
Copyright 2014, Nordic Semiconductor ASA

Nordic Semiconductor Sniffer API Guide
Version 0.2

The Sniffer API guide provides the documentation of the Python API used to interface

with the nRF Sniffer for Bluetooth low energy. The nRF Sniffer is available for

download from mypage at nordicsemi.com on purchase of the nRF51822, nRF51422 and

nRF8001 development kits. The Python API documented is currently available only for

Windows. The intent of this document is to support the porting of the Sniffer API to non-

windows platforms like OS X and Linux.

Revision History

Revision Changes

0.1 Initial version

0.2 Added description of LED and GPIO.

0.3 Updated documentation to reflect API

changes after 0.9.7

Copyright 2014, Nordic Semiconductor ASA

Introduction

The Sniffer API is a Python API that allows scripted use of the Nordic Semiconductor

BLE Sniffer. It allows discovery of devices and sniffing of a single device. It provides

access to all the BLE packets received by the sniffer and the devices discovered.

The sniffer consists of three parts as seen in Figure 1, where the API replaces the console

app as the controller and hub of communication.

Figure 1 - The parts of the sniffer.

The Wireshark plugin code is included in the API.

Dependencies

The API has been developed using Python 2.7.6 32 bit. 64 bit is untested but might work.

The API also requires one third party Python library:

1. Pyserial (cross platform) version 2.7. Get the installer if you are on Windows.

http://pyserial.sourceforge.net

In addition, you must get nRF Sniffer version 0.9.7, and make sure it connects to the

firmware.

See the Sniffer User Guide included with the nRF Sniffer for more information.

Using the Sniffer API

Getting Started

1. Install dependencies.

2. Include the SnifferAPI folder in your Python project.

3. Import the API with
from SnifferAPI import Sniffer

4. Instantiate the Sniffer class with e.g.
mySniffer = Sniffer()

5. Start the Sniffer with
mySniffer.start()

example.py is an example program with explanations in the comments.

Overview

The API consists of 5 classes in 3 files: The Sniffer class in Sniffer.py, the DeviceList

and Device classes in Devices.py, and the Packet and BlePacket classes in Packet.py. The

http://pyserial.sourceforge.net/

Copyright 2014, Nordic Semiconductor ASA

exceptions in Exceptions.py are also part of the API. The entry point for the API is the

Sniffer class (retrieve packets and devices through the methods in Sniffer). The last pages

of this document (and also the documentation.html file) contain a complete

documentation of the API.

An overview of the levels below the Sniffer module

Object/Module hierarchy

During normal operation, the Sniffer object interfaces only to the SnifferCollector object

which acts as a hub for the flow of packets. The SnifferCollector object reads packets

from UART through its PacketReader object, and sends packets over named pipe to

Wireshark. It also stores all packets in a capture (.pcap) file through its

CaptureFileHandler object, and keeps an internal buffer of packets. In addition, the

SnifferCollector object keeps a list of devices which are advertising in the vicinity.

Figure 2- Object hierarchy behind the Sniffer API

Copyright 2014, Nordic Semiconductor ASA

Figure 3- The flow of packets through the API.

Note: Command packet flow from the SnifferCollector to the UART is not represented in

the above diagram.

Threads of operation

The Sniffer system contains 3 separate threads which are running in addition to the main

context (user thread). They are:

1. The Pipe thread which is used to connect the named pipe dynamically.

2. The LogFlusher thread which regularly flushes the log to file.

3. The Sniffer thread. This is the main thread which handles everything else,

including the flow of packets described above.

OS specific code

The API should not contain any OS specific code. The modules that previously had OS

specific code have been removed in this version of the API.

Establishing a connection between the API and the firmware

As explained below, the firmware sends PING_RSP packets in the SCANNING state.

The Sniffer constructor can take the port number of the firmware as an argument. In this

case, the API connects blindly to it. If no port is provided, the API opens all COM ports

on the computer in succession and listens for PING_RSP packets to locate the correct

port. When the PING_RSP packet is not received on a COM port, it closes the COM port.

Copyright 2014, Nordic Semiconductor ASA

Appendices
1. State change description

2. API documentation (also in documentation.html)

3. Description of UART protocol (also in sniffer_uart_protocol.xlsx)

Copyright 2014, Nordic Semiconductor ASA

Firmware States (nRF Sniffer v0.9.6)

SCANNING (Initial state):

 Scans advertiser packets.

 The sniffer will send a PING_RSP each 75ms to the host.

State change: If the sniffer received a "follow device X" command, it will go to

the FOLLOWING state.

FOLLOWING:

 Only packets from device X will be received.

 All packets sent by device X will be received.

 All SCAN_REQ packets directed to device X and corresponding

SCAN_RSP packets will be picked up.

Copyright 2014, Nordic Semiconductor ASA

 All CONNECT_REQ packets directed to device X will also be picked

up.

State change:

 If the sniffer receives a CONNECT_REQ packet, it will go to the

CONNECTION state.

 If the sniffer received a "scan" command, it will go to the SCANNING

state.

CONNECTION:

 The sniffer will follow the connection.

 All packets in the connection will be received.

State change:

 If a timeout occurs (no packets received for about 30 seconds) the sniffer

will go to the FOLLOWING state.

 If one of the devices in the connection terminating the connection the

sniffer will go to the FOLLOWING state.

 If the sniffer received a "scan" command, it will go to the SCANNING

state.

LED Configuration (only valid for PCA10001)

State LED0 LED1

SCANNING OFF Toggle when packet received

FOLLOWING Toggle when packet received OFF

CONNECTION ON Toggle when packet received

GPIO Behavior (only valid for PCA10001)

PIN LOW – HIGH HIGH - LOW

4 Finished receiving advertise packet

from device being followed.

Enable RX for receiving

CONNECT_REQ to followed device.

5 Start radio for receiving anchor point

of connection event, ramp up required

Finished receiving ADDRESS bytes of

anchor point in connection event.

Sniffer

The entry point for the API.

Field Type Description

missedPackets int
The number of missed packets over the UART, as determined by the packet counter in the

header. Derived using the packetCounter field.

packetsInLastConnection int
The number of packets which were sniffed in the last BLE connection. From

CONNECT_REQ until link loss/termination.

connectEventPacketCounterValue int The packet counter value of the last received connect request.

inConnection bool A boolean indicating whether the sniffed device is in a connection.

currentConnectRequest Packet A Packet object containing the last received connect request.

state int
The internal state of the sniffer. States are defined in SnifferCollector module. Valid values
are 0-2.

portnum int or string The COM port of the sniffer hardware. During initialization, this value is a preset.

swversion int The version number of the API software.

fwversion int The version number of the sniffer firmware.

Function Type Description

__init__(portnum) Sniffer
Constructor for the Sniffer class. The optional argument "portnum" is a string with the name
of the port the sniffer board is at, e.g. "COM17". If not provided, the API will locate it

automatically, but this takes more time.

start() void
Starts the Sniffer thread. This call must be made (once and only once) before using the

sniffer object.

getPackets(number) List<Packet>
Get [number] number of packets since last fetch (-1 means all). Note that the packet buffer

is limited to about 80000 packets.

getDevices() DeviceList Get a list of devices which are advertising in range of the Sniffer.

follow(device,

followOnlyAdvertisements)
void

Signal the Sniffer firmware to sniff a specific device. If followOnlyAdvertisements is True,

the sniffer will not sniff a connection, only advertisements from the followed device.

scan() void
Signal the Sniffer to scan for advertising devices by sending the REQ_SCAN_CONT

UART packet. This will cause it to stop sniffing any device it is sniffing at the moment.

sendTK(TK) void
Send a temporary key to the sniffer for use when decrypting encrypted connections. TK is

a list of 16 ints, each representing a byte in the temporary key. TK is on big-endian form.

setPortnum(portnum) void
Set the preset COM port number. Only use this during startup. Set to None to search all

ports.

doExit() void Gracefully shut down the sniffer threads and connections.

Device

Class representing a BLE device from which the sniffer has picked up data.

Field Type Description

address List< int > A list representing the device address of this device: [int, int, int, int, int, int]

txAdd bool A boolean representing whether the device address is public (False) or random (True).

name string A string containing the name (short or complete) of the device.

RSSI int An int representing the approximate RSSI value of packets received from this device.

DeviceList

A class representing a list of devices. Used to simplify extraction of devices using BLE metadata.

Function Type Description

find(id) Device Find a device in this DeviceList using either name or address. Returns None if no device is found.

remove(id) Device Remove a device from this DeviceList. Argument "id" has same format as in find.

append(Device) void Append a Device to the device list.

index(Device) int Returns the index of the provided Device.

getList() List<Device> Returns a list of the Devices in this DeviceList.

Packet

Represents the UART packet sent by the sniffer to the host.

Field Type Description

headerLength int The length of the UART header.

UART header

payloadLength int The length of the UART payload.

protover int The UART protocol version used.

packetCounter int Unique (16 bit) packet identifier which increments for each packet sent by the sniffer.

id int Identifier telling what type of packet this is. See UART protocol document.

bleHeaderLength int Length of the NRF_BLE_PACKET header.

NRF_BLE_PACKET
header

crcOK bool Was the CRC received by the sniffer OK.

micOK bool Is the message integriy check OK. Only relevant in encrypted state.

direction bool Only relevant during connection. True -> Master to Slave, False -> Slave to Master

encrypted bool has the packet been encrypted.

channel int Which channel was the packet picked up from [0 - 39]

RSSI int
The RSSI value reported by the sniffer. NOT PRECISE. Real value is the negative of

this value.

eventCounter int
The eventcounter of the packet in the connection. Only relevant for packets in a

connection.

timestamp int Microseconds from the end of the last packet to the start of this one.

blePacket BlePacket The blePacket contained within this packet.

Other

packetList List< int >
The entire UART packet as sent by the sniffer (with the exception of a padding byte

which is removed).

OK bool Is the error detection of the attached BLE packet OK?

payload List< int > List containing the UART payload as bytes.

txADD bool
Is the address public or random? True -> Random, False -> Public. Only relevant for
advertisement packets.

version int The firmware version of the sniffer. Only sent in PING_RESP packets.

BlePacket

Represents the BLE packet received over the air by the sniffer.

Field Type Description

accessAddress List< int > A list of bytes representing the access for this packet.

advType int The advertisement type field.

advAddress List< int > The advertising address.

name string The value of the localname property of the ble packet.

payload List< int > The entire BLE payload (not including access address and header fields).

length int The value of the length field of the BLE PDU

Exceptions

The exceptions raised by the API.

Exception Description

SnifferTimeout UART read time out.

UARTPacketError UART SLIP parsing error.

InvalidPacketException Other UART parsing error.

Packet format: {HEADER} {PAYLOAD}

SLIP encoding:
Packet header: [HLEN] [PLEN] [PROTOVER] [PC0][PC1] [ID] Characters: Characters when escaped:

HLEN: Header length SLIP_START: 0xAB SLIP_ESC_START: 0xAC

PLEN: Payload length SLIP_END: 0xBC SLIP_ESC_END: 0xBD

PROTOVER: UART protocol version used SLIP_ESC: 0xCD SLIP_ESC_ESC: 0xCE

PC: Packet Counter (LSB)

ID: Packet type, see below

Byte value [ID] Name Direction Payload formats: Function
0x00 REQ_FOLLOW Host->Sniffer {ADDRESS} [ADDR_TYPE] [FOLLOW_ONLY_ADVERTISEMENTS] Tell the Client to only send packets recieved from a specific address.

0x01 EVENT_FOLLOW Sniffer->Host [] Client tells the host that it has entered the FOLLOW state.

0x02
0x03
0x04
0x05 EVENT_CONNECT Sniffer->Host [] Client tells the host that someone has connected to the unit we are following

0x06 EVENT_PACKET Sniffer->Host {NRF_BLE_PACKET} Client tells the host that it has recieved a packet

0x07 REQ_SCAN_CONT Host->Sniffer [] Host tells the client to scan continously and hand over the packets asap.

0x08
0x09 EVENT DISCONNECT Sniffer->Host [] Client tells the host that the connected address we were following has recieved a disconnect

0x0A
0x0B
0x0C SET_TEMPORARY_KEY Host->Sniffer {TEMPORARY_KEY} Specify the temporary key to use on encryption (for OOB and passkey)

0x0D PING_REQ Host->Sniffer []

0x0E PING_RESP Sniffer->Host {FW_VERSION}

0x13 SWITCH_BAUD_RATE_REQ Host->Sniffer [BAUD0] [BAUD1] [BAUD2] [BAUD3]

0x14 SWITCH_BAUD_RATE_RESP Sniffer->Host [BAUD0] [BAUD1] [BAUD2] [BAUD3]

0x17 SET_ADV_CHANNEL_HOP_SEQ Host->Sniffer [N_CHANS] [CHAN0] [CHAN1] [CHAN2] Tell the sniffer which order to cycle through the channels when following an advertiser.

0xFE GO_IDLE Host->Sniffer [] When receiving this, the sniffer should stop sending UART traffic, and listen for new

NRF_BLE_PACKET
Packet format: [HEADER] [PAYLOAD]
Header [HLEN] [FLAGS] [CHANNEL] [RSSI] [EC0] [EC1] [TD0] [TD1] [TD2] [TD3]

FLAGS (1 byte in total) [][][][][MICOK][ENCRYPTED][DIR][CRCOK] LEGEND:

[Square brackets denote single bytes]

CRCOK -> Was CRC Ok during transmission? {Curly brackets denote multiple bytes}

DIR -> Direction of the packet (0: Slave -> Master. 1: Master -> Slave)

Channel -> The channel index being used

EC -> Event Counter

TD -> TimeDiff: Delta from previously recieved packet

NRF_BLE_PACKET

Payload (ordinary

BLE Packet) {AA x 4} [HEADER] [LEN] [PADDING] {PAYLOAD x LEN} {CRC x 3}

Note: Padding byte is added by radio and is not received on air. It should be removed after reception on UART.

BAUD RATE SWITCHING PROCEDURE (NOT YET IMPLEMENTED) SLIP ENCODING PROCEDURE

Host sends SWITCH_BAUD_RATE_REQ with proposed baud rate Add a SLIP_START to encoded packet

Sniffer responds (SWITCH_BAUD_RATE_RESP) with proposed baud rate (must be host's proposal if this is

possible) For each byte in unencoded packet, do the following:

If host and sniffer propose same baud rate, baud rate is considered changed, and both parties will configure

hardware.

 - If the byte is not equal to SLIP_START, SLIP_END, or SLIP_ESC, add it

to encoded packet.

If sniffer proposes different baud rate, host may retry with another baud rate (must be sniffer's proposal if this is

possible)

 - Otherwise, replace it with a SLIP_ESC followed by the corresponding

escaped character (SLIP_ESC_START, SLIP_ESC_END, or

SLIP_ESC_ESC.)

Neither party can propose the same baud rate twice. Finally: add a SLIP_END to encoded packet

UART Packet IDs (grey fields: currently not in use; beige: not yet implemented)

PR ID HL FL CH RS

EVENT_PACKET 06 01 EF CD 06 0A 01 26 5C 00 00 BC 01 00 00 D6 BE 89 8E 40 21 00 FD 03 27 D3 DA D8 02 01 06 11 06 BA 56 89 A6 FA BF A2 BD 01 46 7D 6E 00 FB AB AD 05 16 0A 18 05 06 1E 77 F2

PR ID HL FL CH RS

EVENT_PACKET AB 06 01 EF CD CE 06 0A 01 26 5C 00 00 CD BD 01 00 00 D6 BE 89 8E 40 21 00 FD 03 27 D3 DA D8 02 01 06 11 06 BA 56 89 A6 FA BF A2 BD 01 46 7D 6E 00 FB CD AC AD 05 16 0A 18 05 06 1E 77 F2 BC

SLIP_START SLIP_END

CRC[0 - 2]

ID = 0x06 "Event packet" TD[0-3] PADDING BYTE

8E:89:BE:D6

TD[0-3] PADDING BYTE

0x000001BC

ID = 0x06 "Event packet"

EC[0- 1] AA[0 - 3]

BEFORE SLIP ENCODING

AFTER SLIP ENCODING

SLIP substitution

CRC[0 - 2]

SLIP substitution

BLE PACKET

0xCDEF 8E:89:BE:D6

0x000001BC

SLIP substitution

PC[0-1]

0xCDEF

PC[0-1]

EC[0- 1] AA[0 - 3] BLE PACKET

