I'm searching for some more detailed information of the SAADC input impedance of the nRF52 family (uses nRF52832 and nRF52810).

I have read some posts regarding that topic but cannot establish a complete picture of it. Even that it is formally outdated, the best sketch of the ADC electrical elements is found in the Infocenter:

http://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.nrf52832.ps.v1.1%2Fsaadc.ht ml&cp=2 1 0 36 11 0&anchor=unique 1874651084

I understand that the R_{LADDER} resistors can be enabled or not, dependent if pull or mid idle voltage is needed. C_{SAMPLE} is only connected during acquisition and conversion. But what about R_{INPUT} that is specified to be typically >1M Ω . From some posts, one could get the impression that the value of R_{INPUT} changes dependent on the SAADC operation state (idle or conversion).

I'm aware of the source resistance and settling time issue, but if using continuous conversion, a relative low value of R_{INPUT} can potential load the source (resistive divider). If e.g. R_{SOURCE} is $200\text{k}\Omega$, then an R_{INPUT} of $1\text{M}\Omega$ will significantly lower the sampled voltage.

- a) When SAADC is idle, what is the minimum value (over temperature) and typical value (25°C) of R_{INPUT}?
- b) When SAADC is converting, what is the minimum value (over temperature) and typical value (25 $^{\circ}$ C) of R_{INPUT}? And do this depend on the gain setting or other settings?
- c) R_{LADDER} is typically 160k Ω . What is the minimum and maximum value of R_{LADDER} over temperature?
- d) C_{SAMPLE} is typically 2.5pF. What is the minimum and maximum value of C_{SAMPLE} over temperature?