nRF9160 - Putting the "smarts" into Smart meters

Nordic Tech Webinar

Kristian Sæther / Product Manager - Cellular IoT/ January 2021

Practicalities

- Duration: ~45 mins + Q&A
- Questions are encouraged!
 - Please type questions in the top of the right sidebar
 - All questions are anonymous
 - Try to keep them relevant to the topic
 - We will answer them towards the end
- The chat is not anonymous, and should not be used for questions
- Go to DevZone if you have more questions
- A recording of the webinar will be available together with the presentation at webinars.nordicsemi.com

NORDIC SEMICONDUCTOR

Agenda

- Smart meters & Cellular IoT connectivity
- Introduction to nRF9160
- How nRF9160 solves smart metering challenges?
 - Connectivity
 - Flexibility, Integration & edge computing
 - Power Consumption
 - Support

Why do Meters have to be Smart?

Utility infrastructures are complex to manage and maintain – and the complexity grows

Disruptive technologies are forcing utility infrastructures to evolve* (renewable energies, hydrogen etc)

Governments and people asking for efficient networks and transparency

"Smart meters" are meters that enable the collection and processing of metering information in order to:

- Monitor and control the utility infrastructure
- Drive efficiencies in the transmission and distribution networks
- Improve operations
- Make data available (directly / indirectly) to end users to help making smart choices

How to get a meter Smart?

Edge computing

Cloud/Head-end system

Edge + Connectivity + Cloud = Enabling Smart decisions

It requires seamless exchange of more and more information

Critical: how to design and optimize such flow?

Utilities focusing on their core business

Edge computing

Wireless Connectivity

Cloud/Head-end system

Head-end system sets requirements on the Wireless Connectivity and <u>vice versa</u>

Important to understand capabilities of each connectivity technologies & protocols

Many utilities opting for different solutions

→ <u>Demand for standard-based, interoperable,</u> flexible, global metering solutions

Utiliti head ar

interface

"Outcome based approach"

Utilities want to focus on head-end systems (Data and Device Mgmt)

Meter to cloud wireless connectivity

Requirements from Utilities:

- Built on Standards (at multiple levels)
- Low Total Cost of Ownership
 - cost on infrastructure
 - Simple I&C / operations (plug & play)
 - Robust (e.g., FOTA) to limit on-site maintenance
- Secure
- Future proof (15-20years lifespan)
- Scalable (data rate / number of devices)
- Multivendor approach

Standardizing the connectivity: Cellular IoT

Wireless technology landscape

Cellular IoT (NB-IoT & LTE-M) is the ideal technology for utilities to connecting smart meters

- ✓ Built on solid standards (3GPP)
- Enables multi vendor approach
- Scalable & future proof
- ✓ Low TCO no infrastructure costs
- Simple: plug & play
- Advanced connectivity (low power, coverage, throughput, FOTA, flexible protocols, etc.)
- ✓ Different protocols support different uses cases

Cat-M1, Cat-NB1, Cat-NB2

	Cat. M1	Cat NB1	Cat NB2 (Rel 14)	
On air BW	■ 1.4 MHz BW	• 200 kHz BW	■ 200 kHz BW	
Throughput Layer 1	>300 kbps	~60 kbps	• ~100-170 kbps	
Power consumption	+++	+++	+++	
Coverage	++	+++	+++	
FW Upgrades (FOTA)	+++	+	++	
Latency	+++		-	
Mobility (LTE)*	Yes	No	Limited	
Roaming	Available	Limited	Limited	
	Electricity	Gas/water	Gas/water	
	Advanced Gas/water			

^{*}Remember: <u>stationary</u> devices (e.g. meters) can benefit from Mobility: <u>Radio condition are never stationary!</u>

Meter to cloud connectivity

How to:

- choose the connectivity (LTE-M vs NB-IoT)
- choose protocols for data (TCP, UDP, MQTT; CoAP, etc)?
- choose the protocol for device management (e.g. LWM2M) to handle many devices?
- add edge-processing and optimize data upload?
- secure the connectivity?
- achieve Low Power?
- achieve Low Latency?
- have built-in flexibility and build a global solution?

nRF9160 simple path to smart meters

NORDIC[®] SEMICONDUCTOR

This is nRF9160

Based on Nordic Dual Core chipset:

- LTE-M/NB-IoT modem with GPS
- ARM Cortex M33 MCU for the application

Certified System in Package (SiP)

Multiband support for global coverage

Small form factor (includes PMIC, RF FEM, passives and crystals)

Ultra Low Power

Best in class FEM and Packaging

Optimized Front End

23dBm Max Tx Power (ideal also for <u>Water / Gas meters</u>; i.e. better coverage)

Very Stable Tx:
Temperature range -40 to 85 °C (3GPP)
(ideal also for electricity meters where
temperature can be critical)

Advanced Packaging

Shield technology ("MicroShield™ by Qorvo") proven in high-volume manufacturing for ~10-years

(Ideal also for water / gas application, where potting is needed)

Certified world-wide band support

Global - 3GPP

Completed

Regulatory standards

CE - FCC - ISED - ACMA RCM -NCC - IMDA - MIC - MSIP - IFT -SRRC

Completed

Carrier

AIS, AT&T, Bell, China
Telecom, Deutsche
Telekom, KDDI, LG U+,
SoftBank, Telstra, Verizon,
Vodafone

Completed (+More Coming)

How nRF9160 is solving meter to cloud connectivity

Solving smart meter challanges

Flexibility, Integration & Edge computing

Power Consumption

Support and time to market

Flexibility, Integration & edge computing

The benefits of System on Chip approach

Case study: advanced cloud connectivity

Meter A for utility in USA

- LTE-M
- Data on demand: DLMS over MQTT
- Low Latency response for controlling meter's actuator (e.g. switch off valve)
- HTTPS for Application FOTA
- LWM2M for Carrier Device Management
- Ultra low power

Meter B for utility ir Europe

- NB-IoT
- Push Data: UDP Client
- Generic LWM2M for Utility DM
- Ultra low power

Trends:

- More complex protocols (MQTT, CoAP, LWM2M)
- Multiple socket connections to different clouds (data & DM)
- Avanced security (TLS, DTLS)
- More complex application protocols → demand for extra pre-proceesing power to optimize the information to be sent

NORDIC[®] SEMICONDUCTOR

Important observations*

Cellular standards

- LTE-M
 - High speed, high capacity
 - Power consumption less correlated with payload size
- NB-IoT
 - Slow, low capacity → <u>NOT suggested for</u> <u>meters with frequent uploads (e.g. electricity</u> meters)
 - Energy consumption linear with payload size
 - Carrier limitations

Application protocols

- MQTT (TCP)
 - Most ideal for larger data packets
 - Popular and well supported protocol
- CoAP
 - Less overhead compared to MQTT
 - Enables reliable UDP → <u>suggested for NB-IoT</u>
 - Not that popular

Adding nRF9160 to the meters

Edge computing + Wireless Connectivity

nRF9160 adds both:

- LTE-M /NB-IoT connectivity
- Fully open processing unit with simple development environment

SoC approach:

- Customer application running on the processor
- It adds edge computing capabilities and extra flexibility in protocols stack
- It makes solution more flexible and predictable (e.g. better for power consumption, more flexible sockets)

Dedicated application processor = flexibility

- 64 MHz ARM® Cortex®-M33 CPU
- ARM® Trustzone® for trusted execution
- ARM® Cryptocell 310 for application layer security
- 1 MB Flash & 256 KB RAM
- 4 x SPIM/SPIS/UART/TWIM/TWIS
- PDM, I2S, PWM, ADC
- 32 GPIOs

nRF9160: Flexible and advanced protocols

Nordic has designed the LTE modem

Nordic provides STANDARD BSD Socket API to the modem:

- 8 generic sockets that can be used freely between UDP, TCP, TLS, DTLS, and AT commands
- 1 GNSS/AGPS socket + 1 modem DFU socket + 10 PDN sockets
- Support for both TCP/UDP Client and Server

Nordic provides advanced protocols (LWM2M) and security modules (mbedTLS) seamlessly integrated with modem, all included in nRF Connect SDK

Customer can write application easily

- No effort on writing Drivers or to interface to the modem
- Easy for software development. Seamless integration
- More flexible
- Lower Power & Predictable

nRF9160

M33 MCU Core

nRF Connect SDK for application processor

Open MCU with Nordic nRF Connect SDK:

- Modern software development
- Flexible & scalable:
 - Integrated truly opensource RTOS: Zephyr
- Simple to port code across many vendors boards
- All in one place: Cellular, Bluetooth LE, Bluetooth Mesh, Zigbee, Thread etc
- One code base and toolchain for nRF91, nRF53 and nRF52
- Optional for nRF52 Series

* Zephyr Platinum members

Summary: nRF9160 SoC (modem+MCU) approach

Support for all major protocols

e.g. MQTT, CoAP, LWM2M, HTTP(S) etc

Native in nRF Connect SDK→ simple SW development

- Easy to adapt to your needs
- Flexible sockets: connect to multiple Clouds
- LWM2M Client stack is free of charge
- Robust and flexible FOTA
- RTOS for a modular approach
- Cloud examples

Connectivity protocols seamlessly integrated with modem

- Protocol optimized by Nordic to work with the LTE modem: customers can focus on their connectivity application
- Nordic owner of the entire solution (SDK and modem FW)
- Easy to support customers if problems

Examples: innovating in smart metering

Cellular IoT, M-Bus and LoRaWAN protocols on single nRF9160 SiP

Adding Cellular IoT to DLMS meter by using nRF9160

By Lobaro

https://www.lobaro.com/ https://www.nordicsemi.com/News/2021/01/Lobaro-is-using-nRF9160-SiP-in-its-Wireless-MBus-Gateway By Gurux & Nordic

 $\frac{https://devzone.nordicsemi.com/f/nordic-q-a/59794/nrf9160-gurux-dlms-server-example/}{}$

How to use the application <u>processor</u> in nRF9160

1. SoC approach:

Your application runs on the nRF9160 application processor

Serial LTE Modem*:

AT Command interface to nRF9160. Open source.

Serial LTE Modem: simple migration

Power consumption

How to have a predictable solution?

You need optimized cellular performances. Always

Question:

Which average 81.92s eDRX current can we expect with nRF9160* in Boston (USA) vs California (USA)? Same application, same device/product, same network.

Currents depend also on network settings!

- Cellular is complex: very important to understand how LTE and modem work
- Choose a radio with optimized radio under all network conditions in order to have a solution with predictable power consumption

Building Ultra Low Power & predictable products

Optimized HW and SW

Use best in class HW & SW

Smart application

Take advantage of dual core, optimizing the application: when and what to send

Testing

Understand all currents and how LTE works

nRF9160 = Ultra Low Power

Sleep Current Consumption

System Disabled	0.15uA	Device's internal power regulator disabled (entire device down). Reset when powered on.
PSM Floor	2.7uA	LTE modem: RAM fully retained; M33 MCU: in idle with full RAM Retained; RTC on;

RCC mode - LTE-M

eDRX average current, 81.92 s eDRX, one PO per PTW, PTW = 2.56 s		This is cycle average current, no repetitions, DRX is set by network - in this case DRX 2.56s No extra calibration currents needed Ultra low eDRX floor < 6uA
Idle eDRX average current, 655 s, one PO per PTW, PTW = 2.56 s		
Uplink 180 kbit/s, Pout 23 dBm,	115mA	RMC settings as per 3GPP TS 36.521-1 Annex A.2

Leverage the new features PSM and eDRX in your meter design. Forget about 2G!

Online Power Profiler for LTE

https://devzone.nordicsemi.com/

Online Power Profiler for LTE

Measure it yourself!

New DevKit

PPK II*

New Tools and SW

New nRF9160 DK v1.0 optimized for power measurements

New Power Profiler Kit (2nd Gen)

Advanced Low Cost

Power analyzer

Online power profiler

New application examples:

UDP

Serial LTE Modem

^{*} Watch Nordic Webinar: "Become An Expert On Power Profiling Your Application"

Support

Direct technical support - down to chipset!

Full Ownership of the solution

150+ LTE engineers, in-house In house chipset design

Online Technical Support Center and Local FAEs

https://devzone.nordicsemi.com/

24h response time Private or public tickets Experts from R&D Forum with 70K users

Open documentation: https://infocenter.nordicsemi.com/index.jsp https://developer.nordicsemi.com/nRF_Con nect_SDK/doc/latest/nrf/index.html Nordic GitHub

https://github.com/Nor dicSemiconductor 80+ Repos, Examples, SDK, more

nRF Connect SDK: https://github.com/nrfc onnect

Contact Nordic Sales

- Fill in the contact form to talk to Nordic Regional Sales Managers: https://www.nordicsemi.com/About-us/Contact-Us
- Business Development Manager for metering: Lorenzo Amicucci <u>lorenzo.amicucci@nordicsemi.no</u>

 Keep updated with Nordic News: <u>https://www.nordicsemi.com/News</u> Q&A

