USBD MSC CDC Hands On
[bookmark: task-1-add-the-cdc-driver-to-the-example]Task 1: Add the CDC driver to the example
Scope: The point of this task is to learn how to combine multiple USB classes in one project, and make the nRF52840 enumerate as multiple devices when connected to a USB host.
The starting point will be the standard MSC (Mass Storage Class) device that acts as a USB memory stick when connected to the host, and allows you to store data in the 8MB QSPI memory chip on the nRF52840.
On top of that we want to add a CDC USB class, that makes the nRF52840 show up as a virtual comport device on the PC (in addition to the J-Link comport that shows up when the programming USB port is connected).
1. Add app_usbd_cdc_acm.h to the list of include files.
· Hint: Change the Keil include paths to also contain: ..\..\..\..\..\..\components\libraries\usbd\class\cdc
..\..\..\..\..\..\components\libraries\usbd\class\cdc\acm
·
[image: C:\Nordic Semiconductor\nRF5_SDK_13.0.0\examples\training_hk_march17\usbd_msc_cdc_asm_hands_on\pics\01_add_directories.png]
1. Change the MSC endpoints in APP_USBD_MSC_ENDPOINT_LIST from 1 to 3 to avoid conflict with the CDC endpoints. After the change it should look like this:
· #define ENDPOINT_LIST() APP_USBD_MSC_ENDPOINT_LIST(3, 3)
1. Add the code below into the nRF Libraries part of your sdk_config.h file. You can insert it at line 1067 in sdk_config.h.
· // <h> app_usbd_cdc_acm - USB CDC ACM class

//==
// <q> APP_USBD_CLASS_CDC_ACM_ENABLED - Enabling USBD CDC ACM Class library

#ifndef APP_USBD_CLASS_CDC_ACM_ENABLED
#define APP_USBD_CLASS_CDC_ACM_ENABLED 1
#endif

// <q> APP_USBD_CDC_ACM_LOG_ENABLED - Enables logging in the module.

#ifndef APP_USBD_CDC_ACM_LOG_ENABLED
#define APP_USBD_CDC_ACM_LOG_ENABLED 0
#endif

// </h>
· Open the graphical view of the SDK config file, and verify that the APP_USBD_CLASS_CDC_ACM_ENABLED parameter can be found. [image: C:\Nordic Semiconductor\nRF5_SDK_13.0.0\examples\training_hk_march17\usbd_msc_cdc_asm_hands_on\pics\01b_sdk_config.png]

1. Add app_usbd_cdc_acm.c to the "nRF_Libraries" group in your project. The file can be located in 5_SDK_13.0.0
1. The code below is taken from the CDC example in the SDK, and includes the endpoint initialization and event handler for the CDC class. Copy the code and paste it into main.c, below the // ### ------------------ TASK 1: STEP 5 ------------------ tag
· static void cdc_acm_user_ev_handler(app_usbd_class_inst_t const * p_inst,
 app_usbd_cdc_acm_user_event_t event);

#define CDC_ACM_COMM_INTERFACE 1
#define CDC_ACM_COMM_EPIN NRF_DRV_USBD_EPIN2

#define CDC_ACM_DATA_INTERFACE 2
#define CDC_ACM_DATA_EPIN NRF_DRV_USBD_EPIN1
#define CDC_ACM_DATA_EPOUT NRF_DRV_USBD_EPOUT1

/**
 * @brief Interfaces list passed to @ref APP_USBD_CDC_ACM_GLOBAL_DEF
 * */
#define CDC_ACM_INTERFACES_CONFIG() \
 APP_USBD_CDC_ACM_CONFIG(CDC_ACM_COMM_INTERFACE, \
 CDC_ACM_COMM_EPIN, \
 CDC_ACM_DATA_INTERFACE, \
 CDC_ACM_DATA_EPIN, \
 CDC_ACM_DATA_EPOUT)

static const uint8_t m_cdc_acm_class_descriptors[] = {
 APP_USBD_CDC_ACM_DEFAULT_DESC(CDC_ACM_COMM_INTERFACE,
 CDC_ACM_COMM_EPIN,
 CDC_ACM_DATA_INTERFACE,
 CDC_ACM_DATA_EPIN,
 CDC_ACM_DATA_EPOUT)
};

/**
 * @brief CDC_ACM class instance
 * */
APP_USBD_CDC_ACM_GLOBAL_DEF(m_app_cdc_acm,
 CDC_ACM_INTERFACES_CONFIG(),
 cdc_acm_user_ev_handler,
 m_cdc_acm_class_descriptors
);

static char m_rx_buffer[NRF_DRV_USBD_EPSIZE * 16];

/**
 * @brief User event handler @ref app_usbd_cdc_acm_user_ev_handler_t (headphones)
 * */
static void cdc_acm_user_ev_handler(app_usbd_class_inst_t const * p_inst,
 app_usbd_cdc_acm_user_event_t event)
{
 app_usbd_cdc_acm_t const * p_cdc_acm = app_usbd_cdc_acm_class_get(p_inst);

 switch (event)
 {
 case APP_USBD_CDC_ACM_USER_EVT_PORT_OPEN:
 {
 //bsp_board_led_on(LED_CDC_ACM_OPEN);

 /*Setup first transfer*/
 ret_code_t ret = app_usbd_cdc_acm_read(&m_app_cdc_acm,
 m_rx_buffer,
 sizeof(m_rx_buffer));
 APP_ERROR_CHECK(ret);
 break;
 }
 case APP_USBD_CDC_ACM_USER_EVT_PORT_CLOSE:
 //bsp_board_led_off(LED_CDC_ACM_OPEN);
 break;
 case APP_USBD_CDC_ACM_USER_EVT_TX_DONE:
 //bsp_board_led_invert(LED_CDC_ACM_TX);
 break;
 case APP_USBD_CDC_ACM_USER_EVT_RX_DONE:
 {
 /*Get amount of data transfered*/
 size_t size = app_usbd_cdc_acm_rx_size(p_cdc_acm);
 NRF_LOG_INFO("RX: size: %lu char: %c\r\n", size, m_rx_buffer[0]);

 /*Setup next transfer*/
 ret_code_t ret = app_usbd_cdc_acm_read(&m_app_cdc_acm,
 m_rx_buffer,
 sizeof(m_rx_buffer));

 ASSERT(ret == NRF_SUCCESS); /*Should not happen*/
 //bsp_board_led_invert(LED_CDC_ACM_RX);
 break;
 }
 default:
 break;
 }
}
1. Copy and paste the CDC class init phase into main.c, below the // ### ------------------ TASK 1: STEP 6 ------------------ tag:
· app_usbd_class_inst_t const * class_cdc_acm = app_usbd_cdc_acm_class_inst_get(&m_app_cdc_acm);
ret = app_usbd_class_append(class_cdc_acm);
APP_ERROR_CHECK(ret);
1. Test that the code is working properly:
· Open the terminal program, and connect to the J-Link CDC com port on your kit
· Compile the code and flash the board
· Run the kit without connecting the "nRF USB" connector.
· Press Button 3 once to format the file system on the board.
· Press Button 1 a couple of time to create some random files in the file system.
[image:]
· Connect the "nRF USB" connector and verify that you can see the random files in the USB disk that shows up (if you only have one USB cable, just move the USB cable to "nRF USB")
[image:]
· In the Device Manager in Windows, verify that the "nRF52 USB CDC Demo" Port can be found
[image:]

[bookmark: _GoBack]You have now successfully combined two USB classes into a single project, and can proceed to task 2.
[bookmark: task-2-add-code-to-disconnect-the-file-s]

Task 2: Add code to disconnect the file system from the USB
Scope: The point of task 2 is to disconnect the MSC class from the USB interface locally, so that the file system can be accessed without having to remove the USB cable physically. Code will also be added to add some data into the local files, which can be verified on the PC when the MSC class is connected.
For all the steps below, refer to the corresponding TASK 2: STEP x tags in the code to see where you should add the code.
1. Add a fourth button to the application, and call it BTN_CHANGE_MODE BSP_BOARD_BUTTON_3 is available and can be used for this.
1. Add a variable that will contain the application mode, it only needs to contain two states (USB enabled/disabled)
Initialize the variable to the USB enabled state
1. Add another if() clause to check if BTN_CHANGE_MODE is pressed, and add a while loop when BTN_CHANGE_MODE is pressed similar to the other buttons above.
1. If the BTN_CHANGE_MODE was pressed, look at the USB enabled state variable (the one you created in STEP 3) and do one of two things: If the USB state is currently enabled: - Change the USB state variable to disabled - Change the m_usb_connected variable to false - (Optional) Write a log message to display the state change If the USB state is currently disabled: - Change the USB state variable to enabled - Enable the usbd interface (hint: the function can be found in app_usbd.h/c) - Change the m_usb_connected variable to true - (Optional) Write a log message to display the state change
1. Use the f_write (FILE* fp, const void* buff, UINT btw, UINT* bw) function to write some data to the random file Hint: The btw parameter is the length of the data to write. The bw parameter must be a pointer to an int, and the number of bytes written to the file will be reported here.
1. Test the changes you have made:
· Power up the kit and connect both USB cables (or just "nRF USB if you only have one). Make sure the MSC device shows up in Windows
· Press Button 4 on the kit (corresponding to BSP_BOARD_BUTTON_3), and verify that the MSC drive disappears in Windows
· Press Button 1 on the kit to create a new file locally
· Press Button 2 on the kit to verify that the new file shows up in the file list
· Press Button 4 again to go back to USB enabled mode. Verify that the drive appears in Windows, and that you can open the file
· Verify that the string written in STEP 5 is present in the file
[image:]
image4.png

image5.png

image6.png

image1.png

image2.png

image3.png

