s13x_nrf5x migration document

Introduction to the s13x_nrf5x migration document

About the document

This document describes how to migrate to new versions of the s130_nrf51 and s132_nrf52 SoftDevices. The s130_nrf51 and s132_nrf52
release notes should be read in conjunction with this document.

For each version, we have the following sections:

® "Required changes" describes how an application would have used the previous version of the SoftDevice, and how it must now use
this version for the given change.

* "New functionality" describes how to use new features and functionality offered by this version of the SoftDevice. Note: Not all new
functionality may be covered; the release notes will contain a full list of new features and functionality.

Each section describes how to migrate to a given version from the previous version. If you are migrating to the current version from the
previous version, follow the instructions in that section. To migrate between versions that are more than one version apart, follow the
migration steps for all intermediate versions in order.

Example: To migrate from version 5.0.0 to version 5.2.0, first follow the instructions to migrate to 5.1.0 from 5.0.0, then follow the instructions
to migrate to 5.2.0 from 5.1.0.

Copyright (c) Nordic Semiconductor ASA. All rights reserved.

s132_nrf52_3.0.0

This section describes how to migrate to s132_nrf52_3.0.0 from s132_nrf52_2.0.1.

Required changes

SoftDevice flash and RAM usage

The size of the SoftDevice has changed requiring a change to the application project file.
For Keil this means:

® Go into the properties of the project and find the Target tab
® Change IROM1 Startto 0x1F000.

If the project uses a scatter file or linker script instead, those must be updated accordingly.

The RAM usage of SoftDevice has also changed. sd_bl e_enabl e() should be used to find the APP_RAM_BASE for a particular
configuration.

LL Privacy

This SoftDevice brings in support for LL Privacy. All applications must be updated to the new Privacy API and whitelist AP| supporting this
new feature. Refer to the description of LL privacy in the New functionality section for more details.

Required changes:

® Enable privacy

/* S132 v2.0 APl usage */

bl e_gap_addr_t private_addr = {0};
private_addr. addr _type = BLE GAP_ADDR_TYPE_RANDOM PRI VATE_RESOLVABLE;
sd_bl e_gap_addr _set (BLE_GAP_ADDR _CYCLE_MODE_AUTO, private_addr)

/* S132 v3.0 APl usage */

bl e_gap_privacy_parans_t privacy_parans = {0};

privacy_parans. privacy_node = BLE_GAP_PRI VACY_MCODE_DEVI CE_PRI VACY;
privacy_parans. private_addr_type =

BLE _GAP_ADDR_TYPE_RANDOM PRI VATE RESOLVABLE

sd_bl e_gap_privacy_set (privacy_parans);

® Disable privacy

/* S132 v2.0 APl usage */
bl e_gap_addr_t identity_addr = saved_identity_addr; /* From

sd_bl e_gap_addr_get(). */
sd_bl e_gap_addr _set (BLE_GAP_ADDR CYCLE_MODE_NONE, identity_addr);

/* S132 v3.0 APl usage */
bl e_gap_privacy_parans_t privacy_paranms = {0};

privacy_parans. privacy_node = BLE GAP_PRI VACY_MODE_CFF;
sd_bl e_gap_privacy_set (privacy_parans);

® Whitelist private addresses

/* S132 v2.0 APl usage */

/* Public devices. */
bl e_gap_addr_t public_devicel = {

.addr _type = BLE_GAP_ADDR TYPE_PUBLI C

.addr = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06}};
bl e_gap_addr_t public_device2 = {

.addr _type = BLE_GAP_ADDR TYPE_PUBLI C

.addr = {0x10, 0x20, 0x30, 0x40, 0x50, 0x60}};

/* IRKs of Private devices. */
ble gap_irk_t irkl = { .irk = { 0x10, 0x20, 0x30 /*...*/} };
ble gap_irk tt irk2 ={ .irk = { 0x01, 0x02, Ox03 /*...*/} };

bl e_gap_addr_t * whitelist_addrs[2] = {&public_devicel, &public_device2};
ble_gap_irk_t * whitelist_irks[2] = {& rkl, & rk2};
ble_gap_whitelist_t whitelist = {
.pp_addrs = &nhitelist_addrs, .addr_count = 2, /* Public devices. */
.pp_irks = &nhitelist_irks, .irk_count = 2, /* Private devices. */};

bl e_gap_adv_parans_t adv_parans = {0};
adv_paranms. p_whitelist = &whitelist
sd_bl e_gap_adv_st art (&adv_par ans) ;

/* S132 v3.0 APl usage */

bl e_gap_addr_t public_devicel = {
.addr _type = BLE_GAP_ADDR TYPE_PUBLI C,
.addr = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06},
b
bl e_gap_addr_t public_device2 = {
.addr _type = BLE_GAP_ADDR TYPE_PUBLI C,
.addr = {0x10, 0x20, 0x30, 0x40, 0x50, 0x60},
b
/* Private devices. Matches addresses in identity list. */
bl e_gap_addr_t private_devicel = {
.addr _type = BLE_GAP_ADDR TYPE_PUBLI C,
.addr = {O0xAl, OxA2, OxA3, OxA4, OxA5, OxA6}
b
bl e_gap_addr_t private_device2 = {
.addr _type = BLE_GAP_ADDR TYPE_PUBLI C,
.addr = {Ox1A, Ox2A, O0x3A, O0x4A, Ox5A, O0x6A},
b
bl e_gap_addr_t * whitelist[4] = {
&publ i c_devi cel, &public_device2,
&private_devicel, &private_device2,
b
ble_gap_id_key t identityl = {
.id_addr_info = {
.addr _type = BLE_GAP_ADDR TYPE_PUBLI C,
.addr = {OxAl, OxA2, OxA3, O0xA4, OxA5, O0xA6},},
.id_info =
.irk = { O0x10, 0x20, Ox30 /*...*/},}
b
ble_gap_id _key t identity2 = {
.id_addr_info = {
.addr _type = BLE_GAP_ADDR TYPE_PUBLI C,
.addr = {Ox1A, Ox2A, O0x3A, O0x4A, Ox5A, O0x6A},},
.id_info = {
.irk = { 0x01, 0x02, Ox03 /*...*/},}
b

ble gap_id key t * identities[2] = { & dentityl, & dentity2 };

sd_bl e_gap_device_identities_set(& dentities, NULL /* Don't use |local |IRKs*/,
2);

sd_ble_gap_whitelist_set(&hitelist, 4);

bl e_gap_adv_parans_t adv_parans = {0};

adv_parans.fp = BLE_GAP_ADV_FP_FI LTER BOTH,

sd_bl e_gap_adv_start (&adv_parans) ;

® Private address information returned in BLE events

/* S132 v2.0 APl usage */

/* GAP connection paraneter */

bl e_gap_evt _connected_t conn_evt;

conn_evt.irk_match; /* Set to true if IRK matched. */
conn_evt.irk_match_idx; /* Set to index into pp_irks in whitelist.*/
conn_evt. peer_addr; /* Set to the private resol vabl e address of the peer.*/

/* S132 v3.0 APl usage */

/* Dbl e_gap_addr_t has been updat ed.

The events bl e_gap_evt_connected_t, ble_gap_evt_adv_report_t

and bl e_gap_evt_scan_req_report_t are affected. */

bl e_gap_addr_t.addr_id_peer; /* Set to true if |IRK matched */

bl e_gap_addr_t.addr; /* Set to the identity address of the peer,
i.e the one in the identity list matching the
peer |RK */

® Central connection to peers using private address

/* S132 v2.0 APl usage */

/* IRK of the Private device. */

ble gap_irk t irkl ={ .irk = { 0x10, 0x20, 0x30 /*...*/} };

ble_gap_irk_t * whitelist_irk[1] = {& rk1};

ble_gap_whitelist_t whitelist = {
.pp_irks = &nhitelist_irk, .irk_count = 1,};

bl e_gap_scan_parans_t scan_parans = {
.selective = true, p_whitelist = &hitelist};
sd_bl e_gap_connect (NULL, &scan_parans, &conn_parans);

/* S132 v3.0 APl usage */

bl e_gap_addr_t peer_addr = {

.addr_id_peer = 1;

.addr _type = BLE_GAP_ADDR _TYPE_PUBLI C,

.addr = {Ox1A, Ox2A, Ox3A, O0x4A, Ox5A, Ox6A};
}

sd_bl e_gap_connect (&peer _addr, &scan_parans, &conn_parans);

LE Ping

The LE ping feature is now supported by the SoftDevice. A new timeout source BLE_GAP_TI MEQUT_SRC_AUTH_PAYLCQAD has been added.
All applications must handle this event from the SoftDevice according to the APl documentation. Refer to the description of LE Ping in the
New functionality section for more details.

Required changes:

/* S132 v3.0 APl usage */

/* lIgnore the authenticated payl oad tinmeout event */
case BLE_GAP_TI MEOUT_SRC_AUTH_PAYLOAD:

br eak;

Configurable ATT_MTU

The feature of configurable ATT_MTU is now supported by the SoftDevice. A new event BLE_GATTS_EVT_EXCHANGE_MIU_REQUEST has
been added. All applications must handle this event from the SoftDevice according to the API documentation. Refer to the description of
configurable ATT_MTU in the New functionality section for more details.

Required changes:

/* S132 v3.0 APl usage */

/* Respond with default ATT_MIU, if peer initiates an ATT_MIU exchange procedure.
*/
case BLE GATTS_EVT_EXCHANGE_MIU_REQUEST:

sd_bl e_gatts_exchange_mtu_repl y(p_bl e_evt->evt.gatts_evt.conn_handl e,

GATT_MTU_SI ZE_DEFAULT) ;

br eak;

New functionality

Configurable ATT_MTU

The Configurable ATT_MTU feature enables the ATT protocol to use packets longer than the default of 23 bytes. This can be useful for
example to reduce complexity of GATTC and GATTS procedures used to handle longer Characteristic Value, where a single "Write Request"
can be used instead of the whole "Queued Writes" procedure.

APl updates

Usage

A new BLE initialization structure, bl e_gat t _enabl e_par ans_t, has been added to bl e_enabl e_par ans_t for configuring the
maximum ATT_MTU the SoftDevice can send or receive.

Anew SV call, sd_bl e_gatt c_exchange_nt u_r equest (), has been added for starting an ATT_MTU exchange.

Anew SV call, sd_bl e_gatts_exchange_nt u_repl y(), has been added for setting the ATT_MTU in ATT_MTU response.

A new event, BLE_GATTS_EVT_EXCHANGE_MrU_REQUEST, has been added to BLE_GATTS_EVTS to notify that an ATT_MTU
request has been received. sd_bl e_gatts_exchange_nt u_r epl y() must be called by the application, after this event has been
received, to continue the ATT_MTU exchange procedure.

A new event, BLE_GATTC_EVT_EXCHANGE_MIU_RSP, has been added to BLE_GATTC_EVTS to notify that an ATT_MTU response
has been received. This event marks the end of the ATT_MTU exchange procedure and indicates the server ATT_MTU.

ATT_MTU exchange can be initiated locally or by peer device.

HVx and service changed cannot run while a local client initiated ATT_MTU exchange is active. The SV calls sd_bl e_gat ts_hvx(
) andsd_bl e_gatts_servi ce_changed() will return NRF_ERROR_INVALID_STATE if a local client initiated ATT_MTU
exchange is ongoing.

Following is the pseudo code for case where ATT_MTU exchange is initiated by application:

bl e_enabl e_parans_t enabl e_parans = {0};

/* Set maxi mum ATT_MIU t he Sof t Devi ce can send or receive */
enabl e_parans. gatt_enabl e_parans. att_ntu = 158;

/* Set other BLE Initialization paraneters */

/* Enabl e the BLE Stack */
sd_bl e_enabl e(&enabl e_parans, ...);

[...]

uint16_t conn_handl e;
/* Establish connection */

[...]

/* Start ATT_MIU exchange */
sd_bl e_gattc_exchange_nt u_request (conn_handl e, client_rx_ntu);

[...]

uint16_t effective_att_ntu;
uint1l6_t server_rx_mtu;
/* Handl e the event */
case BLE_GATTC_EVT_EXCHANCGE_MTU_RSP:
server_rx_nmtu = p_ble_evt->evt.gattc_evt. parans. exchange_ntu_rsp.server_rx_nmntu;

/* New ATT_MIU i s now applied to GATT procedures for this connection */

/ *Not e

The SoftDevice sets ATT_MIU to the mini mum of:
- The Cient RX MIU val ue from BLE GATTS EVT_ EXCHANGE MU REQUEST, and
- The Server RX MIU val ue.

However, the SoftDevice never sets ATT_MIU | ower than
GATT_MTU_SI ZE_DEFAULT.
*/
/* Store ATT_MIU for |ater use */
effective_att_mu = M N MAX(GATT_MIU_SI ZE _DEFAULT, server_rx_ntu)
, client _rx ntu

)

LE Ping
The LE Ping feature can be used by the application to configure a link to try to have at least one authenticated packet exchange within a

configurable timeout period. If the peer device does not send an authenticated packet within the timeout, a timeout event is generated to
notify this to the application.

APl updates

®* A new GAP option, BLE_GAP_OPT_AUTH_PAYLOAD_TI MEQUT, has been added to set the authenticated payload timeout.
* A new GAP timeout source, BLE_GAP_TI MEOUT_SRC_AUTH_PAYLQAD, has been added to indicate that the authenticated payload
timer has expired.

Usage

/* Enable the BLE Stack */

[...]

/* Establish connection */

[...]

/* Authenticated payload tinmer runs with default val ue

Set the authenticated payload timeout for the link, if required to be sonething
el se then the default */

gap_opt. aut h_payl oad_ti neout. conn_handl e = connecti on_handl e;

gap_opt. auth_payl oad_ti neout. aut h_payl oad_ti neout = 1000;

gap_opt _set (BLE_GAP_OPT_AUTH_PAYLOAD TI MEQUT, &gap_opt);

[...]

/* Handl e the event */

case BLE_GAP_TI MEQUT_SRC AUTH_PAYLOAD:

/* Handling of the event is application dependent. It can be ignored if not used
by application. */

br eak;

LE Data Packet Length Extension (DLE)

The LE Data Packet Length Extension feature enables the SoftDevice to use longer packets on the link layer level. Now link layer packets
with up to 251 bytes payload are supported.

APl updates

®* A new GAP option, BLE_GAP_OPT_EXT_LEN, has been added to set the maximum Link Layer PDU length to be used in DLE.
® Anew event, BLE_EVT_DATA LENGTH_CHANGED, has been added to indicate that the Link Layer PDU length has changed.

Usage

® Default max Link Layer PDU is 27 bytes.
® BLE_GAP_OPT_EXT_LEN changes the max length for all future links.
® Example pseudo code:

/* Enable the BLE Stack */

/* Set max Link Layer PDU length, if application wants it to be nore than
27bytes */

gap_opt . ext _| en. rxt x_max_pdu_payl oad_si ze = 54; //Exanple: set max length to
54byt es

gap_opt _set (BLE_GAP_OPT_EXT_LEN, &gap_opt);

/* Establish connection */

/* Handl e the event */
case BLE_EVT_DATA_LENGTH_CHANGED:

/* Handling of the event is application dependent. It can be ignored if not
used by application. */

LL Privacy

The LL Privacy feature provides similar functionality as the privacy in the previous version of the SoftDevice. In addition, it supports new use
cases like enabling privacy for directed advertising and advanced filter policy for scanning.

APl updates

Usage

New SV calls, sd_bl e_gap_privacy_set () andsd_bl e_gap_privacy_get (), are added to set and get the privacy settings.
bl e_gap_privacy_parans_t is defined to be used with these calls.

The GAP option BLE_GAP_CPT_PRI VACY is removed. The SV calls sd_bl e_gap_pri vacy_set () andsd_bl e_gap_privacy_
get () should be used instead.

A new GAP characteristic, BLE_UUI D_GAP_CHARACTERI STl C_CAR, has been added for Central Address Resolution.

The SV calls sd_bl e_gap_address_set () andsd_bl e_gap_address_get () have been renamed to sd_bl e_gap_addr _se
t() and sd_bl e_gap_addr _get () respectively.

Anew SV call, sd_bl e_gap_whi telist_set (), has been added to set the whitelist. The configured whitelist is shared among all
BLE roles.

Anew SV call, sd_bl e_gap_devi ce_identities_set (), has been added to set the identity list. The configured identity list is
shared among all BLE roles.

New definitions, BLE_GAP_PRI VACY_MODE_OFF and BLE_GAP_PRI VACY_MODE_DEVI CE_PRI VACY, have been added.

Two new GAP error codes, BLE_ERROR_GAP_DEVI CE_| DENTI TI ES_| N_USE and BLE_ERROR_GAP_DEVI CE_| DENTI TI ES_DUP
LI CATE, have been added.

Address cycling, BLE_GAP_ADDR_CYCLE_MODE_NONE and BLE_GAP_ADDR_CYCLE_MODE_AUTQ, is removed from GAP API sd_bl
e_gap_addr _set () . Address will always cycle if privacy is enabled by sd_bl e_gap_pri vacy_set ().

New definitions, BLE_GAP_DEFAULT_PRI VATE_ADDR_CYCLE_| NTERVAL_S and BLE_GAP_MAX_PRI VATE_ADDR_CYCLE_| NTER
VAL_S, have been added for address cycle intervals.

BLE_GAP_WHI TELI ST_| RK_MAX_COUNT is renamed to BLE_GAP_DEVI CE_| DENTI TI ES_MAX_COUNT.

A new field, addr _i d_peer, has been added in the bl e_gap_addr _t ype_t, which indicates an IRK/identity match of a peer.

bl e_gap_whitelist_t isremoved because it is not used anymore. This also means that it is removed from bl e_gap_adv_par a
ms_t and bl e_gap_scan_parans_t.sd_bl e_gap_whitelist_set() issupposed to be used instead for setting the whitelist.
bl e_gap_scan_par ans_t is updated. "adv_di r _r epor t " field has been added to enable extended scanner filter policies.

bl e_gap_evt _connect ed_t is updated. "own address"”,"i rk_mat ch"and"i r k_nmat ch_i ndex" fields are removed. "i rk_na
t ch" is now given by "addr _i d_peer "fileld in "peer _addr ".

bl e_gap_evt _adv_report _t is updated and a new field, "di r ect _addr ", has been added to support extended scanner filter
policy.

® Example pseudo code using the new privacy API:

/* Enable the BLE Stack */

[...]

/* Enable privacy */

bl e_gap_privacy_parans_t privacy_parans = {0};

privacy_parans. privacy_node = BLE GAP_PRI VACY_MODE_DEVI CE_PRI VACY:
privacy_parans. private_addr_type =
BLE_GAP_ADDR_TYPE_RANDOM PRI VATE_RESOLVABLE

privacy_parans. private_addr_cycle_s = 0; /* Default cycle period will be used
*/

privacy_paranms. p_device_irk = &own_irk;

sd_bl e_gap_privacy_set (&privacy_parans);

[...]

/* start scanner and get adv_report */

[...]

/* Connect to chosen advertiser(advertiser using private address). */
bl e_gap_addr_t peer_addr = {

.addr_id_peer =0

.addr_type = BLE_GAP_ADDR TYPE_RANDOM PRI VATE RESCLVABLE;

.addr = {OxCC, 0xBB, OxAA, O0xAA, 0xBB, 0xCC};
}

sd_bl e_gap_connect (&peer _addr, &scan_parans, &conn_parans);

[...]

/* Perform bonding */

[...]

/* Wth | RK exchanged, the identity |list can be configured to enable address
resol ution.*/
ble gap_id key t identity = {
.id_addr_info = {
.addr _type = BLE_GAP_ADDR TYPE_PUBLI C
.addr = {Ox1A, Ox2A, Ox3A, O0x4A, Ox5A, O0x6A},},
.id_info = {
.irk = { 0x01, 0x02, Ox03 /*...*/},}
b
ble_gap_id _key_ t * identities[] = { & dentity };
sd_ble_gap_identities_set(& dentities, NULL, 1);

[...]

/* For all future connections, IRK filtering will be perforned. */
bl e_gap_addr_t peer_addr = {
.addr_id_peer = 1;
.addr_type = BLE_GAP_ADDR TYPE_PUBLI C,
.addr = {Ox1A, Ox2A, O0x3A, O0x4A, O0x5A, O0x6A}
}

sd_bl e_gap_connect (&peer _addr, &scan_parans, &conn_parans);

(-]

/* It is also possible to use extended filter policy to performI|RK resol ution
on directed adv reports. */

bl e_gap_scan_parans_t scan_par ans;

scan_parans. adv_dir_report = 1;

sd_bl e_gap_scan_start (&scan_parans);

(-]

/* Handl e the event */
case BLE _GAP_EVT_ADV_REPORT:
/* Adv report will also be generated for directed adverti senments where
the initiator field is set to a private resolvable address, even if
the address did not resolve to an entry in the device identity list.*/
if (ble_evt->adv_report.type == BLE_GAP_ADV_TYPE_ADV_DI RECT_| ND)
{
if (ble_evt->adv_report.direct_addr.addr_type ==
BLE_GAP_ADDR_TYPE_RANDOM PRI VATE RESOLVABLE)
{

}

el se

{

/1l The initiator address is not resol ved

/1 The initiator address is resolved

Connection Event Length Extension

This feature can be used to dynamically extend the connection event length when possible to send extra packets compared to the configured
bandwidth in a connection interval.

APl updates

® A new option, BLE_COMMON_OPT_CONN_EVT_EXT, has been added to BLE_COMMON_OPTS for enabling/disabling of this feature.

Usage

® This feature of dynamic extension of connection event length is disabled by default.
® The BLE_COVMON_OPT_CONN_EVT_EXT option can be used to enable/disable this feature. This will result in enabling/disabling this
feature for all currently active links and also for all future links.

Full length device name

The maximum possible length of the device name has been increased, and it is now possible to set a device name up to 248 bytes.

APl updates

® A new parameter, bl e_gap_devi ce_nane_t, has been added to sd_bl e_enabl e() for setting full length device name.

Usage

® Example pseudo code:

bl e_enabl e_parans_t enabl e_parans = {0}

/* Set the device nane, if application wants to set anything | onger than
BLE_GAP_DEVNAME_DEFAULT LEN */

bl e_gap_devi ce_nane_t devi ce_nane = {0}

uint8_t device_nane_buff[BLE_GAP_DEVNAVE MAX LEN] = "My very long exciting
application nane";

devi ce_nane. vl oc = BLE _GATTS VLOC STACK; /*Note: Device nane will occupy space
in Attribute Table.*/

devi ce_nane. p_val ue = devi ce_nanme_buf f;

devi ce_nane. max_| en = sizeof (devi ce_nane_buff);

devi ce_nane.current _|len = strlen((char *)device_nane_buff);

enabl e_par ans. gap_enabl e_par ans. p_devi ce_nane = &devi ce_nane;

/* Set other BLE Initialization parameters */
sd_bl e_enabl e(&nabl e_parans, ...)

Max BLE event length calculation

The maximum size of a BLE event can now be calculated to optimize the size of event buffer memory.

APl updates

® A new macro, BLE_EVTS LEN MAX, has been added to find out the maximum size of BLE events.

Usage

/[* Ad APl */

uint8 t evt[sizeof(ble evt t) + BLE L2CAP_MIU DEF] ;
uint16_t evt_len = sizeof (evt);

errcode = sd_ble_evt_get(evt, &evt_len);

/* New API: */

uint8_t evt[BLE _EVTS_LEN MAX(GATT_MTU_SI ZE_DEFAULT)];
uint16_t evt _len = sizeof(evt);

errcode = sd_ble_evt_get(evt, &evt_len);

Other miscellaneous updates
®* The SoftDevice Information Structure has been updated and new access macros have been added. Note that this these updates

are for Nordic internal use and should not be used by the application.
® New access macros for general purpose retention registers have been added.

API diff

A diff of the API changes between versions s132_nrf52_3.0.0 and s132_nrf5x_2.0.1 is provided with this release. Refer to the file s132_nrf5
2_3.0.0_API-update.diff.

s13x_nrf5x_2.0.1

This section describes how to migrate to s13x_nrf5x_2.0.1 from s130_nrf51_1.0.0.

Required changes

SoftDevice size

The size of the SoftDevice has changed requiring a change to the application project file.
For Keil this means:

® Go into the properties of the project and find the Target tab
® Change IROM1 Start to 0x1B000 (s130) or 0x1C000 (s132).

If the project uses a scatter file or linker script instead, those must be updated accordingly.

SVC number changes

The SVC numbers in use by the SoftDevice have been changed so the application needs to be recompiled against the new header files.

Fault handling

The SoftDevice has changed the way it handles unrecoverable errors, now known as "faults". SoftDevice assertions were reported to the
application in previous releases, now a wider range of faults has been introduced and a new handling mechanism. The new format for the
fault handler to be supplied to sd_sof t devi ce_enabl e() reflects this.

The old

typedef void (*softdevice_assertion_handler _t)(uint32_t pc, uintl6_t |ine_nunber, const uint8 t *
p_file_nane);

is now replaced by:
typedef void (*nrf_fault_handler_t)(uint32_t id, uint32_t pc, uint32_t info);

The application code must now provide a fault handler in the above format. The source of the fault is provided in the fault ID parameter (i d)
and the value of the program counter at the time of the fault is provided in the program counter parameter (pc) . So far the SoftDevice
defines the following fault IDs:

® NRF_FAULT_I| D _SD ASSERT: The SoftDevice has triggered an assertion. Record the value of the pc parameter and make it
available to the Nordic support team to start an internal investigation.

® (s132 only) NRF_FAULT_I| D_APP_NMENMACC: The application has triggered an unallowed memory access. The value of the pc param
eter will contain the address of the instruction that executed the invalid memory access, or the address of the instruction following
the violation. To find out the filename and line number within your application source code that correspond to the pc you can use the
appropriate tool provided with your toolchain. For example if your linker outputs files in the ELF format you can use the addr2line tool
which is part of the GNU ARM Embedded toolchain for this purpose. Note that you don't need to have compiled with GCC to use
addr2line, and that there are several common filename extensions for ELF files, e.g. .elf, and .axf.

/1 Syntax
arm none- eabi - addr 2l i ne <pc> -e application.elf

/'l Exanpl e, pc=0x0ldaba

$ arm none- eabi - addr 2l i ne Ox0lda6a -e app_beacon. el f
C:\ dev\ app_beacon\src\nmain.c: 34

Please note that as part of this transition from asserts to faults the previously distributed sof t devi ce_assert . h file is no longer part of the
public API.

Oscillator configuration

The configuration of the 32 kHz RCOSC calibration in sd_sof t devi ce_enabl e() has been made more flexible. It now supports more
calibration intervals, and the ability to combine temperature and time triggered calibration.

sd_softdevice_enable(nrf_clock If_cfg t const * p_clock |If_cfg, nrf_fault_handler_t fault_handler));

/1 Exanpl e configuration equivalent to the old
NRF_CLOCK_LFCLKSRC_RC 250_PPM TEMP_1000Ms_CALI BRATI ON
nrf_clock_If_cfg_t rc_cfg = {

.source = NRF_CLOCK LF _SRC RC,

.rc_ctiv = 4, /'l Check tenperature every 4 * 250ns

.rc_tenmp_ctiv =1, // Only calibrate if tenperature has changed.

b
sd_softdevi ce_enabl e(& c_cfg, &app_fault_handler);

/1 Exanpl e configuration equivalent to the old NRF_CLOCK LFCLKSRC XTAL_75_PPM
nrf_clock I f_cfg_ t xtal _cfg = {

.source = NRF_CLOCK LF_SRC XTAL,

.xtal _accuracy = NRF_CLOCK LF_XTAL_ACCURACY_75_PPM

b
sd_softdevi ce_enabl e(& tal _cfg, &app_fault_handler);

/'l Recommended configuration for using the RC oscillator with s132 (see nrf_sdmh
for details)
nrf_clock_If_cfg_t rc_cfg = {

.source = NRF_CLOCK LF_SRC RC,

.rc_ctiv = 16, /1 Check tenperature every 4 seconds

.rc_tenp_ctiv = 2, // Calibrate at |east every 8 seconds even if the
tenperature hasn't changed

s

sd_softdevice_enabl e(& c_cfg, &app_fault_handler);

App priorities
The enumeration NRF_APP_PRI ORI Tl ES has been removed. Application developers must use the interrupt priority levels directly instead.
For s130 the interrupt priority levels available to the application are: 1 and 3.

For s132 the interrupt priority levels available to the application are: 2, 3, 6 and 7.

SEVONPEND flag and high interrupt priorities

Applications must not modify the SEVONPEND flag in the SCR register when running in priority level 1 for s130 and priority levels 2 or 3 for
s132.

Type definitions

Type definitions for certain basic types have been removed. The following type definitions must be replaced with ui nt 8_t :

nrf_power_node_t, nrf_power_failure_threshold_t, nrf_radio_notification_distance_t, nrf_radio_notificatio
n_type_t

and the following must be replaced with ui nt 32_t :

nrf_app_irqg_priority_t nrf_power_dcdc_node_t

MBR size

The macro MBR_SI ZE has been moved to nrf _nbr . h.

Changes to the sd_nvic_* API

The sd_nvi ¢c_* API functions have changed from being SV calls into the SoftDevice to being static functions implemented in a new header
file, nr f _nvi c. h. This header file must be included in all source files that call any API function than begins with sd_nvi c_. If a project
includes nr f _nvi c. h in any of its source files, one of them must declare and zero initialize a global instance of nrf _nvi c_state_t inthe
form:

nrf_nvic_state_t nrf_nvic_state = {0};

Flash protection

The flash protection APl now takes 4 parameters, only the first 2 of which are applicable for the s130:

sd_flash_protect(uint32_t block _cfgO, uint32_t block cfgl, uint32_t block _cfg2, uint32_t block_cfg3);

Radio Timeslot APl macro changes

The macros for high frequency clock configuration have been renamed in the Radio Timeslot API:

* NRF_RADI O HFCLK_CFG DEFAULT and NRF_RADI O HFCLK_CFG FORCE_XTAL
* are now NRF_RADI O HFCLK_CFG_XTAL_GUARANTEED and NRF_RADI O HFCLK_CFG_NO_GUARANTEE

The default is now NRF_RADI O HFCLK_CFG_XTAL_GUARANTEED which guarantees that the high frequency clock source is the crystal for
the whole duration of the timeslot. This should be the preferred option for events that use the radio or require high timing accuracy.

SoftDevice runtime configuration

The number of Vendor Specific UUIDs, connection count and bandwidth are now configurable on sd_bl e_enabl e() using the new
parameters in the substructures of bl e_enabl e_par ans_t . Those new parameters are listed below:
® vs_uui d_count : The number of Vendor Specific UUID bases that the SoftDevice will reserve space for. Formerly this number was
fixed and set to BLE_UUI D_VS_MAX_COUNT.
® p_conn_bw count s: The optional connection bandwidth configuration structure. This determines the amount of memory that the
SoftDevice will reserve for packets. See the bandwidth configuration section for more details.
® peri ph_conn_count : The total amount of concurrent connections as a peripheral that will be available to the application.
® central _conn_count : The total amount of concurrent connections as a central that will be available to the application.
® central _sec_count: The total amount of concurrent pairing procedures that will be available to the application to be shared
among all connections as a central.

If the maximum number of connections supported by the SoftDevice is exceeded in the call to sd_bl e_enabl e() the SoftDevice will return
NRF_ERROR_CONN_COUNT.

SoftDevice RAM usage

At runtime the IC's RAM is split into 2 regions: The SoftDevice RAM region (between 0x20000000 and APP_RAM_BASE-1) and the
application RAM region (between APP_RAM_BASE and the call stack). The start address of the application RAM region (APP_RAM_BASE)
is dependent on the configuration provided to the SoftDevice in the call to sd_bl e_enabl e() .

The sd_bl e_enabl e() call has a new parameter.

® uint32_t sd_ble_enabl e(bl e_enable_parans_t * p_bl e_enabl e_par ans)
® uint32_t sd_bl e_enabl e(bl e_enabl e_parans_t * p_bl e_enabl e_parans, uint32_t * p_app_ram base)

The new *p_app_r am base parameter should be set by the application to APP_RAM_BASE. The SoftDevice will return the minimum
APP_RAM_BASE required by the SoftDevice for the configuration. If the APP_RAM_BASE provided by the application is smaller than the
APP_RAM_BASE returned by the SoftDevice, sd_bl e_enabl e() will return NRF_ERROR_NO_MEM

Note: The nRF5 SDK provides definitions for common configurations and several toolchains. You can skip the rest of this section if you plan
to use the nRF5 SDK examples directly and do not intend to create new configurations.

The application must always provide the current starting address of its RAM area (as defined in the project file, scatter file or linker script) as
the *p_app_r am base parameter to sd_bl e_enabl e() . Failure to do so might result in the SoftDevice overwriting the application memory
area and/or memory access violations. Most toolchains provide a linker symbol for the starting address of their RAM area, referredtoas __ L

| NKER_APP_RAM BASE in this documentation.

The following table shows examples of linker symbols that can define __LI NKER_APP_RAM BASE for different toolchains. The actual value
will depend on the project file, scatter file or linker script settings.

Toolchain LI NKER_APP_RAM BASE
ARMCC/Keil | nage$$RW | RAML$$Base
IAR __ | CFEDI T_region_RAM start __

GCC __data_start__

The recommended approach to obtaining and maintaining the required APP_RAM_BASE for the application is the following:

1. In your project file, scatter file or linker script, set the starting address of your application's RAM (APP_RAM_BASE) to at least the
minimum APP_RAM_BASE specified in the release notes.

. In your application's source code, set the value of *p_app_ram base to __LI NKER_APP_RAM BASE.

. Set the desired parameters to be provided to sd_bl e_enabl e() .

. Compile, link and run the application.

. If the amount of memory assigned to the SoftDevice by *p_app_r am base is large enough to fit the configuration, sd_bl e_enabl
e() will return NRF_SUCCESS, otherwise it will return NRF_ERROR_NO_MEM

. Onreturn of sd_bl e_enabl e(), *p_app_r am base will contain the APP_RAM_BASE required for the given configuration.

7. In your project file, scatter file or linker script, update the starting address of your application's RAM (APP_RAM_BASE) to *p_app_

ram base from step 6, and recompile the application.

abswnN

(2]

Please note that it is possible to run the application with APP_RAM BASE set higher than the minimum required by the selected configuration.
Doing so will result in an area of memory being unused located between the SoftDevice's and the application's memory areas.

Enabling the BLE Stack

bl e_enabl e_parans_t parans;
uint32_t retv;
uint32_t app_ram base;

menset (&par ans, 0x00, sizeof (parans));

/* set the nunmber of Vendor Specific UUDs to 5 */

par ams. cormon_enabl e_parans. vs_uui d_count = 5;

/* this application requires 1 connection as a peripheral */

par ans. gap_enabl e_par ans. peri ph_conn_count = 1;

/* this application requires 3 connections as a central */

par anms. gap_enabl e_parans. central _conn_count = 3;

/* this application only needs to be able to pair in one central link at a time */
par ans. gap_enabl e_parans. central _sec_count = 1;

/* we require the Service Changed characteristic */

par ams. gatts_enabl e_par ans. servi ce_changed = 1;

/* the default Attribute Table size is appropriate for our application */
parans. gatts_enabl e_parans. attr_tab_size = BLE GATTS ATTR TAB_SI ZE DEFAULT;

/* set app_rambase to the starting nenory address of the application RAM
obtained directly fromthe |inker */
app_rambase = __ LI NKER_APP_RAM BASE;
/* enabl e the BLE Stack */
retv = sd_bl e_enabl e(&arans, &app_ram base);
i f(retv == NRF_SUCCESS)
{
/* Verify that __LI NKER_APP_RAM BASE nat ches the SD cal cul ations */
i f(app_rambase != __LI NKER_APP_RAM BASE)
{
/* The application's starting RAM address is higher than the one required for
this configuration.
An area of nemory will remain unused between the SoftDevice and the
application nenory areas.
To detect this, place a breakpoint here and/or output (app_ram base)
t hrough a debug interface.

*/
}
}
el se if(retv == NRF_ERROR_NO_MEM
{

/* The application's starting RAM address is |ower than the one required for this
configuration.

This is an unrecoverabl e error because the SoftDevice and the application
nenory areas overl ap.

To detect this, place a breakpoint here and/or output (app_ram base)

t hrough a debug interface.
*/
while(1){}
}

Default Attribute Table size changed

The default Attribute Table size has gone down from 0x600 bytes to 0x580 bytes. If the application is not setting a custom Attribute Table

size and it is filling it completely, it will now need to configure a larger, non-default memory area size dedicated to it (bl e_gatts_enabl e_p
arans_t::attr_tab_size)inthe call to sd_ble_enable().

(s130 only) CPU and Radio mutual exclusion option removed

The BLE_COWON_OPT_RADI O _CPU_MJTEX option is no longer part of the SoftDevice API so applications making use of it will need to
remove all code using it. The option is no longer necessary since this version of the SoftDevice is only compatible with IC revision 3 of the
nRF51 series, which no longer requires mutual exclusion between the radio and the CPU during operation.

TX packet management

The user TX packet management has been modified to adapt it to the fact that different connections can now make different packet counts
available to the application, depending on the role and bandwidth configuration. This means that the application now needs to obtain the TX
packet count after each connection is established, and needs also to keep an independent variable for the TX packet count of each
connection.

The prototype has been therefore renamed and adapted:

® uint32_t sd_ble_tx_buffer_count_get(uint8_t *p_count)
® uint32_t sd_ble_tx_packet_count_get(uintl6_t conn_handle, uint8_t *p_count)

Here's an example of an application obtaining the TX packet count for a particular connection and storing it in a global variable for later use:

case BLE_GAP_EVT_CONNECTED:
uint8_t count;
uint16_t conn_handl e = p_bl e_evt->evt. gap_evt.conn_handl e;
sd_bl e_tx_packet _count _get (conn_handl e, &count);
/* store TX packet count for |ater use */
t x_packet _count s[conn_handl e] = count;
br eak;

TX power setting
The sd_bl e_gap_t x_power _set () SV call now accepts the following values as the lowest power setting:

® s130: -30dBm
® s132:-40dBm

If the application code made use of values different from those in its minimum power output mode it will have to be adapted it to conform with
the changes.

Additional link field in the key distribution bitfield

The bl e_gap_sec_kdi st _t bitfield now includes an additional | i nk bit. This must always be set to 0 by the application since it is only
intended for use with dual-mode BR/EDR+BLE solutions.

Additional lesc field in the encryption information structure

A new | esc bit has been added to the bl e_gap_enc_i nf o_t structure. It is important to initialize this bit correctly when loading stored
security keys, so that the SoftDevice can set the connection's security level accordingly.

Additional fields in the security parameters

Two new fields have been added to bl e_gap_sec_parans_t:

® | esc: This enables LE Secure Connections locally when starting a pairing or bonding procedure. If the application does not wish to
use LE Secure Connections and instead use legacy pairing simply set this bit to 0.

® keypr ess: This enables keypress natifications locally when starting a pairing or bonding procedure. Keypress notifications can be
used whenever the Passkey Entry pairing method is selected, both in legacy pairing or LE Secure Connections.

Both fields need to be initialized to the desired value by applications transitioning to this SoftDevice version.

Security keys identification by locality instead of by GAP role

The security keys included in bl e_gap_sec_keyset _t are no longer identified by GAP role, but rather by associating them with the local
device (own) or with the remote device (peer):

® bl e_gap_sec_keyset _t::keys_periphandbl e_gap_sec_keyset _t::keys_central are now expressed in terms of bl e
_gap_sec_keyset _t::keys_own and bl e_gap_sec_keyset _t:: keys_peer

® bl e_gap_sec_parans_t:: kdi st _periphandbl e_gap_sec_parans_t:: kdi st _central are now expressed in terms of b
| e_gap_sec_parans_t:: kdi st _own and bl e_gap_sec_parans_t:: kdi st_peer

® ble_gap_evt_auth_status_t::kdist_periphandbl e_gap_evt_auth_status_t::kdi st_central are now expressed
interms of bl e_gap_evt _auth_status_t:: kdi st_own and bl e_gap_evt_auth_status_t:: kdi st_peer

For example, a multi-role application wanting to distribute its own LTK when acting as a peripheral, but only its IRK when acting as a central

and that always accepts IRKs from the peer no matter the role:

/* Connected */
i f(own_rol e == BLE_GAP_ROLE_PERI PH)

{

sec_par ans. kdi st _own. enc = 1;
}
el se /* BLE_GAP_ROLE_CENTRAL */
{

sec_parans. kdist_own.id = 1;
}

sec_parans. kdi st _peer.id = 1;

Identity key distribution change

When distributing Identity keys during a bonding procedure, the handling of the pointers within the bl e_gap_sec_keyset _t structure has

changed in the following manner:

® Setting bl e_gap_sec_keyset _t::keys_own:: p_i d_key to NULL remains unchanged: the stack will continue to make use of
the currently set Bluetooth address and IRK and distribute them to the peer, but the application will not receive a copy in its memory

® Setting bl e_gap_sec_keyset _t:: keys_own:: p_i d_key to a valid pointer to a location in the application memory will distribute
the same Bluetooth address and IRK as above (the currently set ones) and also make them available to the application

That means that if the application distributed a custom Bluetooth address and IRK using the following deprecated functionality:

/* Connected */

keyset . keys_own. p_i d_key = &app_custom.i d_key;

keyset . keys_own. p_i d_addr _i nfo = &cust om bdaddr;

sd_bl e_gap_sec_parans_repl y(conn_handl e, BLE _GAP_SEC STATUS_ SUCCESS, &sec_par ans,
&keyset) ;

it will now have to manually set those before calling sd_bl e_gap_sec_parans_repl y():

/* Connected */

bl e_opt _t opt;

sd_bl e_gap_address_set (BLE_GAP_ADDR _CYCLE_MODE_NONE,

&app_custom i d_key.id_addr_info);

opt.gap_opt.privacy.p_irk = &pp_custom.id_key.id_info;

opt. gap_opt.privacy.interval _s = APP_ADDR REFRESH S;

sd_bl e_opt _set (BLE_GAP_OPT_PRI VACY, &opt);

keyset . keys_own. p_i d_key = &distributed_id_key;

sd_bl e_gap_sec_parans_repl y(conn_handl e, BLE GAP_SEC STATUS SUCCESS, &sec_par ans,
&keyset);

GATT Server Read/Write events: attribute context removed

The bl e_gatts_attr_context_t type has been removed from the GATT Server API. The two structures that included an instance of it
as a member now include instead a bl e_uui d_t instance to identify the attribute:

® ble_gatts_evt_wite_t::context hasbeenreplaced by bl e_gatts_evt_wite_t::uuid
® ble gatts_evt_read_t::context has beenreplaced by bl e_gatts_evt _read t::uuid

In practical usage most applications store the handles associated with a particular characteristic when populating the Attribute Table.
Calculating the context for each incoming read or write operation was an expensive and time-consuming task, and therefore the field has
been removed and instead replaced by the attribute UUID. The combination of attribute handle and attribute UUID provided in the event
structure should be enough for the application to identify the attribute within the set that has been previously populated.

GATT Server Authorizable Write Commands

Whenever the application enables write authorization for a characteristic value or a descriptor in the Attribute Table (bl e_gatts_attr_nd_
t::w _aut h), all incoming write operations will now require application authorization. In particular this now includes Write Commands (also
called Write Without Response) which will arrive in the same event form (BLE_GATTS_EVT_WRI TE) but with a new field set (bl e_gatts_ev
t_write_t::auth_required)toindicate to the application that the data has not been written into the Attribute Table. Upon handling of
the event the application can decide whether it wants to write the incoming data to the Attribute Table using sd_bl e_gatts_val ue_set ()
or discard it.

Handling incoming authorizable Write Commands

case BLE GATTS EVT_WRI TE:
uint1l6_t conn_handle = p_ble_evt->evt.gatts_evt.conn_handl e;
uintl6_t attr_handle = p_ble_evt->evt.gatts_evt.parans.wite. handl e;
uint16_t offset = p_ble_evt->evt.gatts_evt.paranms.wite. offset;
uint8_t *p_data = p_ble_evt->evt.gatts_evt.parans. wite. data;
uintl6 t dlen = p_ble evt->evt.gatts_evt.parans.wite.len;
i f(p_ble_evt->evt.gatts_evt.parans.wite.auth_required)
{
/* incoming wite command on an attribute requiring authorization,
val idate the incomng data pointed to by p_data */
i f(app_data_authorize(p_data, offset, dlen))
{
/* the application manually wites the incom ng data (p_data) to the
Attribute Table */
bl e_gatts_val ue_t val ue;
val ue.l en = dl en;
val ue. of fset = of fset;
val ue. p_val ue = p_datga;
sd_bl e_gatts_val ue_set(conn_handl e, attr_handl e, &val ue);

}
}

br eak;

GATT Server Write Authorization and peer data

Applications making use of authorization to handle incoming write operations, and in particular Write Requests and app-handled Queued
Writes, will now have to store the incoming data to be provided later to the SoftDevice. Depending on how the application handles the
authorization procedure, this can be done by providing the same pointer contained in the event field, or copying the data into a temporary
storage area if required.

® Authorizing directly in the event handler:

case BLE_GATTS_EVT_RW AUTHORI ZE_REQUEST:

i f(p_ble_evt->evt.gatts_evt.parans. aut hori ze_request.type ==

BLE_GATTS AUTHORI ZE_TYPE_WRI TE)
{

uint16_t conn_handle = p_ble_evt->evt.gatts_evt.conn_handl e;

uintl16_t offset =

p_ble_evt->evt.gatts_evt. parans. aut hori ze_r equest

uintl6 t dlen =

p_ble_evt->evt.gatts_evt. parans. aut hori ze_request

uint8_t *p_data =

p_ble_evt->evt.gatts_evt. parans. aut hori ze_r equest
/* incomng wite command on an attribute requiring authorization,

data */
i f(app_data_authorize(p_data, offset, dlen))

{

bl e_gatts_rw authorize_reply_paranms_t auth_reply;
auth_reply.type = BLE_GATTS_AUTHORI ZE_TYPE_WRI TE;

auth_reply. paranms. wite.gatt_status = BLE GATT_STATUS_SUCCESS;

auth_reply. parans. wite.update = 1;
auth_reply. parans.wite.of fset = offset;
auth_reply.parans.wite.len = dlen;

/* reuse the sane pointer obtained fromthe event

auth_reply. paranms.wite.p_data = p_data;

sd_ble_gatts_rw authorize_reply(conn_handl e,

}
}

br eak;

® Authorizing outside of the event handler:

&auth_reply);

.request.wite.len;

.request.wite.data;

*/

.request.wite.offset;

val idate the

/* global variable storing the authorization data */
struct
{
uintl16_t conn_handl e;
uint16_t offset;
uint16_t dlen;
ui nt 8_t dat a[MAX_DATA] ;
} auth_wite;

[..]

case BLE GATTS EVT_RW AUTHORI ZE_REQUEST:
i f(p_ble_evt->evt.gatts_evt.parans. authorize_request.type ==
BLE_GATTS_AUTHORI ZE_TYPE_WRI TE)
{
/* store the netadata */
auth_write.conn_handle = p_ble_evt->evt.gatts_evt.conn_handl e;
auth_write. offset =
p_ble_evt->evt.gatts_evt. parans. aut hori ze_request.request.wite.offset;
auth wite.dlen =
p_ble_evt->evt.gatts_evt. parans. authori ze_request.request.wite.len;
/* store the actual incomng data */
mencpy(&aut h_write. data,
& bl e_evt->evt.gatts_evt. parans. authori ze_request.request.wite. data,
auth_write.dlen);

}

br eak;

/* authorization conplete */

bl e_gatts_rw authorize_reply_parans_t auth_reply;
auth_reply.type = BLE GATTS_AUTHORI ZE_TYPE_WRI TE;

auth_reply. parans.wite.gatt_status = BLE GATT_STATUS_ SUCCESS;
auth_reply. parans. wite.update = 1;

/* obtain the data */

auth_reply. parans.wite.offset = auth_wite. offset;
auth_reply. parans.wite.len = auth_wite.dlen;

auth_reply. parans.wite.p_data = auth_wite.data;

sd_ble_gatts_rw authorize reply(auth_wite.conn_handle, &auth_reply);

New functionality

Configurable bandwidth

The connections can now be configured to have low, medium or high bandwidth. This can be specified for both TX and RX independently to
allow for asymmetric bandwidth. This is an optional feature and if the application chooses not to use it the SoftDevice will instead configure
the connections with defaults. The default configuration for connections as a central is BLE_CONN_BW M D (both for TX and RX), and for
connections as a peripheral it is BLE_CONN_BW HI GH (both for TX and RX).

When using the configurable bandwidth option the application should have specified beforehand, at BLE stack initialization time, a set of
connection bandwidth configurations that includes the ones that it intends to use through this option. Once a bandwidth configuration for a
particular role is chosen through the sd_bl e_opt _set () SV call, all connections of that role established from that time on will use the
chosen configuration until a new one is set.

Additional information about this topic can be found in the SoftDevice Specification at http://infocenter.nordicsemi.com/.

The following table shows an approximate comparison of connections and bandwidth configuration for previous SoftDevices as well as the
the s13x v2.0.1 configured as shown in the example below.

connections as a peripheral connections as a central

number RX/TXbandwith number RX /TXbandwith

s110v8.0 1 HIGH / HIGH 0

s120 v2.1 (peripheral mode) 1 HIGH / HIGH 0

5120 v2.1 (central mode) 0 - 8 LOW /LOW
s130v1.0 1 MID / MID 3 LOW /LOW
s13x v2.0.1 (default) 0 HIGH / HIGH 0 MID / MID

s13x v2.0.1 (example configuration below) 1 MID / MID 1 HIGH / MID

/* Exanple for one medi um bandwi dth RX and TX connection as a peripheral and
hi gh- bandwi dt h RX, medi um bandwi dth TX connection as a central. */
bl e_conn_bw_counts_t conn_bw counts = {
.tx_counts = {.high_count = 0, .md_count = 2, .l|ow_count
.rx_counts = {.high_count =1, .md_count 1, .low_count

0},
0}

I

bl e_enabl e_parans_t enabl e_parans = {0};

enabl e_par anms. conmon_enabl e_par ans. p_conn_bw_counts = &conn_bw_counts;
enabl e_par ans. gap_enabl e_par ans. central _conn_count = 1;

enabl e_par ans. gap_enabl e_par ans. peri ph_conn_count = 1;

sd_bl e_enabl e(&nabl e_parans, ...);

bl e_opt _t ble_opt;

/* Configure bandwi dth and connect as a peripheral */

bl e_common_opt _conn_bw t conn_bw = { .role = BLE_GAP_ROLE_PERI PH, .conn_bw = {
.conn_bw rx = BLE_CONN.BWM D, .conn_bw tx = BLE CONNBWMD } };

bl e_opt. conmon_opt. conn_bw = conn_bw;

sd_bl e_opt _set (BLE_COMMON_OPT_CONN_BW &bl e_opt);

sd_ble_gap_adv_start(...);

/* Connection established with the configured bandw dth */

/* Configure bandwi dth and connect as a central */

bl e_common_opt _conn_bw t conn_bw = { .role = BLE GAP_ROLE_CENTRAL, .conn_bw = {
.conn_bw rx = BLE_CONN_BWH GH, .conn_bw tx = BLE_.CONNBWMD } };

bl e_opt. conmon_opt. conn_bw = conn_bw,

sd_bl e_opt _set (BLE_COMMON_OPT_CONN_BW &bl e_opt);

sd_bl e_gap_connect(...);

/* Connection established with the configured bandwi dth */

Block encryption

The blocking block encryption SV call sd_ecb_bl ock_encrypt () depends on the hardware encryption block and therefore will require to

http://infocenter.nordicsemi.com/

wait for it to complete before it returns to the application. If the user now sets the SEVONPEND bit in the SCR to 1 before calling this
function, the SoftDevice will sleep while the ECB is running instead of entering a busy loop.

A second SV call has also been introduced to perform multiple block encrypt operations in a single SV call to avoid the context switch
overhead when more than one block of data needs to be encrypted.

uint32_t sd_ech_bl ocks_encrypt (uint8_t block_count, nrf_ecb_hal _data_block_t * p_data_bl ocks);

sd_ecb_blocks_encrypt() example usage

/* global variable storing the authorization data */
nrf_ecb_hal _data_bl ock_t bl ocks[ECB_BLOCK COUNT] ;

/* intialize data bl ocks */

for(i = 0; i < ECB_BLOCK COUNT; i ++)

{
bl ocks[i].p_key = &app_keys[i];
bl ocks[i].p_cleartext = &app_cleartext[i];
bl ocks[i].p_ciphertext = &app_dest[i];

}

sd_ecb_bl ocks_encrypt (ECB_BLOCK_COUNT, bl ocks);

PA/LNA support

A new BLE option, BLE_COVMON_OPT_PA_LNA, and its corresponding option structure, bl e_common_opt _pa_| na_t, have been added to
provide support for power amplifiers and low noise amplifiers. The application is responsible for correctly initializing the option parameter
structure with the required fields that map to the hardware design:

® PA and LNA pins and active level
® Set and Clear PPI channel IDs
® GPIOTE channel ID

PA/LNA option usage

/* PA/'LNA configuration */
ble_opt_t pa_lna_opt = {

.comon_opt = {
.pa_lna = {
.pa_cfg = {
. enabl e =1,
.active_high =1,
.gpio_pin = APP_PA PIN /* GPIO connected to the PA control pin */
I3
.Ina_cfg = {
. enabl e =1,
.active_high =1,
.gpio_pin = APP_LNA PIN /* GPIO connected to the LNA control pin */
}

.ppi _ch_id_set = APP_AMP_PPI _CH ID SET, /* PPl channel the app gives the SD

to set the pins */

.ppi_ch_id_clr = APP_AMP_PPI _CH ID CLR, /* PPl channel the app gives the SD

to clear the pins */

.gpiote_ch_id = APP_AMP_GPIOTE_CH ID /* GPlIOTE channel the app gives the

SD to control the pins */

}
}

}

sd_bl e_opt _set (BLE_COVWON_OPT_PA LNA, &pa_l na_opt);

LE Secure Connections

Version 4.2 of the Bluetooth Specification introduced a new mode of operation for the Security Manager Protocol, which enables the use of
Public Key Cryptography for the generation of security keys. This means that applications can now select the mode of operation of the
Security Manager when performing a pairing or bonding procedure:

Legacy pairing: Setthe | esc bitin bl e_gap_sec_parans_t to 0.
LE Secure Connections: Set the | esc bitin bl e_gap_sec_parans_t to 1.

Please note that, in order for LE Secure Connections to be used, the peer will need to support it. If not, legacy pairing will be used by default.

The SoftDevice implements the Security Manager Protocol and cryptographic toolbox functionality required to enable LE Secure
Connections, but it does not include the Elliptic Curve Cryptography (ECC) methods required to generate public keys and shared secrets.
This means that applications must include their own implementation of ECC. The SoftDevice never requires knowledge of the application's
private key, since it delegates the calculation of the shared secret (DHKey) to the application itself:

bl e_gap_sec_keys_t:: p_pk (own only) is provided by the application and represents the P-256 public key (PK,) that matches
the local private key (SK .). The key is provided as a part of the bl e_gap_sec_keyset _t structure when calling sd_bl e_gap_s

ec_params_reply().
BLE_GAP_EVT_LESC _DHKEY_REQUEST is a new event requesting the application to calculate the shared secret, which is the result
of P256(SKqwn- Perer)' The event structure contains the peer's public key (PK__ .) so that the application can start the

own

peer
calculation of the DHKey. Once the application has completed the calculation it must communicate the result to the SoftDevice by
using the new sd_bl e_gap_I| esc_dhkey_reply() SV call.

Additional API changes introduced by LE Secure Connections:

bl e_gap_evt _passkey_di spl ay_t now contains an additional field, nat ch_r equest , used for the new Numeric Comparison
pairing algorithm

sd_bl e_gap_aut h_key_repl y() now accepts BLE_GAP_AUTH_KEY_TYPE_PASSKEY coupled with a NULL p_key pointer to
indicate a match in the new Numeric Comparison pairing algorithm

sd_bl e _gap_| esc_oob_data_get() andsd_bl e _gap_| esc_oob_dat a_set () have been introduced to support the new LE

Secure Connections OOB pairing method, which is substantially different from the Legacy OOB version

Additional details can be found in the API documentation and the Message Sequence Charts (MSCs) included with the SoftDevice.

Passkey entry keypress notifications

During pairing procedures using the Passkey Entry pairing algorithm (both in Legacy and LE Secure Connections modes) it is now possible
to provide feedback to the peer regarding the keypresses being input by the user. The actual value of the keypresses is never sent over the
air, but the notifications can be sent to provide visual feedback of the keys being pressed.

To enable the application to send keypress notifications to the peer, the following SV call has been introduced:
® sd_bl e _gap_keypress_notify(uint16_t conn_handle, uint8_t kp_not)

Where kp_not maps to any of the values present in the BLE_GAP_KP_NOT_TYPES enumeration.

Sending keypress notifications

/* Pairing procedure using the Passkey Entry algorithmin progress, |ocal device
i nputs passkey */

/* User starts entering the passkey */

sd_bl e_gap_keypress_notify(conn_handl e, BLE GAP_KP_NOT_TYPE_PASSKEY_START);

/* User inputs digits */

sd_bl e_gap_keypress_notify(conn_handl e, BLE GAP_KP_NOT_TYPE PASSKEY DIG T_IN);
sd_bl e_gap_keypress_notify(conn_handl e, BLE GAP_KP_NOT_TYPE_PASSKEY DIG T_IN);
/* User deletes a digit */

sd_bl e_gap_keypress_notify(conn_handl e, BLE GAP_KP_NOT_TYPE PASSKEY DI G T_QUT);
/* User clears the input conpletely */

sd_bl e_gap_keypress_notify(conn_handl e, BLE _GAP_KP_NOT_TYPE_PASSKEY_ CLEAR);

/* User ends the input procedure */

sd_bl e_gap_keypress_notify(conn_handl e, BLE GAP_KP_NOT_TYPE PASSKEY_ END);

Please note that sd_bl e_gap_keypress_noti fy() can return NRF_ERROR BUSY if the application calls it too often and the previous
keypress notification has not made it over the air to the peer yet. In that case the application should queue the keypresses internally and retry
at a later time.

A new event has also been added to allow the application to receive keypress notifications from the peer:

® BLE GAP_EVT_KEY_PRESSED and its corresponding bl e_gap_evt _key_pressed_t

Receiving keypress notifications

/* Pairing procedure using the Passkey Entry algorithmin progress, peer device
i nputs passkey */

/* handl e the event */
case BLE_GAP_EVT_KEY_PRESSED:
switch(p_bl e_evt->evt.gap_evt. parans. key_pressed. kp_not)
{
case BLE GAP_KP_NOT_TYPE_PASSKEY START:
/* Renpte user has started entering the passkey */
br eak;
case BLE GAP KP _NOT_TYPE PASSKEY DIG T IN:
/* Renpte user has input a digits */
br eak;
case BLE_GAP_KP_NOT_TYPE PASSKEY DI G T_QUT:
/* Renmote user has deleted a digit */
br eak;
case BLE GAP_KP_NOT_TYPE_PASSKEY_ CLEAR:
/* Rempte user has cleared the input conpletely */
br eak;
case BLE GAP_KP_NOT_TYPE_PASSKEY END:
/* Renpte user has ended the input procedure */
br eak;

}

Security Mode 1 Level 4

A new security level has been introduced along with support for LE Secure Connections. Security levels are used in GAP and GATT Server
to define the connection's security level and the access requirements for the peer to read and write attributes in the local Attribute Table. The
list of supported security levels is now:

® Security Mode 0, Level 0: No access allowed regardless of the connection's security level

® Security Mode 1, Level 1: No encryption. The peer can read and write the attribute without restrictions

® Security Mode 1, Level 2: Encryption without MITM protection. Access to the attribute requires an encrypted connection (Legacy or
LE Secure Connections) with or without MITM protection

® Security Mode 1, Level 3: Encryption with MITM protection. Access to the attribute requires an encrypted connection (Legacy or LE
Secure Connections) with MITM protection

® Security Mode 1, Level 4: LESC Encryption with MITM protection. Access to the attribute requires an encrypted connection
(LE Secure Connections only) with MITM protection

To honour the new security level (Security Mode 1, Level 4) encryption must be enabled with an LTK that has been generated during a
pairing or bonding procedure using LE Secure Connections with MITM protection (Numeric Comparison, Passkey Entry or OOB). This is the
highest security level available when defining the access requirements (permissions) of attributes in the local Attribute Table.

A new macro has been made available to set bl e_gap_conn_sec_node_t to the new security level:

BLE_GAP_CONN_SEC MODE_SET_LESC ENC W TH M TM

An additional Advertising Data type has been added to bl e_gap. h

BLE_GAP_AD TYPE URI

GATT Client attribute info discovery

A new SV call allows applications to obtain basic attribute information from the peer's Attribute Table:

uint32_t sd_ble_gattc_attr_info_discover(uintl6_t conn_handle, ble_gattc_handl e_range_t const *
p_handl e_r ange) ;

the matching event identifier and structure are also part of this new feature:

® BLE_GATTC_EVT_ATTR_| NFO DI SC RSP
® ble gattc_attr_info_t
® ble gattc_evt_attr_info_disc_rsp_t

This is the only GATT Client function that allows the application to retrieve full 128-bit UUIDs that do not need to be part of the list populated
with sd_bl e_vs_uui d_add() . An example of 128-bit UUID retrieval is shown below.

128-bit UUID retrieval using sd_ble_gatt_attr_info_discover()

bl e_gattc_handl e_range_t handl e_r ange;

/* list all attributes on the peer's Attribute Table */
handl e_range. start _handl e = 0x0001;

handl e_r ange. end_handl e = OxFFFF;

sd_ble_gattc_attr_info_di scover(conn_handl e, &handl e_range);

[--]

/* handl e the event */
case BLE_GATTC EVT_ATTR_I NFO DI SC_RSP:
/* check if we have 128-bit UU Ds */
if(p_ble_evt->evt.gattc_evt.parans.attr_info_disc_rsp.format ==
BLE_GATTC _ATTR_| NFO_FORVAT_128BI T)
{
uint1l6_ t attr_handl e;
bl e_uui d128 t wuui d128;
/* Cbtain the attribute handle and the full 128-bit UUI D */
attr_handl e=
p_ble_evt->evt.gattc_evt.parans.attr_info_disc_rsp.attr_info[0].handl e;
mencpy(&uui d128,
& bl e_evt->evt.gattc_evt.parans.attr_info_disc_rsp.attr_info[0].info.uuidl28. uuidl
28, sizeof (uui d128));
}

br eak;

GATT Server first user attribute handle retrieval

When using the Service Changed characteristic to indicate to the peer that the local Attribute Table structure has changed, it is often useful
to find out at which handle the application-controlled region of the Attribute Table begins. For that specific purpose a new SV call has been
introduced:

uint32_t sd_ble gatts_initial _user_handl e_get(uintl6_t *p_handle);

This allows the application to communicate to the peer the exact range of the attributes that require rediscovery.

Obtaining the first user handle to indicate a Service Changed

uint16_t first_attr_handl e;

sd_ble_gatts_initial _user_handle_get(&irst_attr_handl e);
sd_bl e_gatts_servi ce_changed(conn_handl e, first_attr_handl e, |ast_affected_handle);

GATT Server local attribute metadata retrieval

The GATT Server module has always allowed applications to retrieve the value of any attribute present in the local Attribute Table by means
of the sd_bl e_gatts_val ue_get () SV call. Now in addition applications can also retrieve the UUID and metadata of any local attribute
using the new function:

uint32_t sd_ble gatts_attr_get(uintl6_t handle, ble_uuid_t * p_uuid, ble_gatts_attr_nd_t * p_nd);

This can be useful in several scenarios, one of which is calculating or verifying the structure of the local Attribute Table regardless of the
current attribute values, focusing instead only in the layout itself

Obtaining the UUID and metadata of all local attributes

uint1l6_ t attr_handl e;
bl e_uuid_t uuid;
ble gatts_attr_nd_t attr_nd;

/* start at the first valid user attribute handle */
sd_ble_gatts_initial _user_handl e_get(&ttr_handl e);

/* traverse the Attribute Table obtaining the UU D and netadata for each attribute
*/

whil e(sd_ble_gatts_attr_get(attr_handle, &uuid, &attr_nd) == NRF_SUCCESS)

{

/* use the uuid and attr_nd here */
attr_handl e++;

}

GATT Server user memory layout for system attributes

The data format used by the GATT Server to store system attribute data is now fully documented in the APl documentation for applications
that need to parse it. The data format is used by the following 2 functions:

® sd_ble gatts_sys_ attr_set()
® sd_ble gatts_sys_ attr_get()

The format documentation applies to the data pointed to by the p_sys_at t r _dat a pointer in both of the functions above.

/* Renaned GAP SVCs */

Long ATT MTU related API changes:

- A new BLE initialization structure, ble_gatt_enable_params_t, for setting the maximum ATT_MTU size the SoftDevice
can send or receive.

- A new SV call, sd_ble_gattc_exchange_mtu_request, for starting an ATT_MTU exchange.

- Anew event, BLE_GATT_EVT_MTU_EXCHANGED, indicating the completion of an ATT_MTU exchange and the
applied ATT_MTU size.

- SV calls sd_ble_gatts_hvx and sd_ble_gatts_service_changed return NRF_ERROR_INVALID_STATE ifan ATT_MTU

exchange is ongoing.

Here is an example code for using the Long ATT_MTU feature.

ble_enable params t enable_params ={0};

/* Set maximum ATT_MTU size the SoftDevice can send or receive */

enable_params.gatt_enable_params.att_mtu = 158;

/* Set other BLE Initialization parameters */

[* Enable the BLE Stack */
sd_ble_enable(& enable_params, ...);

uintl6_t conn_handle;

/* Establish connection */

[* Start ATT_MTU exchange */

sd_ble gattc_exchange_mtu_request(conn_handle);

uintl6 tatt mtu;

/* Handle the event */
case BLE_GATT_EVT_MTU_EXCHANGED:
/* Store ATT_MTU for later use*/

att_mtu = p_ble_evt->evt.gatt_evt.params.mtu_exchanged.att_mtu;

/* New ATT_MTU sizeis now applied to GATT procedures for this connection */

	s13x_nrf5x migration document

