; ble_gap_conn_params_t gap_conn_params; ble_gap_conn_sec_mode_t sec_mode; BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode); err_code = sd_ble_gap_device_name_set(&sec_mode, (const uint8_t *)DEVICE_NAME, strlen(DEVICE_NAME)); APP_ERROR_CHECK(err_code); err_code = sd_ble_gap_appearance_set(BLE_APPEARANCE_HID_KEYBOARD); APP_ERROR_CHECK(err_code); memset(&gap_conn_params, 0, sizeof(gap_conn_params)); gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL; gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL; gap_conn_params.slave_latency = SLAVE_LATENCY; gap_conn_params.conn_sup_timeout = CONN_SUP_TIMEOUT; err_code = sd_ble_gap_ppcp_set(&gap_conn_params); APP_ERROR_CHECK(err_code); } /**@brief Function for initializing the Advertising functionality. * * @details Encodes the required advertising data and passes it to the stack. * Also builds a structure to be passed to the stack when starting advertising. * * @param[in] adv_flags Indicates which type of advertisement to use, see @ref BLE_GAP_DISC_MODES. */ static void advertising_init(uint8_t adv_flags) { uint32_t err_code; ble_advdata_t advdata; ble_uuid_t adv_uuids[] = { { BLE_UUID_HUMAN_INTERFACE_DEVICE_SERVICE, BLE_UUID_TYPE_BLE } }; err_code = sd_ble_gap_address_get(&m_ble_addr); APP_ERROR_CHECK(err_code); err_code = sd_ble_gap_address_set(BLE_GAP_ADDR_CYCLE_MODE_NONE, &m_ble_addr); APP_ERROR_CHECK(err_code); // Build and set advertising data memset(&advdata, 0, sizeof(advdata)); advdata.name_type = BLE_ADVDATA_FULL_NAME; advdata.include_appearance = true; advdata.flags.size = sizeof(adv_flags); advdata.flags.p_data = &adv_flags; advdata.uuids_complete.uuid_cnt = sizeof(adv_uuids) / sizeof(adv_uuids[0]); advdata.uuids_complete.p_uuids = adv_uuids; err_code = ble_advdata_set(&advdata, NULL); APP_ERROR_CHECK(err_code); } /**@brief Function for initializing Device Information Service. */ static void dis_init(void) { uint32_t err_code; ble_dis_init_t dis_init_obj; ble_dis_pnp_id_t pnp_id; pnp_id.vendor_id_source = PNP_ID_VENDOR_ID_SOURCE; pnp_id.vendor_id = PNP_ID_VENDOR_ID; pnp_id.product_id = PNP_ID_PRODUCT_ID; pnp_id.product_version = PNP_ID_PRODUCT_VERSION; memset(&dis_init_obj, 0, sizeof(dis_init_obj)); ble_srv_ascii_to_utf8(&dis_init_obj.manufact_name_str, MANUFACTURER_NAME); dis_init_obj.p_pnp_id = &pnp_id; BLE_GAP_CONN_SEC_MODE_SET_ENC_NO_MITM(&dis_init_obj.dis_attr_md.read_perm); BLE_GAP_CONN_SEC_MODE_SET_NO_ACCESS(&dis_init_obj.dis_attr_md.write_perm); err_code = ble_dis_init(&dis_init_obj); APP_ERROR_CHECK(err_code); } /**@brief Function for initializing Battery Service. */ static void bas_init(void) { uint32_t err_code; ble_bas_init_t bas_init_obj; memset(&bas_init_obj, 0, sizeof(bas_init_obj)); bas_init_obj.evt_handler = NULL; bas_init_obj.support_notification = true; bas_init_obj.p_report_ref = NULL; bas_init_obj.initial_batt_level = 100; BLE_GAP_CONN_SEC_MODE_SET_ENC_NO_MITM(&bas_init_obj.battery_level_char_attr_md.cccd_write_perm); BLE_GAP_CONN_SEC_MODE_SET_ENC_NO_MITM(&bas_init_obj.battery_level_char_attr_md.read_perm); BLE_GAP_CONN_SEC_MODE_SET_NO_ACCESS(&bas_init_obj.battery_level_char_attr_md.write_perm); BLE_GAP_CONN_SEC_MODE_SET_ENC_NO_MITM(&bas_init_obj.battery_level_report_read_perm); err_code = ble_bas_init(&m_bas, &bas_init_obj); APP_ERROR_CHECK(err_code); } /**@brief Function for initializing HID Service. */ static void hids_init(void) { uint32_t err_code; ble_hids_init_t hids_init_obj; ble_hids_inp_rep_init_t input_report_array[2]; ble_hids_inp_rep_init_t * p_input_report; ble_hids_outp_rep_init_t output_report_array[1]; ble_hids_outp_rep_init_t * p_output_report; uint8_t hid_info_flags; memset((void *)input_report_array, 0, sizeof(ble_hids_inp_rep_init_t)); memset((void *)output_report_array, 0, sizeof(ble_hids_outp_rep_init_t)); static uint8_t report_map_data[] = { 0x05, 0x01, // Usage Page (Generic Desktop) 0x09, 0x06, // Usage (Keyboard) 0xA1, 0x01, // Collection (Application) 0x85, 0x01, // Report Id (1) 0x05, 0x07, // Usage Page (Key Codes) 0x19, 0xe0, // Usage Minimum (224) 0x29, 0xe7, // Usage Maximum (231) 0x15, 0x00, // Logical Minimum (0) 0x25, 0x01, // Logical Maximum (1) 0x75, 0x01, // Report Size (1 bit) 0x95, 0x08, // Report Count (8) 0x81, 0x02, // Input (Data, Variable, Absolute) 0x95, 0x01, // Report Count (1) 0x75, 0x08, // Report Size (8) 0x81, 0x01, // Input (Constant) reserved byte(1) 0x95, 0x05, // Report Count (5) 0x75, 0x01, // Report Size (1) 0x05, 0x08, // Usage Page (Page# for LEDs) 0x19, 0x01, // Usage Minimum (1) 0x29, 0x05, // Usage Maximum (5) 0x91, 0x02, // Output (Data, Variable, Absolute), Led report 0x95, 0x01, // Report Count (1) 0x75, 0x03, // Report Size (3) 0x91, 0x01, // Output (Data, Variable, Absolute), Led report padding 0x95, 0x06, // Report Count (6) 0x75, 0x08, // Report Size (8) 0x15, 0x00, // Logical Minimum (0) 0x25, 0x65, // Logical Maximum (101) 0x05, 0x07, // Usage Page (Key codes) 0x19, 0x00, // Usage Minimum (0) 0x29, 0x65, // Usage Maximum (101) 0x81, 0x00, // Input (Data, Array) Key array(6 bytes) 0xC0, // End Collection (Application) //Volume 0x05, 0x0C, // Usage Page (Consumer) 0x09, 0x01, // Usage (Consumer Control) 0xA1, 0x01, // Collection (Application) 0x85, 0x02, // Report Id (2) 0x15, 0x00, // Logical minimum (0) 0x25, 0x01, // Logical maximum (1) 0x75, 0x01, // Report Size (1) 0x95, 0x01, // Report Count (1) 0x09, 0xCD, // Usage (Play/Pause) 0x81, 0x06, // Input (Data,Value,Relative,Bit Field) 0x0A, 0x83, 0x01, // Usage (AL Consumer Control Configuration) 0x81, 0x06, // Input (Data,Value,Relative,Bit Field) 0x09, 0xB5, // Usage (Scan Next Track) 0x81, 0x06, // Input (Data,Value,Relative,Bit Field) 0x09, 0xB6, // Usage (Scan Previous Track) 0x81, 0x06, // Input (Data,Value,Relative,Bit Field) 0x09, 0xEA, // Usage (Volume Down) 0x81, 0x06, // Input (Data,Value,Relative,Bit Field) 0x09, 0xE9, // Usage (Volume Up) 0x81, 0x06, // Input (Data,Value,Relative,Bit Field) 0x0A, 0x25, 0x02, // Usage (AC Forward) 0x81, 0x06, // Input (Data,Value,Relative,Bit Field) 0x0A, 0x24, 0x02, // Usage (AC Back) 0x81, 0x06, // Input (Data,Value,Relative,Bit Field) 0xC0 // End Collection }; // Initialize HID Service p_input_report = &input_report_array[INPUT_REPORT_KEYS_INDEX]; p_input_report->max_len = INPUT_REPORT_KEYS_MAX_LEN; p_input_report->rep_ref.report_id = INPUT_REP_REF_ID; p_input_report->rep_ref.report_type = BLE_HIDS_REP_TYPE_INPUT; BLE_GAP_CONN_SEC_MODE_SET_ENC_NO_MITM(&p_input_report->security_mode.cccd_write_perm); BLE_GAP_CONN_SEC_MODE_SET_ENC_NO_MITM(&p_input_report->security_mode.read_perm); BLE_GAP_CONN_SEC_MODE_SET_ENC_NO_MITM(&p_input_report->security_mode.write_perm); // 2015 p_input_report = &input_report_array[INPUT_REPORT_CONS_INDEX]; p_input_report->max_len = INPUT_REPORT_VOLU_MAX_LEN; p_input_report->rep_ref.report_id = INPUT_REP_CON_ID; p_input_report->rep_ref.report_type = BLE_HIDS_REP_TYPE_INPUT; BLE_GAP_CONN_SEC_MODE_SET_ENC_NO_MITM(&p_input_report->security_mode.cccd_write_perm); BLE_GAP_CONN_SEC_MODE_SET_ENC_NO_MITM(&p_input_report->security_mode.read_perm); BLE_GAP_CONN_SEC_MODE_SET_ENC_NO_MITM(&p_input_report->security_mode.write_perm); // p_output_report = &output_report_array[OUTPUT_REPORT_INDEX]; p_output_report->max_len = OUTPUT_REPORT_MAX_LEN; p_output_report->rep_ref.report_id = OUTPUT_REP_REF_ID; p_output_report->rep_ref.report_type = BLE_HIDS_REP_TYPE_OUTPUT; BLE_GAP_CONN_SEC_MODE_SET_ENC_NO_MITM(&p_output_report->security_mode.read_perm); BLE_GAP_CONN_SEC_MODE_SET_ENC_NO_MITM(&p_output_report->security_mode.write_perm); hid_info_flags = HID_INFO_FLAG_REMOTE_WAKE_MSK | HID_INFO_FLAG_NORMALLY_CONNECTABLE_MSK; memset(&hids_init_obj, 0, sizeof(hids_init_obj)); hids_init_obj.evt_handler = on_hids_evt; hids_init_obj.error_handler = service_error_handler; hids_init_obj.is_kb = true; hids_init_obj.is_mouse = false; hids_init_obj.inp_rep_count = 2; hids_init_obj.p_inp_rep_array = input_report_array; hids_init_obj.outp_rep_count = 1; hids_init_obj.p_outp_rep_array = output_report_array; hids_init_obj.feature_rep_count = 0; hids_init_obj.p_feature_rep_array = NULL; hids_init_obj.rep_map.data_len = sizeof(report_map_data); hids_init_obj.rep_map.p_data = report_map_data; hids_init_obj.hid_information.bcd_hid = BASE_USB_HID_SPEC_VERSION; hids_init_obj.hid_information.b_country_code = 0; hids_init_obj.hid_information.flags = hid_info_flags; hids_init_obj.included_services_count = 0; hids_init_obj.p_included_services_array = NULL; BLE_GAP_CONN_SEC_MODE_SET_ENC_NO_MITM(&hids_init_obj.rep_map.security_mode.read_perm); BLE_GAP_CONN_SEC_MODE_SET_NO_ACCESS(&hids_init_obj.rep_map.security_mode.write_perm); BLE_GAP_CONN_SEC_MODE_SET_ENC_NO_MITM(&hids_init_obj.hid_information.security_mode.read_perm); BLE_GAP_CONN_SEC_MODE_SET_NO_ACCESS(&hids_init_obj.hid_information.security_mode.write_perm); BLE_GAP_CONN_SEC_MODE_SET_ENC_NO_MITM( &hids_init_obj.security_mode_boot_kb_inp_rep.cccd_write_perm); BLE_GAP_CONN_SEC_MODE_SET_ENC_NO_MITM(&hids_init_obj.security_mode_boot_kb_inp_rep.read_perm); BLE_GAP_CONN_SEC_MODE_SET_NO_ACCESS(&hids_init_obj.security_mode_boot_kb_inp_rep.write_perm); BLE_GAP_CONN_SEC_MODE_SET_ENC_NO_MITM(&hids_init_obj.security_mode_boot_kb_outp_rep.read_perm); BLE_GAP_CONN_SEC_MODE_SET_ENC_NO_MITM(&hids_init_obj.security_mode_boot_kb_outp_rep.write_perm); BLE_GAP_CONN_SEC_MODE_SET_ENC_NO_MITM(&hids_init_obj.security_mode_protocol.read_perm); BLE_GAP_CONN_SEC_MODE_SET_ENC_NO_MITM(&hids_init_obj.security_mode_protocol.write_perm); BLE_GAP_CONN_SEC_MODE_SET_NO_ACCESS(&hids_init_obj.security_mode_ctrl_point.read_perm); BLE_GAP_CONN_SEC_MODE_SET_ENC_NO_MITM(&hids_init_obj.security_mode_ctrl_point.write_perm); err_code = ble_hids_init(&m_hids, &hids_init_obj); APP_ERROR_CHECK(err_code); } /**@brief Function for initializing services that will be used by the application. */ static void services_init(void) { dis_init(); bas_init(); hids_init(); } /**@brief Function for initializing the battery sensor simulator. */ static void sensor_sim_init(void) { m_battery_sim_cfg.min = MIN_BATTERY_LEVEL; m_battery_sim_cfg.max = MAX_BATTERY_LEVEL; m_battery_sim_cfg.incr = BATTERY_LEVEL_INCREMENT; m_battery_sim_cfg.start_at_max = true; ble_sensorsim_init(&m_battery_sim_state, &m_battery_sim_cfg); } /**@brief Function for handling a Connection Parameters error. * * @param[in] nrf_error Error code containing information about what went wrong. */ static void conn_params_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } /**@brief Function for initializing the Connection Parameters module. */ static void conn_params_init(void) { uint32_t err_code; ble_conn_params_init_t cp_init; memset(&cp_init, 0, sizeof(cp_init)); cp_init.p_conn_params = NULL; cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY; cp_init.next_conn_params_update_delay = NEXT_CONN_PARAMS_UPDATE_DELAY; cp_init.max_conn_params_update_count = MAX_CONN_PARAMS_UPDATE_COUNT; cp_init.start_on_notify_cccd_handle = BLE_GATT_HANDLE_INVALID; cp_init.disconnect_on_fail = false; cp_init.evt_handler = NULL; cp_init.error_handler = conn_params_error_handler; err_code = ble_conn_params_init(&cp_init); APP_ERROR_CHECK(err_code); } /**@brief Function for starting timers. */ static void timers_start(void) { uint32_t err_code; err_code = app_timer_start(m_battery_timer_id, BATTERY_LEVEL_MEAS_INTERVAL, NULL); APP_ERROR_CHECK(err_code); } /**@brief Function for starting advertising. */ static void advertising_start(void) { uint32_t err_code; ble_gap_adv_params_t adv_params; ble_gap_whitelist_t whitelist; ble_gap_addr_t peer_address; uint32_t count; // Verify if there is any flash access pending, if yes delay starting advertising until // it's complete. err_code = pstorage_access_status_get(&count); APP_ERROR_CHECK(err_code); if (count != 0) { m_memory_access_in_progress = true; return; } // Initialize advertising parameters with defaults values memset(&adv_params, 0, sizeof(adv_params)); adv_params.type = BLE_GAP_ADV_TYPE_ADV_IND; adv_params.p_peer_addr = NULL; adv_params.fp = BLE_GAP_ADV_FP_ANY; adv_params.p_whitelist = NULL; // Configure advertisement according to current advertising state. if (m_advertising_mode == BLE_DIRECTED_ADV) { err_code = dm_peer_addr_get(&m_bonded_peer_handle, &peer_address); if (err_code != NRF_SUCCESS) { m_advertising_mode = BLE_FAST_ADV_WHITELIST; } } switch (m_advertising_mode) { case BLE_NO_ADV: m_advertising_mode = BLE_FAST_ADV_WHITELIST; // Fall through. case BLE_FAST_ADV_WHITELIST: { ble_gap_addr_t * p_whitelist_addr[BLE_GAP_WHITELIST_ADDR_MAX_COUNT]; ble_gap_irk_t * p_whitelist_irk[BLE_GAP_WHITELIST_IRK_MAX_COUNT]; whitelist.addr_count = BLE_GAP_WHITELIST_ADDR_MAX_COUNT; whitelist.irk_count = BLE_GAP_WHITELIST_IRK_MAX_COUNT; whitelist.pp_addrs = p_whitelist_addr; whitelist.pp_irks = p_whitelist_irk; err_code = dm_whitelist_create(&m_app_handle, &whitelist); APP_ERROR_CHECK(err_code); if ((whitelist.addr_count != 0) || (whitelist.irk_count != 0)) { adv_params.fp = BLE_GAP_ADV_FP_FILTER_CONNREQ; adv_params.p_whitelist = &whitelist; advertising_init(BLE_GAP_ADV_FLAG_BR_EDR_NOT_SUPPORTED); m_advertising_mode = BLE_FAST_ADV; } else { m_advertising_mode = BLE_SLOW_ADV; } err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING_WHITELIST); APP_ERROR_CHECK(err_code); adv_params.interval = APP_ADV_INTERVAL_FAST; adv_params.timeout = APP_FAST_ADV_TIMEOUT; break; } case BLE_DIRECTED_ADV: adv_params.p_peer_addr = &peer_address; adv_params.type = BLE_GAP_ADV_TYPE_ADV_DIRECT_IND; adv_params.timeout = 0; m_direct_adv_cnt--; if (m_direct_adv_cnt == 0) { m_advertising_mode = BLE_FAST_ADV_WHITELIST; } err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING_DIRECTED); APP_ERROR_CHECK(err_code); break; case BLE_FAST_ADV: advertising_init(BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE); adv_params.interval = APP_ADV_INTERVAL_FAST; adv_params.timeout = APP_FAST_ADV_TIMEOUT; m_advertising_mode = BLE_SLOW_ADV; err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING); APP_ERROR_CHECK(err_code); break; case BLE_SLOW_ADV: advertising_init(BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE); adv_params.interval = APP_ADV_INTERVAL_SLOW; adv_params.timeout = APP_SLOW_ADV_TIMEOUT; m_advertising_mode = BLE_SLEEP; err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING_SLOW); APP_ERROR_CHECK(err_code); break; default: // No implementation needed. break; } // Start advertising. err_code = sd_ble_gap_adv_start(&adv_params); APP_ERROR_CHECK(err_code); } /** @brief Function for checking if the Shift key is pressed. * * @returns true if the SHIFT_BUTTON is pressed. false otherwise. */ static bool is_shift_key_pressed(void) { bool result; uint32_t err_code = bsp_button_is_pressed(SHIFT_BUTTON_ID,&result); APP_ERROR_CHECK(err_code); return result; } /**@brief Function for transmitting a key scan Press & Release Notification. * * @warning This handler is an example only. You need to analyze how you wish to send the key * release. * * @param[in] p_instance Identifies the service for which Key Notifications are requested. * @param[in] p_key_pattern Pointer to key pattern. * @param[in] pattern_len Length of key pattern. 0 < pattern_len < 7. * @param[in] pattern_offset Offset applied to Key Pattern for transmission. * @param[out] actual_len Provides actual length of Key Pattern transmitted, making buffering of * rest possible if needed. * @return NRF_SUCCESS on success, BLE_ERROR_NO_TX_BUFFERS in case transmission could not be * completed due to lack of transmission buffer or other error codes indicating reason * for failure. * * @note In case of BLE_ERROR_NO_TX_BUFFERS, remaining pattern that could not be transmitted * can be enqueued \ref buffer_enqueue function. * In case a pattern of 'cofFEe' is the p_key_pattern, with pattern_len as 6 and * pattern_offset as 0, the notifications as observed on the peer side would be * 1> 'c', 'o', 'f', 'F', 'E', 'e' * 2> - , 'o', 'f', 'F', 'E', 'e' * 3> - , -, 'f', 'F', 'E', 'e' * 4> - , -, -, 'F', 'E', 'e' * 5> - , -, -, -, 'E', 'e' * 6> - , -, -, -, -, 'e' * 7> - , -, -, -, -, - * Here, '-' refers to release, 'c' refers to the key character being transmitted. * Therefore 7 notifications will be sent. * In case an offset of 4 was provided, the pattern notifications sent will be from 5-7 * will be transmitted. */ static uint32_t send_key_scan_press_release(ble_hids_t * p_hids, uint8_t * p_key_pattern, uint16_t pattern_len, uint16_t pattern_offset, uint16_t * p_actual_len) { uint32_t err_code; uint16_t offset; uint16_t data_len; uint8_t data[INPUT_REPORT_KEYS_MAX_LEN]; // HID Report Descriptor enumerates an array of size 6, the pattern hence shall not be any // longer than this. STATIC_ASSERT((INPUT_REPORT_KEYS_MAX_LEN - 2) == 6); ASSERT(pattern_len <= (INPUT_REPORT_KEYS_MAX_LEN - 2)); offset = pattern_offset; data_len = pattern_len; do { // Reset the data buffer. memset(data, 0, sizeof(data)); // Copy the scan code. memcpy(data + SCAN_CODE_POS + offset, p_key_pattern + offset, data_len - offset); if (is_shift_key_pressed()) { data[MODIFIER_KEY_POS] |= SHIFT_KEY_CODE; } if (!m_in_boot_mode) { err_code = ble_hids_inp_rep_send(p_hids, INPUT_REPORT_KEYS_INDEX, INPUT_REPORT_KEYS_MAX_LEN, data); } else { err_code = ble_hids_boot_kb_inp_rep_send(p_hids, INPUT_REPORT_KEYS_MAX_LEN, data); } if (err_code != NRF_SUCCESS) { break; } offset++; } while (offset <= data_len); *p_actual_len = offset; return err_code; } /**@brief Function for initializing the buffer queue used to key events that could not be * transmitted * * @warning This handler is an example only. You need to analyze how you wish to buffer or buffer at * all. * * @note In case of HID keyboard, a temporary buffering could be employed to handle scenarios * where encryption is not yet enabled or there was a momentary link loss or there were no * Transmit buffers. */ static void buffer_init(void) { uint32_t buffer_count; BUFFER_LIST_INIT(); for (buffer_count = 0; buffer_count < MAX_BUFFER_ENTRIES; buffer_count++) { BUFFER_ELEMENT_INIT(buffer_count); } } /**@brief Function for enqueuing key scan patterns that could not be transmitted either completely * or partially. * * @warning This handler is an example only. You need to analyze how you wish to send the key * release. * * @param[in] p_hids Identifies the service for which Key Notifications are buffered. * @param[in] p_key_pattern Pointer to key pattern. * @param[in] pattern_len Length of key pattern. * @param[in] offset Offset applied to Key Pattern when requesting a transmission on * dequeue, @ref buffer_dequeue. * @return NRF_SUCCESS on success, else an error code indicating reason for failure. */ static uint32_t buffer_enqueue(ble_hids_t * p_hids, uint8_t * p_key_pattern, uint16_t pattern_len, uint16_t offset) { buffer_entry_t * element; uint32_t err_code = NRF_SUCCESS; if (BUFFER_LIST_FULL()) { // Element cannot be buffered. err_code = NRF_ERROR_NO_MEM; } else { // Make entry of buffer element and copy data. element = &buffer_list.buffer[(buffer_list.wp)]; element->p_instance = p_hids; element->p_data = p_key_pattern; element->data_offset = offset; element->data_len = pattern_len; buffer_list.count++; buffer_list.wp++; if (buffer_list.wp == MAX_BUFFER_ENTRIES) { buffer_list.wp = 0; } } return err_code; } /**@brief Function to dequeue key scan patterns that could not be transmitted either completely of * partially. * * @warning This handler is an example only. You need to analyze how you wish to send the key * release. * * @param[in] tx_flag Indicative of whether the dequeue should result in transmission or not. * @note A typical example when all keys are dequeued with transmission is when link is * disconnected. * * @return NRF_SUCCESS on success, else an error code indicating reason for failure. */ static uint32_t buffer_dequeue(bool tx_flag) { buffer_entry_t * p_element; uint32_t err_code = NRF_SUCCESS; uint16_t actual_len; if (BUFFER_LIST_EMPTY()) { err_code = NRF_ERROR_NOT_FOUND; } else { bool remove_element = true; p_element = &buffer_list.buffer[(buffer_list.rp)]; if (tx_flag) { err_code = send_key_scan_press_release(p_element->p_instance, p_element->p_data, p_element->data_len, p_element->data_offset, &actual_len); // An additional notification is needed for release of all keys, therefore check // is for actual_len <= element->data_len and not actual_len < element->data_len if ((err_code == BLE_ERROR_NO_TX_BUFFERS) && (actual_len <= p_element->data_len)) { // Transmission could not be completed, do not remove the entry, adjust next data to // be transmitted p_element->data_offset = actual_len; remove_element = false; } } if (remove_element) { BUFFER_ELEMENT_INIT(buffer_list.rp); buffer_list.rp++; buffer_list.count--; if (buffer_list.rp == MAX_BUFFER_ENTRIES) { buffer_list.rp = 0; } } } return err_code; } /**@brief Function for sending sample key presses to the peer. * * @param[in] key_pattern_len Pattern length. * @param[in] p_key_pattern Pattern to be sent. */ static void keys_send(uint8_t key_pattern_len, uint8_t * p_key_pattern) { uint32_t err_code; uint16_t actual_len; err_code = send_key_scan_press_release(&m_hids, p_key_pattern, key_pattern_len, 0, &actual_len); // An additional notification is needed for release of all keys, therefore check // is for actual_len <= key_pattern_len and not actual_len < key_pattern_len. if ((err_code == BLE_ERROR_NO_TX_BUFFERS) && (actual_len <= key_pattern_len)) { // Buffer enqueue routine return value is not intentionally checked. // Rationale: Its better to have a a few keys missing than have a system // reset. Recommendation is to work out most optimal value for // MAX_BUFFER_ENTRIES to minimize chances of buffer queue full condition UNUSED_VARIABLE(buffer_enqueue(&m_hids, p_key_pattern, key_pattern_len, actual_len)); } if ((err_code != NRF_SUCCESS) && (err_code != NRF_ERROR_INVALID_STATE) && (err_code != BLE_ERROR_NO_TX_BUFFERS) && (err_code != BLE_ERROR_GATTS_SYS_ATTR_MISSING) ) { APP_ERROR_HANDLER(err_code); } else Send_OK_LED(95); } /**@brief Function for handling the HID Report Characteristic Write event. * * @param[in] p_evt HID service event. */ static void on_hid_rep_char_write(ble_hids_evt_t *p_evt) { if (p_evt->params.char_write.char_id.rep_type == BLE_HIDS_REP_TYPE_OUTPUT) { uint32_t err_code; uint8_t report_val; uint8_t report_index = p_evt->params.char_write.char_id.rep_index; if (report_index == OUTPUT_REPORT_INDEX) { // This code assumes that the outptu report is one byte long. Hence the following // static assert is made. STATIC_ASSERT(OUTPUT_REPORT_MAX_LEN == 1); err_code = ble_hids_outp_rep_get(&m_hids, report_index, OUTPUT_REPORT_MAX_LEN, 0, &report_val); APP_ERROR_CHECK(err_code); if (!m_caps_on && ((report_val & OUTPUT_REPORT_BIT_MASK_CAPS_LOCK) != 0)) { // Caps Lock is turned On. err_code = bsp_indication_set(BSP_INDICATE_ALERT_3); APP_ERROR_CHECK(err_code); keys_send(sizeof(m_caps_on_key_scan_str), m_caps_on_key_scan_str); m_caps_on = true; } else if (m_caps_on && ((report_val & OUTPUT_REPORT_BIT_MASK_CAPS_LOCK) == 0)) { // Caps Lock is turned Off . err_code = bsp_indication_set(BSP_INDICATE_ALERT_OFF); APP_ERROR_CHECK(err_code); keys_send(sizeof(m_caps_off_key_scan_str), m_caps_off_key_scan_str); m_caps_on = false; } else { // The report received is not supported by this application. Do nothing. } } } } /**@brief Function for handling HID events. * * @details This function will be called for all HID events which are passed to the application. * * @param[in] p_hids HID service structure. * @param[in] p_evt Event received from the HID service. */ static void on_hids_evt(ble_hids_t * p_hids, ble_hids_evt_t *p_evt) { switch (p_evt->evt_type) { case BLE_HIDS_EVT_BOOT_MODE_ENTERED: m_in_boot_mode = true; break; case BLE_HIDS_EVT_REPORT_MODE_ENTERED: m_in_boot_mode = false; break; case BLE_HIDS_EVT_REP_CHAR_WRITE: on_hid_rep_char_write(p_evt); break; case BLE_HIDS_EVT_NOTIF_ENABLED: { dm_service_context_t service_context; service_context.service_type = DM_PROTOCOL_CNTXT_GATT_SRVR_ID; service_context.context_data.len = 0; service_context.context_data.p_data = NULL; if (m_in_boot_mode) { // Protocol mode is Boot Protocol mode. if ( p_evt->params.notification.char_id.uuid == BLE_UUID_BOOT_KEYBOARD_INPUT_REPORT_CHAR ) { // The notification of boot keyboard input report has been enabled. // Save the system attribute (CCCD) information into the flash. uint32_t err_code; err_code = dm_service_context_set(&m_bonded_peer_handle, &service_context); if (err_code != NRF_ERROR_INVALID_STATE) { APP_ERROR_CHECK(err_code); } else { // The system attributes could not be written to the flash because // the connected central is not a new central. The system attributes // will only be written to flash only when disconnected from this central. // Do nothing now. } } else { // Do nothing. } } else if (p_evt->params.notification.char_id.rep_type == BLE_HIDS_REP_TYPE_INPUT) { // The protocol mode is Report Protocol mode. And the CCCD for the input report // is changed. It is now time to store all the CCCD information (system // attributes) into the flash. uint32_t err_code; err_code = dm_service_context_set(&m_bonded_peer_handle, &service_context); if (err_code != NRF_ERROR_INVALID_STATE) { APP_ERROR_CHECK(err_code); } else { // The system attributes could not be written to the flash because // the connected central is not a new central. The system attributes // will only be written to flash only when disconnected from this central. // Do nothing now. } } else { // The notification of the report that was enabled by the central is not interesting // to this application. So do nothing. } break; } default: // No implementation needed. break; } } /**@brief Function for handling the Application's BLE Stack events. * * @param[in] p_ble_evt Bluetooth stack event. */ static void on_ble_evt(ble_evt_t * p_ble_evt) { uint32_t err_code; static uint16_t m_conn_handle = BLE_CONN_HANDLE_INVALID; switch (p_ble_evt->header.evt_id) { case BLE_GAP_EVT_CONNECTED: App_state = S_DEFAULT; err_code = bsp_indication_set(BSP_INDICATE_CONNECTED); APP_ERROR_CHECK(err_code); // Start handling button presses. err_code = bsp_buttons_enable( (1 << KEY_PRESS_BUTTON_ID) | (1 << SHIFT_BUTTON_ID) ); APP_ERROR_CHECK(err_code); m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle; m_advertising_mode = BLE_NO_ADV; break; case BLE_EVT_TX_COMPLETE: // Send next key event if(App_state == S_MUSIC) (void) buffer_dequeue(true); break; case BLE_GAP_EVT_DISCONNECTED: // Dequeue all keys without transmission. if(App_state == S_MUSIC) (void) buffer_dequeue(false); App_state = 0; err_code = bsp_indication_set(BSP_INDICATE_IDLE); APP_ERROR_CHECK(err_code); m_conn_handle = BLE_CONN_HANDLE_INVALID; // Reset m_caps_on variable. Upon reconnect, the HID host will re-send the Output // report containing the Caps lock state. m_caps_on = false; // Stop detecting button presses when not connected. err_code = bsp_buttons_enable(BSP_BUTTONS_NONE); APP_ERROR_CHECK(err_code); m_advertising_mode = BLE_DIRECTED_ADV; m_direct_adv_cnt = APP_DIRECTED_ADV_TIMEOUT; advertising_start(); break; case BLE_GAP_EVT_TIMEOUT: if (p_ble_evt->evt.gap_evt.params.timeout.src == BLE_GAP_TIMEOUT_SRC_ADVERTISEMENT) { if (m_advertising_mode == BLE_SLEEP) { m_advertising_mode = BLE_NO_ADV; err_code = bsp_indication_set(BSP_INDICATE_IDLE); APP_ERROR_CHECK(err_code); // Configure buttons with sense level low as wakeup source. err_code = bsp_buttons_enable((1 << KEY_PRESS_BUTTON_ID) | (1 << BOND_DELETE_BUTTON_ID)); APP_ERROR_CHECK(err_code); // Go to system-off mode. // (this function will not return; wakeup will cause a reset) err_code = sd_power_system_off(); APP_ERROR_CHECK(err_code); } else { advertising_start(); } } break; case BLE_GATTC_EVT_TIMEOUT: case BLE_GATTS_EVT_TIMEOUT: // Disconnect on GATT Server and Client timeout events. err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; default: // No implementation needed. break; } } /**@brief Function for handling the Application's system events. * * @param[in] sys_evt system event. */ static void on_sys_evt(uint32_t sys_evt) { switch(sys_evt) { case NRF_EVT_FLASH_OPERATION_SUCCESS: case NRF_EVT_FLASH_OPERATION_ERROR: if (m_memory_access_in_progress) { m_memory_access_in_progress = false; advertising_start(); } break; default: // No implementation needed. break; } } /**@brief Function for dispatching a BLE stack event to all modules with a BLE stack event handler. * * @details This function is called from the scheduler in the main loop after a BLE stack * event has been received. * * @param[in] p_ble_evt Bluetooth stack event. */ static void ble_evt_dispatch(ble_evt_t * p_ble_evt) { dm_ble_evt_handler(p_ble_evt); on_ble_evt(p_ble_evt); ble_conn_params_on_ble_evt(p_ble_evt); ble_hids_on_ble_evt(&m_hids, p_ble_evt); ble_bas_on_ble_evt(&m_bas, p_ble_evt); } /**@brief Function for dispatching a system event to interested modules. * * @details This function is called from the System event interrupt handler after a system * event has been received. * * @param[in] sys_evt System stack event. */ static void sys_evt_dispatch(uint32_t sys_evt) { pstorage_sys_event_handler(sys_evt); on_sys_evt(sys_evt); } /**@brief Function for initializing the BLE stack. * * @details Initializes the SoftDevice and the BLE event interrupt. */ static void ble_stack_init(void) { uint32_t err_code; // Initialize the SoftDevice handler module. SOFTDEVICE_HANDLER_INIT(NRF_CLOCK_LFCLKSRC_XTAL_20_PPM, true); // Enable BLE stack ble_enable_params_t ble_enable_params; memset(&ble_enable_params, 0, sizeof(ble_enable_params)); ble_enable_params.gatts_enable_params.service_changed = IS_SRVC_CHANGED_CHARACT_PRESENT; err_code = sd_ble_enable(&ble_enable_params); APP_ERROR_CHECK(err_code); // Register with the SoftDevice handler module for BLE events. err_code = softdevice_ble_evt_handler_set(ble_evt_dispatch); APP_ERROR_CHECK(err_code); // Register with the SoftDevice handler module for BLE events. err_code = softdevice_sys_evt_handler_set(sys_evt_dispatch); APP_ERROR_CHECK(err_code); } /**@brief Function for the Event Scheduler initialization. */ static void scheduler_init(void) { APP_SCHED_INIT(SCHED_MAX_EVENT_DATA_SIZE, SCHED_QUEUE_SIZE); } /**@brief Function for handling button events. * * @param[in] event Event generated by button pressed. */ static void button_event_handler(bsp_event_t event) { static uint8_t * p_key = m_sample_key_press_scan_str; static uint8_t size = 0; switch (event) { case BSP_EVENT_KEY_0: switch (App_state) { case S_MUSIC: keys_send(1, p_key); p_key++; size++; if (size == MAX_KEYS_IN_ONE_REPORT) { p_key = m_sample_key_press_scan_str; size = 0; } break; case S_CAMERA: vol_media_send(0x20); //vol up vol_media_send(0x00); //mask break; default: break; } break; default: break; } } /**@brief Function for handling the Device Manager events. * * @param[in] p_evt Data associated to the device manager event. */ static uint32_t device_manager_evt_handler(dm_handle_t const * p_handle, dm_event_t const * p_event, api_result_t event_result) { APP_ERROR_CHECK(event_result); switch(p_event->event_id) { case DM_EVT_DEVICE_CONTEXT_LOADED: // Fall through. case DM_EVT_SECURITY_SETUP_COMPLETE: m_bonded_peer_handle = (*p_handle); break; } return NRF_SUCCESS; } /**@brief Function for the Device Manager initialization. */ static void device_manager_init(void) { uint32_t err_code; dm_init_param_t init_data; dm_application_param_t register_param; // Initialize peer device handle. err_code = dm_handle_initialize(&m_bonded_peer_handle); APP_ERROR_CHECK(err_code); // Initialize persistent storage module. err_code = pstorage_init(); APP_ERROR_CHECK(err_code); // Clear all bonded centrals if the "delete all bonds" button is pushed. err_code = bsp_button_is_pressed(BOND_DELETE_BUTTON_ID,&(init_data.clear_persistent_data)); APP_ERROR_CHECK(err_code); err_code = dm_init(&init_data); APP_ERROR_CHECK(err_code); memset(®ister_param.sec_param, 0, sizeof(ble_gap_sec_params_t)); register_param.sec_param.timeout = SEC_PARAM_TIMEOUT; register_param.sec_param.bond = SEC_PARAM_BOND; register_param.sec_param.mitm = SEC_PARAM_MITM; register_param.sec_param.io_caps = SEC_PARAM_IO_CAPABILITIES; register_param.sec_param.oob = SEC_PARAM_OOB; register_param.sec_param.min_key_size = SEC_PARAM_MIN_KEY_SIZE; register_param.sec_param.max_key_size = SEC_PARAM_MAX_KEY_SIZE; register_param.evt_handler = device_manager_evt_handler; register_param.service_type = DM_PROTOCOL_CNTXT_GATT_SRVR_ID; err_code = dm_register(&m_app_handle, ®ister_param); APP_ERROR_CHECK(err_code); } /**@brief Function for the Power manager. */ static void power_manage(void) { uint32_t err_code = sd_app_evt_wait(); APP_ERROR_CHECK(err_code); } /**@brief Function for application main entry. */ int main(void) { // Initialize. uint32_t err_code = NRF_SUCCESS; app_trace_init(); timers_init(); APP_GPIOTE_INIT(APP_GPIOTE_MAX_USERS); ble_stack_init(); err_code = bsp_init(BSP_INIT_LED | BSP_INIT_BUTTONS, APP_TIMER_TICKS(100, APP_TIMER_PRESCALER), button_event_handler); APP_ERROR_CHECK(err_code); scheduler_init(); device_manager_init(); gap_params_init(); advertising_init(BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE); services_init(); sensor_sim_init(); conn_params_init(); buffer_init(); // Start execution. timers_start(); advertising_start(); // Enter main loop. for (;;) { //err_code = bsp_indication_set(BSP_INDICATE_SENT_OK); //nrf_gpio_pin_set(LED_0); //nrf_gpio_pin_clear(LED_0); app_sched_execute(); power_manage(); } } /** * @} */