## So many components, so little space ...



### Nordic's Been a PMIC Company for a While



Now is the time to unleash the potential of 180nm

### Wireless + Portable = Battery



## Anything Small and Rechargeable



Remote control



Fitness tracker



Personal medical devices



Portable sensors

### nPM1100 Highlights

Small footprint: Only 23mm<sup>2</sup> PCB area including passives in most compact configuration



Inductorless 400mA single-cell Li-lon or Li-Po charger



Two power outputs:

Unregulated

150mA highly efficient buck DC/DC



# nPM1100 Block Diagram



### nPM1100 Battery Charger

- 3.6 or 3.7 V Li-ion or Li-Polymer batteries
  - 4.1 or 4.2 V termination voltage
- 400mA max current
  - Charges a 400mAh battery at 1C
    (1+ hour charge time 0-100%)
- JEITA compliant
- Thermal protection



### nPM1100 Power Supply

- Buck regulator
  - Highly efficient up to 92%
  - Dual mode: PWM or hysteretic
    - > Auto + Force PWM
  - 4 selectable voltages:1.8, 2.1, 2.7, 3.0 V
  - 150 mA current limit



# Packaging





**TOP VIEW** 

**BOTTOM VIEW** 



## Size / Performance Trade-Off



#### Size Optimized

- Up to 88% DC/DC efficiency
- 23mm<sup>2</sup> PCB area



#### Performance Optimized

- Up to 92% DC/DC efficiency
- 27mm<sup>2</sup> PCB area

### nPM100 Evaluation Kit

- nPM1100 in performance optimized configuration
- Allows for use with any nRF52® or nRF53® Series development kit
- Access to all functions and DIP-switches controls all configurations
- Supports current
  measurements through the
  Power Profiler Kit (PPK)



### Unbeatable Combo

Small Size



#### High Efficiency



### Case Study - Fitness Tracker Redesign



- 151mAh battery
- Time between each charge: 48 hours
- Average battery current draw:
  151mAh / 48 = 3.14 mA @ 1.8V
- PMIC: TI BQ25150
- Redesign challenge. Increase battery life by at least 36 hrs to 84 hrs or more

| Supplier | Model   | Digikey<br>1K price | Inductor<br>cost | Regulator | Board<br>space    |
|----------|---------|---------------------|------------------|-----------|-------------------|
| TI       | BQ25150 | \$1.70              | \$0.00           | LDO       | 12mm <sup>2</sup> |
| Nordic   | nPM1100 | \$1.73              | \$0.10           | DCDC      | 23mm <sup>2</sup> |

### Using nPM1100 to Extend Battery Life



| Supplier | Model   | Application current | Battery<br>current | Efficiency | Battery<br>Life |
|----------|---------|---------------------|--------------------|------------|-----------------|
| TI       | BQ25150 | 3.14mA<br>@1.8V     | 3.14mA<br>@3.7V    | 45%        | 48hrs           |
| Nordic   | nPM1100 | 3.14mA<br>@1.8V     | 1.74mA<br>@3.7V    | 88%        | 87hrs           |

- 81% longer battery life
- Cost:
  - ~11 mm3 extra volume (assuming flex PCB)
  - \$0.13 component cost

### ... vs the Cost of Throwing mAh at the Problem



| Supplier | Model   | \$ cost of 87hr<br>battery life |  |
|----------|---------|---------------------------------|--|
| TI       | BQ25150 | \$0.31                          |  |
| Nordic   | nPM1100 | \$0.13                          |  |



| Supplier | Model   | Volume cost of 87hr<br>battery life |
|----------|---------|-------------------------------------|
| TI       | BQ25150 | 960 mm <sup>3</sup>                 |
| Nordic   | nPM1100 | 11 mm <sup>3</sup>                  |

## What About Ship Mode?

- Sleep mode nano amps is the new "megapixels"
- Fitness tracker battery has about
  6.3µA constant self-discharge current\*



|   | Device  | Ship Mode<br>Current | Total Constant<br>Current Drain | SoC six months after shipping @50% |
|---|---------|----------------------|---------------------------------|------------------------------------|
| E | BQ25150 | 10nA                 | 6.310µA                         | 31.9%                              |
| I | nPM1100 | 470nA                | 6.770μΑ                         | 30.6%                              |

<sup>\*)</sup> Based on 3% typical state-of-charge loss per month

### nPM1100 Summary

1 23mm<sup>2</sup> PCB area

2 400 mA charging

3 150 mA highly efficient regulated power







Because bigger batteries are not an option