
nRF Util
v6.1.0

User Guide

4399_007 / 2021-11-17

Contents
Revision history. iii

1 Introduction. 4

2 Installing nRF Util. 5
2.1 Installing from PyPI . 5
2.2 Installing from sources . 5

3 Displaying help. 7

4 Generating DFU packages. 8
4.1 DFU package combinations . 8

5 Performing a DFU. 11
5.1 DFU over Bluetooth LE . 11
5.2 DFU over ANT . 11
5.3 DFU over Thread . 12
5.4 DFU over Zigbee . 12

5.4.1 Updating external applications . 13
5.5 DFU over a serial UART connection . 13
5.6 DFU over a serial USB connection . 14

6 Generating and displaying keys. 15

7 Generating and displaying bootloader settings. 16

8 Generating HEX files for Zigbee. 18

9 Displaying version information. 19

10 Customizing the init packet. 20

Glossary . 22

Acronyms and abbreviations. 23

Legal notices. 24

4399_007 ii

Revision history

Date Description

2021-11-17 • Added nRF52820 and nRF52805 to Table 2: --family settings on page 16
• Editorial changes

July 2020 Updated for nRF Util v6.1:

• Added Generating HEX files for Zigbee on page 18

December 2019 Updated for nRF Util v6.0:

• Updated tool name
• Updated Python version
• Updated Generating DFU packages on page 8
• Updated Performing a DFU on page 11
• Added DFU package combinations on page 8

March 2019 Updated for nrfutil v5.1.0:

• Added DFU over ANT on page 11

February 2019 Updated for nrfutil v5.0.0:

• Added Updating external applications on page 13

October 2018 Updated for nrfutil v4.0.0:

• Added DFU over Zigbee on page 12

December 2017 Updated for nrfutil v3.4.0:

• Added DFU over Thread on page 12
• Added DFU over a serial USB connection on page 14
• Updated the examples for Generating DFU packages on page 8 to show

how to create unsigned packages

March 2017 Updated for nrfutil v2.2.0:

• Added support for serial DFU (DFU over a serial UART connection on page
13)

• Changed the location of the dfu-cc.proto file in the DFU bootloader
implementation (Customizing the init packet on page 20)

November 2016 Updated for nrfutil v2.0.0

September 2016 First release

Previous versions
PDF files for relevant previous versions are available here:

• nrfutil User Guide v1.0 (corresponds to nrfutil v1.5.0)

4399_007 iii

https://infocenter.nordicsemi.com/pdf/nrfutil_v1.0.pdf

1 Introduction

The nRF Util application is a Python package and command-line utility that supports Device Firmware
Update (DFU) and cryptographic functionality.

The nRF Util application and its library has the following features:

• DFU package generation
• Cryptographic key generation, management, and storage
• Bootloader settings generation
• DFU procedure on the following protocols:

• Bluetooth® Low Energy
• Serial over UART
• Serial over USB
• Thread unicast
• Thread multicast
• Zigbee
• ANT™

There are two different DFU package formats:

• Legacy – Uses a simple structure and no security.
• Modern – Uses Google's protocol buffers for serialization and can be cryptographically signed.

The DFU package format transitioned from legacy to modern in nRF5 SDK v12.0.0. Depending on the SDK
version that you are using, select a compatible release of this tool:

• Version 0.5.x generates legacy firmware packages compatible with nRF5 SDK v11.0.0 and earlier.
• Version 1.5.0 and later generate modern firmware packages compatible with nRF5 SDK v12.0.0 and

later.
• Version 2.2.0 or later is required to generate a bootloader settings page that is compatible with

nRF52840.
• Version 4.0.0 and later generate modern firmware packages compatible with nRF5 SDK v15.1.0 and

later.
• Version 5.0.0 and later generate modern firmware packages compatible with nRF5 SDK v15.3.0 and

later.

Note: To create firmware images compatible with nRF SDK 12.0 to nRF SDK 15.0, use the --no-
backup command when generating DFU settings.

See the DFU bootloader and BLE Secure DFU Bootloader example in the SDK documentation for more
information about DFUs.

4399_007 4

https://infocenter.nordicsemi.com/topic/sdk_nrf5_v17.1.0/lib_bootloader.html
https://infocenter.nordicsemi.com/topic/sdk_nrf5_v17.1.0/ble_sdk_app_dfu_bootloader.html

2 Installing nRF Util

You can install nRF Util from the Python Package Index (PyPI) or you can run or install it from the sources.

In both cases, the following prerequisites must be installed:

• Python 3.7 or later
• pip (see Installing Python Modules)

2.1 Installing from PyPI
nRF Util is available as a package in the Python Package Index (PyPI) and can be downloaded and installed
directly using the Python installer program pip.

Enter the following command to install the latest published version from PyPI:

pip install nrfutil

This command installs nRF Util and all required packages.
When installing on macOS, you might get an error about the Python module six. In this case, enter the
following command instead:

pip install --ignore-installed six nrfutil

If you are running nRF Util on Windows, the runtime libraries targeted during the library build must be
present when running code using the library. The following errors indicate that the runtime libraries are
not available:

• Missing MSVC*120.DLL or MSVC*140.DLL
• RuntimeError: Could not load shared library <path>/

pc_ble_driver_shared.dll : '[Error 193] %1 is not a valid Win32
application

In this case, install the Visual C++ redistributable packages for Visual Studio 2013 or Visual Studio 2015.
Select the version that corresponds to the architecture of your Python installation (x86 or x64).

2.2 Installing from sources
Download the sources from GitHub to install nRF Util.

In addition to Python and pip, installing nRF Util from the sources requires the Python setuptools. To
upgrade to the latest version, run the following command:

pip install -U setuptools

If you want to create an executable for nRF Util, install pyinstaller:

pip install pyinstaller

Complete the following steps to install nRF Util from the sources.
1. Clone the nRF Util GitHub repository.
2. Open a command prompt in the folder where you cloned the repository and run pip install -r

requirements.txt to install all prerequisites.

4399_007 5

https://www.python.org/downloads/
https://docs.python.org/2/installing/
https://www.microsoft.com/en-us/download/details.aspx?id=40784
https://www.microsoft.com/en-us/download/details.aspx?id=48145
https://pypi.org/project/setuptools/
https://github.com/NordicSemiconductor/pc-nrfutil/

Installing nRF Util

3. Set up nRF Util in one of the following ways:

• Run nRF Util from the sources without installation:

python nordicsemi/__main__.py

The remainder of this document assumes that you have installed the tool and can call it with
nrfutil. If you choose to run it without installation, always replace the nrfutil command with
python nordicsemi/__main__.py and add the required command-line options.

• Install the library to the local Python site-packages and script folder:

python setup.py install

• Generate a self-contained executable version of the utility:

pyinstaller nrfutil.spec

Note: Some anti-virus programs will stop pyinstaller from executing correctly when
it modifies the executable file. In this case, configure your anti-virus program to ignore
pyinstaller.

If you are running nRF Util on Windows, the runtime libraries targeted during the library build must be
present when running code using the library. The following errors indicate that the runtime libraries are
not available:

• Missing MSVC*120.DLL or MSVC*140.DLL
• RuntimeError: Could not load shared library <path>/

pc_ble_driver_shared.dll : '[Error 193] %1 is not a valid Win32
application

In this case, install the Visual C++ redistributable packages for Visual Studio 2013 or Visual Studio 2015.
Select the version that corresponds to the architecture of your Python installation (x86 or x64).

4399_007 6

https://www.microsoft.com/en-us/download/details.aspx?id=40784
https://www.microsoft.com/en-us/download/details.aspx?id=48145

3 Displaying help

Add --help to any nRF Util command to display help about the command.

Help is context-sensitive. Enter nrfutil --help to get information about the general usage of nRF
Util, or nrfutil command --help to display help for a specific command, which can also correspond
to a protocol name.

For example, enter the following command to display help on the DFU over Bluetooth LE procedure:

nrfutil dfu ble --help

To display all available options for Zigbee, enter the following command:

nrfutil zigbee --help

4399_007 7

4 Generating DFU packages

The pkg command generates a package to use for a DFU. The package contains the new firmware image,
an init packet, and a manifest file that indicates the package format. The command can also be used to
display the package contents.

Run nrfutil pkg generate to generate a zip file that you can use later with a mobile application
or another tool to update the firmware of an nRF5 device. You can see available options by entering the
following command:

nrfutil pkg generate --help

Run nrfutil pkg display to display the contents of a package.

For example, enter the following command to generate an unsigned package called
app_dfu_package.zip from the application file app.hex:

nrfutil pkg generate --application app.hex app_dfu_package.zip

Enter the following command to generate a package called app_dfu_package.zip from the
application file app.hex with application version 4 that requires hardware version 51 and SoftDevice
S130 v2.0.0 (0x80) and is signed with the private key that is stored in key.pem:

nrfutil pkg generate --hw-version 51 --sd-req 0x80 --application-version 4 --application

 app.hex --key-file key.pem app_dfu_package.zip

Enter the following command to generate an unsigned debug package without version information from
the application file app.hex:

nrfutil pkg generate --debug-mode --application app.hex app_dfu_package.zip

Enter the following command to display the contents of the created package:

nrfutil pkg display app_dfu_package.zip

The --hw-version option must correspond to the nRF5 device used.

The --sd-req option must correspond to the firmware ID of the SoftDevice present on the target
device. Refer to the list of SoftDevice firmware IDs (under --sd-req) displayed by the nrfutil pkg
generate --help command.

Note: While Thread and Zigbee stacks do not use a SoftDevice, the --sd-req option is required
for compatibility. Any value provided for this option is ignored during the DFU.

Not all combinations of Bootloader, SoftDevice, and Application are possible when generating a package.
See Table 1: Supported Bootloader, SoftDevice, and Application combinations on page 9 for more
information.

4.1 DFU package combinations
The following table lists the supported combinations when generating a DFU package.

4399_007 8

Generating DFU packages

Combination Supported

Bootloader (BL) Yes1

SoftDevice (SD) Yes2

Application (APP) Yes

BL + SD Yes

BL + APP No3

BL + SD + APP Yes4

SD + APP Yes2,4

Table 1: Supported Bootloader, SoftDevice, and Application combinations

1Use nRF Util v5.0.0 or later when creating update packages of bootloaders compiled from nRF5 SDK
15.3.0 or later to ensure the correct size of generated packages.

Update packages of external applications (e.g. updates for third-party applications) are generated with the
--external-app option. When this option is set, the receiving device stores the update but will not
activate it. This functionality is experimental in the nRF5 SDK and is not yet used in any examples.

The --zigbee boolean option generates the Zigbee update file in addition to the zip package. For
example:

nrfutil pkg generate --hw-version 52 --sd-req 0 --application-version 0x01020101

 --application nrf52840_xxaa.hex --key-file ../priv.pem --app-boot-validation

 VALIDATE_ECDSA_P256_SHA256 app_dfu_package.zip --zigbee True --zigbee-manufacturer-id

 0xCAFE --zigbee-image-type 0x1234 --zigbee-comment good_image --zigbee-ota-hw-version 52

 --zigbee-ota-fw-version 0x01020101 --zigbee-ota-min-hw-version 52 --zigbee-ota-max-hw-

version 52

The --zigbee-ota-hw-version and --zigbee-ota-fw-version options refer to the
generated image to be distributed to the Zigbee OTA Server and disseminated later into the network.
The --zigbee-ota-hw-version and --zigbee-ota-fw-version options describe the
hardware version and firmware version of the Zigbee OTA Server respectively. Each time the Zigbee OTA
Server receives the image for the dissemination, its firmware version is updated. This is done to protect
from a malicious attack, where an attacker could wear down the Server flash memory by repeatedly
sending the full Zigbee image to be distributed. Thus, in order for the OTA Server to accept the image for
dissemination, the value passed as a --zigbee-ota-fw-version has to be incremented with every
transfer of the image.

The --zigbee-ota-min-hw-version and --zigbee-ota-max-hw-version options refer to
the fields in the Zigbee OTA header, which determine the range of the OTA Client's hardware version for
which the image is suitable. Both --zigbee-ota-min-hw-version and --zigbee-ota-max-
hw-version are optional and if used, both must be given.
2The SD must be of the same Major Version as the old BL may not be compatible with the new SD.
3Create two ZIP packages.
4The SD (+ BL) + APP update is done with two consecutive connections, unless a custom bootloader
is used. First the SD (+ BL) is updated, then the bootloader will disconnect and the (new) BL will start
advertising. Then the second connection to the bootloader will update the APP.

However, the two SDs may have different IDs. The first update requires --sd-req to be set to the ID
of the old SD. The APP update requires the ID of the new SD. The new ID must be set using --sd-id

4399_007 9

Generating DFU packages

parameter. This parameter was added in nRF Util v3.1.0 and is required since v3.2.0 in case the package
should contain SD (+ BL) + APP. Also, the new ID is copied to --sd-req list so that in case of a link loss
during the APP update the DFU process can be restarted. In this case, the new SD would overwrite itself,
so --sd-req must contain the ID of the new SD.

4399_007 10

5 Performing a DFU

The dfu command transfers a DFU package to the nRF5 device.

There are several DFU transports available. Enter the following command to display a list of supported
transports:

nrfutil dfu --help

Make sure that the transport you select matches the DFU bootloader that is installed on the DFU target
device.

5.1 DFU over Bluetooth LE
Use an nRF5 Development Kit (DK) as the connectivity device for the DFU over Bluetooth LE procedure.

Complete the following steps to do the DFU:
1. Connect an nRF5 DK to your computer.

Note: In the -ic option, you must specify if the DK contains an nRF51 or nRF52 chip.

2. Run nrfjprog --eraseall to erase the contents of the DK.
3. Run nrfutil dfu ble to do a full DFU over Bluetooth LE.

Use the -f option to program the DK with the required connectivity software. This option overwrites
the contents of the DK.

Enter nrfutil dfu ble --help to see available options.

For example, to perform a DFU procedure using app_dfu_package.zip over Bluetooth LE on an
nRF52 device connected to COM3, where MyDevice is the remote Bluetooth LE device being upgraded,
enter the following command:

nrfutil dfu ble -ic NRF52 -pkg app_dfu_package.zip -p COM3 -n "MyDevice" -f

5.2 DFU over ANT
Use an ANT USB dongle (ANT USB-m for example) as the connectivity device for the DFU over ANT
procedure.

Complete the following steps to perform the DFU:
1. Connect an ANT USB dongle to your computer.
2. Run nrfutil dfu ant to do a full DFU over ANT.

You can see available options by entering the following command:

nrfutil dfu ant --help

For example, enter the following command to perform a DFU procedure on the
app_dfu_package.zip file:

nrfutil dfu ant -pkg app_dfu_package.zip

4399_007 11

Performing a DFU

5.3 DFU over Thread
Use an nRF5 DK as the connectivity device for the DFU over Thread procedure.

For DFU over Thread, nRF Util supports both unicast and multicast mode. In unicast mode, every DFU
client requests consecutive blocks of firmware from nRF Util individually. In multicast mode, nRF Util sends
consecutive blocks of firmware in multicast messages, and clients that are interested in a new firmware
receive and process these messages.

The default mode is unicast mode. To select multicast mode, call nRF Util with a multicast address as a
destination address.

Complete the following steps to perform the DFU:
1. Connect an nRF5 DK to your computer.

This board serves as the Thread network co-processor (NCP) for performing the DFU on the target.
2. Run nrfjprog --eraseall to erase the contents of the DK.
3. Run nrfutil dfu thread to do a full DFU over a Thread.

Use the -f option to program the DK with the required connectivity software. This option overwrites
the contents of the DK.

Enter nrfutil dfu thread --help to see available options.

For example, enter the following command to initiate a unicast DFU procedure for the file
app_dfu_package.zip over Thread on channel 11 with PAN ID 0xABCD, using an nRF52840 NCP
connected to COM3:

nrfutil dfu thread –f -pkg app_dfu_package.zip -p COM3 --channel 11 --panid 43981

Any remote Thread device can then request the firmware update.

Enter the following command to perform a multicast DFU procedure for the file
app_dfu_package.zip over Thread on channel 11 with PAN ID 0xABCD to the multicast address
FF03::1, using an nRF52840 NCP connected to COM3:

nrfutil dfu thread -f -pkg app_dfu_package.zip -p COM3 --channel 11 --panid 43981 -r 4 -rs

 5000 -a FF03::1

Any remote Thread device can then decide whether it wants to receive and process the firmware update
messages.

5.4 DFU over Zigbee
Use an nRF5 DK as the connectivity device for the DFU over Zigbee procedure.

Before you begin, run the following command to generate a Zigbee-specific image from your own
application :

nrfutil pkg generate --hw-version 52 --sd-req 0x00 --application-version 0x01020101

 --application app.hex --key-file key.pem app_dfu_package.zip --zigbee True --zigbee-

manufacturer-id 123 --zigbee-image-type 321 --zigbee-comment good_image

The DFU over Zigbee procedure is performed by loading an upgrade image to the OTA Server running on
the DK.

Complete the following steps to perform the DFU:
1. Connect an nRF5 DK to your computer.

4399_007 12

Performing a DFU

This board serves as the Zigbee OTA Server which distributes a Zigbee image in the network.
2. Run nrfutil dfu zigbee to start the Zigbee OTA Server which is going to distribute new

firmware in the network.
Enter nrfutil dfu zigbee --help to see available options.

The DFU over Zigbee process ends immediately after loading the image, but the OTA Server is active until
DK reset.

For example, enter the following command to start the Zigbee OTA Server that distributes the file
CAFE-1234-good_image.zigbee on channel 20, using an nRF52840 DK with serial number
683604699:

nrfutil dfu zigbee -f CAFE-1234-good_image.zigbee -snr 683604699 -chan 20

5.4.1 Updating external applications
Packages for updating external applications can be generated by nRF Util by setting the –external-app
option.

This is only available for updates that contain an application and no SoftDevice or bootloader. Setting this
option instructs the receiving device that the update should be stored, but not activated, and then passed
on to a third party. The following command is an example for generating an external application update
package:

nrfutil pkg generate --hw-version 52 --application-version 0x01020101 –application app.hex

 --key-file key.pem app_dfu_package.zip --zigbee True --zigbee-manufacturer-id 123 --

zigbee-image-type 321 --zigbee-comment good-image --external-app --zigbee-ota-hw-version

 231

Note: This functionality is experimental in the nRF5 SDK and not used in any current examples.

5.5 DFU over a serial UART connection
The nRF Util tool supports DFU over a serial UART connection.

Complete the following steps to perform the DFU:
1. Connect the DFU target to your computer.

Most Nordic Semiconductor DKs have an interface MCU that serves as a virtual COM port and
transparently maps the UART into a USB CDC ACM interface. See Virtual COM port for more
information. If no interface MCU is available, use other options to connect the DFU target to your
computer, such as a USB to TTL adapter or a serial cable with an RS-232 connector.

2. Run nrfutil dfu serial to do a full DFU over a serial UART connection.

You can see available options by entering the following command:

nrfutil dfu serial --help

For example, enter the following command to perform a DFU procedure of the file
app_dfu_package.zip over COM3 at 115200 bits per second:

nrfutil dfu serial -pkg app_dfu_package.zip -p COM3 -b 115200

4399_007 13

https://infocenter.nordicsemi.com/topic/ug_nrf52832_dk/UG/nrf52_DK/vir_com_port.html

Performing a DFU

5.6 DFU over a serial USB connection
The nRF Util tool supports DFUs over a USB CDC ACM connection.

DFU over a serial USB connection is supported only for chips that have USB pins (for example, nRF52840).

Note: The USB port for the interface MCU is not connected to the USB pins on the chip. If you are
using the interface MCU, you must perform a DFU over a serial UART connection.

Complete the following steps to perform the DFU:
1. Connect the DFU target to your computer.

If your DFU target is an nRF52840 DK, use the USB port marked nRF USB.
2. Run nrfutil dfu usb-serial to do a full DFU procedure over a USB CDC ACM connection.

You can see available options by entering the following command:

nrfutil dfu usb-serial --help

For example, enter the following command to perform a DFU procedure of the file
app_dfu_package.zip over COM3 at 115200 bits per second:

nrfutil dfu usb-serial -pkg app_dfu_package.zip -p COM3 -b 115200

4399_007 14

6 Generating and displaying keys

The keys command can be used to generate and display cryptographic keys.

Cryptographic keys are required to sign and validate a DFU package. See the Cryptography library in the
SDK for more information about signing and cryptographic keys.

• Run nrfutil keys generate to generate a private (signing) key and store it in a file in PEM
format.

• Run nrfutil keys display to display a private (signing) or public (verification) key from a PEM
file.

You can see available options by entering the following command:

nrfutil keys display --help

For example, enter the following command to generate a private key and store it in a file named
private.pem:

nrfutil keys generate private.pem

Enter the following command to display a public key in code format from this key file:

nrfutil keys display --key pk --format code private.pem

4399_007 15

https://infocenter.nordicsemi.com/topic/sdk_nrf5_v17.1.0/lib_crypto.html

7 Generating and displaying bootloader
settings

Use the settings command to generate and display a bootloader settings page.

A DFU bootloader requires a bootloader settings page that contains information about the current DFU
process. In addition, it can contain information about the installed application and the firmware version.

• Run nrfutil settings generate to generate a bootloader settings page and store it in a HEX
file.

You can see available options by entering the following command:

nrfutil settings generate --help

• Run nrfutil settings display to display the contents of a bootloader settings page that is
present in a HEX file.
To read the bootloader settings page from a programmed device, use nrfjprog to dump the flash
memory of the IC (where HEX_file is the name of the resulting HEX file):

nrfjprog --readcode HEX_file

After generating the bootloader settings page, you can use mergehex and nrfjprog to program it to
the device. See the nRF Command Line Tools documentation for more information.

For example, enter the following command to generate a bootloader settings page for an nRF52840 device
with the application app.hex installed, with application version 3, bootloader version 2, and bootloader
settings version 1 (for SDK v13.0.0), and store it in a file named settings.hex:

nrfutil settings generate --family NRF52840 --application app.hex --application-version 3

 --bootloader-version 2 --bl-settings-version 1 settings.hex

Enter the following command to display the contents of the generated HEX file:

nrfutil settings display settings.hex

Each nRF device has a corresponding --family setting:

Family setting nRF devices

NRF51 nRF51xxx

NRF52 nRF52832, nRF52833

NRF52QFAB nRF52832-QFAB, nRF52820

NRF52810 nRF52810, nRF52811, nRF52805

NRF52840 nRF52840

Table 2: --family settings

The --bl-settings-version depends on the SDK version:

4399_007 16

https://infocenter.nordicsemi.com/topic/ug_nrf_cltools/UG/cltools/nrf_command_line_tools_lpage.html

Generating and displaying bootloader settings

SDK version BL settings version

12.0 1

15.3.0 2

Table 3: SDK and BL settings versions

The DFU bootloader settings version supported and used by your selected SDK is listed in the
nrf_dfu_types.h file in the bootloader library. Even though bootloaders compiled from an nRF5
SDK 15.3.0 or later can only use version 2, they can be configured to support a version 1 settings page.
When a new bootloader with a version 1 settings page boots, the bootloader translates the settings
page to version 2 before booting. If a version 2 settings page is used, boot validation for SoftDevice and
Application can be generated with the settings page using the --sd-boot-validation and --app-
boot-validation commands.

4399_007 17

8 Generating HEX files for Zigbee

Use the zigbee production_config command to generate production configuration HEX files for
Zigbee devices.

Production configuration HEX files can be used to set the production configuration flash memory block
in the Zigbee stack when working with the nRF5 SDK for Thread and Zigbee. See the Zigbee production
configuration section in nRF5 SDK for Thread and Zigbee for more information.

1. Create a yaml input file that contains the list of required values that are used to generate the
production configuration HEX file.

Enter the following command for an example of the yaml input and other available options:

nrfutil zigbee production_config --help

2. Run nrfutil zigbee production_config and provide input and output file names to
generate a binary file in Intel HEX format.

For example, enter the following command to generate a production configuration output.hex file
from the input.yaml file:

nrfutil zigbee production_config input.yaml output.hex

4399_007 18

https://infocenter.nordicsemi.com/topic/sdk_tz_v4.1.0/zigbee_prog_principles.html#zigbee_production_config
https://infocenter.nordicsemi.com/topic/sdk_tz_v4.1.0/zigbee_prog_principles.html#zigbee_production_config

9 Displaying version information

The version command can be used to display the version of the tool.

Different versions of nRF Util support different formats of the init packet that is part of the DFU package.
Use the nRF Util version that corresponds to the DFU bootloader that is programmed on your device.

Enter the following command to display the nRF Util version:

nrfutil version

4399_007 19

10 Customizing the init packet

The init packet is a packet that is sent before the actual firmware images in a DFU. It contains metadata
about the DFU, such as the size and type of the image, version information, and compability requirements.

To customize the tool, you must have cloned the nRF Util GitHub repository (see Installing from sources on
page 5).

If you use the default packet format as described in the BLE Secure DFU Bootloader example, you do not
need to modify nRF Util. If you define a custom init packet format, however, you must modify both your
DFU bootloader implementation and nRF Util to use this new format.

The format of the init packet is defined in a Protocol buffers (.proto) file. This file can be compiled
into different formats, ensuring that you use the same init packet format in you DFU bootloader
implementation and in nRF Util.

Note: The init packet definition requires the proto2 version of the protocol buffers language. Do
not include syntax = "proto3"; in your protocol buffer file, because this would cause the file
to be interpreted as a proto3 language version file.

Complete the following steps to customize the init packet:
1. Modify the protocol buffer file to suit your needs.

In the nRF Util GitHub repository, the file is located at nordicsemi/dfu/dfu-cc.proto.
In the BLE Secure DFU Bootloader example in the nRF5 SDK, it is located at examples/dfu/
bootloader_secure/dfu-cc.proto. Ensure that both files have the exact same content.

2. Download and install the Protocol compiler from Google.
3. Adapt nRF Util to use the new init packet format:

a) Compile the protocol buffer file to generate the corresponding Python file.
In the folder that contains your dfu-cc.proto file, enter the following command (where
dest_folder is an empty folder where the protocol compiler will write its output):

protoc --python_out=dest_folder dfu-cc.proto

b) Copy or move the created file dest_folder/dfu_cc_pb2.py to nordicsemi/dfu/,
overwriting the existing file.

c) If you added new information to the init packet you need to update nRF Util. Adapt nRF Util to
include command-line options for new fields and add the information provided through these
options to the init packet.
To adapt the tool, you must edit the Python source files. The contents of the init packet are
defined in the files nordicsemi/dfu/init_packet_pb.py and nordicsemi/dfu/
package.py. The command-line options are defined in nordicsemi/__main__.py.

If you installed nRF Util to the local Python site-packages and script folder or created a self-contained
executable, you must repeat that procedure after editing the source files.

4. Adapt your DFU bootloader implementation to use the new init packet format:
a) Make sure that the dfu-cc.proto file in the request handling folder of your DFU bootloader

implementation (by default, this is the examples/dfu/dfu_req_handling/ folder in the
SDK) is the same file that you used to adapt nRF Util.

b) In the DFU bootloader implementation folder, enter the following command:

protoc -odfu-cc.pb dfu-cc.proto

This command creates the file dfu-cc.pb.

4399_007 20

https://github.com/NordicSemiconductor/pc-nrfutil/
https://infocenter.nordicsemi.com/topic/sdk_nrf5_v17.1.0/ble_sdk_app_dfu_bootloader.html
https://developers.google.com/protocol-buffers/
https://github.com/NordicSemiconductor/pc-nrfutil/
https://infocenter.nordicsemi.com/topic/sdk_nrf5_v17.1.0/ble_sdk_app_dfu_bootloader.html
https://developers.google.com/protocol-buffers/docs/downloads

Customizing the init packet

c) If you are not working in the examples/dfu/dfu_req_handling/ folder, copy the dfu-
cc.options file from that folder to your implementation folder.

d) Run the nanopb_generator.py script (located in the external/nano-pb/generator/
folder) to generate the required dfu-cc.pb.c and dfu-cc.pb.h files.
If you are working in examples/dfu/dfu_req_handling/, enter the following command:

python ../../../external/nano-pb/generator/nanopb_generator.py dfu-cc.pb -f dfu-

cc.options

If you are working in a different folder, adapt the path to the script.
e) Compile your DFU bootloader.
For more information about this procedure, see the readme file in the BLE Secure DFU Bootloader
folder in the SDK.

4399_007 21

Glossary
Device Firmware Update (DFU)

A mechanism for upgrading the firmware of a device.

Development Kit (DK)
A development platform used for application development.

4399_007 22

Acronyms and abbreviations
These acronyms and abbreviations are used in this document.

DFU
Device Firmware Update

DK
Development Kit

4399_007 23

Legal notices
By using this documentation you agree to our terms and conditions of use. Nordic Semiconductor may
change these terms and conditions at any time without notice.

Liability disclaimer
Nordic Semiconductor ASA reserves the right to make changes without further notice to the product to
improve reliability, function, or design. Nordic Semiconductor ASA does not assume any liability arising out
of the application or use of any product or circuits described herein.

Nordic Semiconductor ASA does not give any representations or warranties, expressed or implied, as to
the accuracy or completeness of such information and shall have no liability for the consequences of use
of such information. If there are any discrepancies, ambiguities or conflicts in Nordic Semiconductor’s
documentation, the Product Specification prevails.

Nordic Semiconductor ASA reserves the right to make corrections, enhancements, and other changes to
this document without notice.

Life support applications
Nordic Semiconductor products are not designed for use in life support appliances, devices, or systems
where malfunction of these products can reasonably be expected to result in personal injury.

Nordic Semiconductor ASA customers using or selling these products for use in such applications do so
at their own risk and agree to fully indemnify Nordic Semiconductor ASA for any damages resulting from
such improper use or sale.

RoHS and REACH statement
Complete hazardous substance reports, material composition reports and latest version of Nordic's REACH
statement can be found on our website www.nordicsemi.com.

Trademarks
All trademarks, service marks, trade names, product names, and logos appearing in this documentation
are the property of their respective owners.

Copyright notice
© 2021 Nordic Semiconductor ASA. All rights are reserved. Reproduction in whole or in part is prohibited
without the prior written permission of the copyright holder.

4399_007 24

https://www.nordicsemi.com

	Contents
	Revision history
	Introduction
	Installing nRF Util
	2.1 Installing from PyPI
	2.2 Installing from sources

	Displaying help
	Generating DFU packages
	4.1 DFU package combinations

	Performing a DFU
	5.1 DFU over Bluetooth LE
	5.2 DFU over ANT
	5.3 DFU over Thread
	5.4 DFU over Zigbee
	5.4.1 Updating external applications

	5.5 DFU over a serial UART connection
	5.6 DFU over a serial USB connection

	Generating and displaying keys
	Generating and displaying bootloader settings
	Generating HEX files for Zigbee
	Displaying version information
	Customizing the init packet
	Glossary
	Device Firmware Update (DFU)
	Development Kit (DK)

	Acronyms and abbreviations
	Legal notices

