
  

 AN002F40: Reading Magnus®-S Sensors 

Revision 4.0   Copyright © 2018 RFMicron, Inc. 1 

 

RFMicron Application Note AN002F40 
 

Reading Magnus®-S Sensors 

 
 
 

Overview 
 
Magnus®-S RFID chips offer up to three unique pieces of information to the reader: a Sensor 
Code, which is an indicator of the impedance seen at its RF input, an On-Chip RSSI Code, 
which indicates how much power the tag is receiving from the reader, and a Temperature Code, 
which can be converted to an accurate reading of the temperature at the die. This note 
describes the procedures for reading these codes. 
 

Determining the Tag Model Number 
 
The Sensor, On-Chip RSSI, and Temperature Codes are stored at three different word 
addresses in the tag memory, with the addresses depending on the Tag Model Number of the 
Magnus®-S chip being used. If the Tag Model Number is not known in advance, it can be 
determined by reading word 1h (hexadecimal) in the TID memory bank (bank 2h) using a 
standard Class-1 Generation-2 UHF Read command. 
 
The Tag Model Number will be four hexadecimal digits (all words in the tag memory are two 
bytes wide). The three most significant digits determine the addresses of the sensor data. For 
example, if 402Eh is retrieved, the sensor data can be found in the tables below on the row with 
402h in the left column. 
 

Reading the Sensor Code 
 
The Sensor Code can be read from a tag using a standard Class-1 Generation-2 UHF Read 
command.  The memory location depends on the Tag Model Number as described above and is 
given in Table 1. 

Table 1.  Location of Sensor Code Value 

Tag Model Number Starts With Memory Bank Word Address 

401h USER (Bank 3h) Bh 

402h RESERVED (Bank 0h) Bh 

403h RESERVED (Bank 0h) Ch 

 
The Sensor Code is a 5- or 9-bit value, depending on the Tag Model Number. The 
remaining bits in the word are zero (Table 2). 
 
 
 
 



  

 AN002F40: Reading Magnus®-S Sensors 

Revision 4.0   Copyright © 2018 RFMicron, Inc. 2 

Table 2.  Number of Bits Used in Sensor Code 

Tag Model Number Starts With Number of Bits Used in Sensor Code 

401h, 402h 5 

403h 9 

 
Reading the On-Chip RSSI Code 

 
The On-Chip RSSI Code is a 5-bit value (decimal range from 0 to 31) indicating the amount of 
power the tag is receiving.  Larger numbers indicate higher received power levels. The On-Chip 
RSSI Code can be read with a two-step process: 
 

1. Send a standard Class-1 Generation-2 UHF Select command to instruct all tags to 
calculate their On-Chip RSSI Code, and select those with an On-Chip RSSI Code within 
the specified range for subsequent reading. 

2. Send a standard Class-1 Generation-2 UHF Read command to retrieve the specific On-
Chip RSSI Code for a particular tag which satisfies the power threshold criterion. 

 
Because of this process, it is possible to filter tags according to the power they are receiving, 
silencing those tags with power above or below a particular threshold for the remainder of the 
inventory round. It is possible to have tags respond regardless of their received power, which 
will be described later in an example. 
 
The On-Chip RSSI Code is generated once the tag receives a Select command with the 
parameters as described in Table 3. The value is stored in tag volatile memory regardless of 
whether it is above or below the threshold, and remains until the reader signal turns off. But to 
respond to the subsequent Read command, the Mask parameter (Table 4) must agree with the 
On-Chip RSSI Code value. 
 

Table 3.  On-Chip RSSI Select Command Parameters  
 

Tag Model Number Starts With Memory Bank 
Pointer Bit 
Address 

Mask 
Length 

Mask 
(Table 4) 

401h, 402h USER (Bank 3h) A0h 8h M[7:0] 

403h USER (Bank 3h) D0h 8h M[7:0] 

 
 

Table 4.  Bit Mask For On-Chip RSSI Select Command 
 

Mask Bit M7 M6 M5 M4 M3 M2 M1 M0 

Bit Value 0 0 
  0: Match if code is <= threshold 

1: Match if code is > threshold 
5-bit threshold 

Most significant bit first 

 
For example, to guarantee that the mask will match the tag, regardless of its received power, 
mask bit 5 can be set to 0 and the threshold set to the maximum value of 11111, resulting in an 
8-bit mask of 00011111 (1Fh). 
 
If the tag satisfies the Select, the On-Chip RSSI can be retrieved with a Read command with the 
address given in Table 5. The Code is in the least-significant 5 bits of the word; the other bits in 



  

 AN002F40: Reading Magnus®-S Sensors 

Revision 4.0   Copyright © 2018 RFMicron, Inc. 3 

the word will be zero. If the On-Chip RSSI Code is read from a tag which has not received the 
Select command as described above, the returned value will be 0. 
 

Table 5.  Location of On-Chip RSSI Code Value 
 

Tag Model Number Starts With Memory Bank Word Address 

401h USER (Bank 3h) 9h 

402h, 403h RESERVED (Bank 0h) Dh 

 
Reading the Temperature Code 

 
Magnus®-S3 chips are available with a precise temperature sensor. The sensor generates a 
Temperature Code which can be translated to a value in degrees. This feature is only available 
on chips with a tag model number starting with 403h. 
 
As with the On-Chip RSSI Code, reading the Temperature Code is a two-step process requiring 
standard UHF Select and Read commands. 
 

1. Send a standard Class-1 Generation-2 UHF Select command with the parameters 
described in Table 6 to initialize the temperature sensor and calculate a Temperature 
Code. 

2. Send a standard Class-1 Generation-2 UHF Read command to retrieve the Temperature 
Code from the tag memory at the location given in Table 7. 

 
Table 6.  Temperature Code Select Command Parameters 

 

Tag Model Number Starts With Memory Bank 
Pointer Bit 
Address 

Mask 
Length Mask 

403h USER (Bank 3h) E0h 0h empty 

 
After the tag has received the Select command, the Temperature Code will be available for 
reading in the memory location given in Table 7 below. The Temperature Code occupies the 
least-significant 12 bits of the word; the other bits are 0. 
 

Table 7.  Location of Temperature Code Value 
 

Tag Model Number Starts With Memory Bank Word Address 

403h RESERVED (Bank 0h) Eh 

 
Achieving an accurate Temperature Code requires the Select command to be followed by 3 ms 
of continuous wave before the reader issues any further commands. This pause gives the 
temperature sensor circuit time to run. The reader must not power down at any time between 
the Select and Read commands. 
 

Calibrated Temperature Measurements 
 
The Temperature Code can be converted to a precise temperature measurement by scaling it 
according to calibration data that are unique for each tag. Temperature-enabled Magnus®-S3 
chips come with calibration data pre-loaded in the last four words of the User memory bank 



  

 AN002F40: Reading Magnus®-S Sensors 

Revision 4.0   Copyright © 2018 RFMicron, Inc. 4 

(words 8h, 9h, Ah, and Bh). These four words – 64 bits – are organized into six data fields which 
describe a 2-point linear calibration. The fields are summarized in Table 8, and their locations in 
memory are mapped in Table 9, where it can be seen that the fields cross word boundaries. 
 

Table 8.  Organization of Temperature Calibration Data 
 

Field 
Name 

Starting Bit 
Number 
(MSB) 

Number 
of Bits 

Description 

CRC 80h 16 CRC-16 applied to the remaining 48 calibration data bits 

CODE1 90h 12 Temperature Code measured at the first calibration temperature 

TEMP1 9Ch 11 (First calibration temperature in decimal degrees C) X 10 + 800 

CODE2 A7h 12 Temperature Code at the second calibration temperature 

TEMP2 B3h 11 (Second calibration temperature in decimal degrees C) X 10 + 800 

VER BEh 2 Calibration format version number (set to 0h) 

 
 

Table 9.  Location of Temperature Calibration Data in User Bank 
 

Word 
Address 

Label Bit Description 

8h 

Bit Address 
(hex) 

80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F 

Field 
Description 

CRC[15:0] 

9h 

Bit Address 
(hex) 

90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F 

Field 
Description 

CODE1[11:0] TEMP1[10:7] 

Ah 

Bit Address 
(hex) 

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF 

Field 
Description 

TEMP1[6:0] CODE2[11:3] 

Bh 

Bit Address 
(hex) 

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF 

Field 
Description 

CODE2[2:0] TEMP2[10:0] VER[1:0] 

 
The CODE1 and TEMP1 fields describe the Temperature Code and actual temperature 
measured at the first calibration point. The CODE2 and TEMP2 fields describe the Temperature 
Code and temperature at the second point. The two points specify the linear response of the 
temperature sensor and are used to calculate a calibrated temperature at all other measured 
Temperature Codes. 
 
The VER field stores a 2-bit version code and is set to 0h. The CRC field contains a 16-bit CRC 
computed over the other 48 bits in the calibration data and follows the same specification as the 
CRC-16 defined in the EPCTM Generation-2 UHF RFID Specification, Annex F.2. 
 



  

 AN002F40: Reading Magnus®-S Sensors 

Revision 4.0   Copyright © 2018 RFMicron, Inc. 5 

The TEMP1 and TEMP2 fields are 11-bit unsigned integers. They can be converted into 
temperatures in degrees Celsius by applying the following formula below to the TEMP1 or 
TEMP2 fields, expressed in decimal. 

Calibration Temperature in Degrees Celsius =  
TEMPx − 800

10
 

 
To convert an arbitrary Temperature Code C into a calibrated value in degrees Celsius, apply 
the formula below, where all values are in decimal. 
 

Temperature in Degrees Celsius =
1

10
[
TEMP2 − TEMP1

CODE2 − CODE1
(C − CODE1) + TEMP1 − 800] 

 
 

Temperature Measurement Example 
 
Suppose words 8h, 9h, Ah, and Bh in the User memory bank are read to be BD9Fh, 88A7h, 
E147h, and 7900h, respectively. Although it is optional, it is a good idea to verify that the CRC 
word agrees with the data.  When 88A7E1477900h is given to the CRC-16 algorithm, the CRC 
result that is generated is BD9Fh.  This agrees with the CRC word stored in the calibration data, 
so the calibration information is valid.  Example C# code for generating the CRC word is given 
in the Sample Code section of this document. 
 
When the remaining three words are unpacked, it is seen that CODE1 = 88Ah, TEMP1 = 3F0h, 
CODE2 = A3Bh, TEMP2 = 640h, and VER=0h (Figure 1).  In decimal, these values are CODE1 = 
2186, TEMP1 = 1008, CODE2 = 2619, TEMP2 = 1600, and VER = 0. 
 

 
Figure 1 Unpacking calibration words into fields 

Suppose a temperature measurement is made and the Temperature Code reported is 2315 in 
decimal. This value, along with the other relevant calibration field values is plugged into the 
formula above to find the temperature. 
 

Temperature in Degrees Celsius =
1

10
[
1600 − 1008

2619 − 2186
(2315 − 2186) + 1008 − 800] 

 
       = 38.44 degrees C 

 
It is also possible to determine the temperature at which the first calibration point was taken by 
simply subtracting 800 from the decimal TEMP1 value and dividing by 10: 
 

1008 − 800

10
= 20.8 degrees C 



  

 AN002F40: Reading Magnus®-S Sensors 

Revision 4.0   Copyright © 2018 RFMicron, Inc. 6 

 
Sample Code 

 
The sample C# code below illustrates how to read the Sensor and On-Chip RSSI Code using 
ThingMagic RFID readers and the ThingMagic Mercury API. 

 



  

 AN002F40: Reading Magnus®-S Sensors 

Revision 4.0   Copyright © 2018 RFMicron, Inc. 7 

The sample C# code below illustrates how to read the Temperature Code using ThingMagic 
RFID readers and the ThingMagic Mercury API. 
 

 

 

  



  

 AN002F40: Reading Magnus®-S Sensors 

Revision 4.0   Copyright © 2018 RFMicron, Inc. 8 

The sample C# code below illustrates how to read the Sensor and On-Chip RSSI Code using 
Nordic ID handheld RFID readers and the Nur API. 
 

 
Code continues on the next page. 
  



  

 AN002F40: Reading Magnus®-S Sensors 

Revision 4.0   Copyright © 2018 RFMicron, Inc. 9 

Sample code for Nordic ID handheld RFID readers (continued): 
 

 
  



  

 AN002F40: Reading Magnus®-S Sensors 

Revision 4.0   Copyright © 2018 RFMicron, Inc. 10 

The sample C# code below illustrates how to read the Temperature Code using Nordic ID 

handheld RFID readers and the Nur API  



  

 AN002F40: Reading Magnus®-S Sensors 

Revision 4.0   Copyright © 2018 RFMicron, Inc. 11 

 
The sample C# code below illustrates how to read the Sensor Code using an Impinj Speedway 
reader and the Octane API. 
 

 
 
 
 
 
 
 



  

 AN002F40: Reading Magnus®-S Sensors 

Revision 4.0   Copyright © 2018 RFMicron, Inc. 12 

 
The sample C# code below illustrates how to calculate a CRC-16 word according to the EPC 
Generation-2 UHF RFID Specification. 

 

 

 
 
 

 
 



  

 AN002F40: Reading Magnus®-S Sensors 

Revision 4.0   Copyright © 2018 RFMicron, Inc. 13 

 
Notices 

 
Copyright © 2018 RFMicron, Inc.  All rights reserved. 

RFMicron, Inc., ("RFMicron") conditionally delivers this document to a single, authorized 

customer ("Customer").  Neither receipt nor possession hereof confers or transfers any rights in, 

or grants any license to, the subject matter of any drawings, designs, or technical information 

contained herein, nor any right to reproduce or disclose any part of the contents hereof, without 

the prior written consent of RFMicron. 

RFMicron reserves the right to make changes, at any time and without notice, to information 

published in this document, including, without limitation, specifications and product descriptions.  

This document supersedes and replaces all information delivered prior to the publication hereof.  

RFMicron makes no representation or warranty, and assumes no liability, with respect to 

accuracy or use of such information. 

Customer is solely responsible for the design and operation of its applications and products 

using RFMicron products.  It is the Customer's sole responsibility to determine whether the 

RFMicron product is suitable and fit for Customer's applications and products planned, as well 

as for the planned application and use of Customer's end user(s).  RFMicron accepts no liability 

whatsoever for any assistance provided to Customer at Customer's request with respect to 

Customer's applications or product designs.  Customer is advised to provide appropriate design 

and operating safeguards to minimize the risks associated with its applications and products. 

RFMicron makes no representation or warranty, and assumes no liability, with respect to 

infringement of patents and/or the rights of third parties, which may result from any assistance 

provided by RFMicron or from the use of RFMicron products in Customer's applications or 

products. 

RFMicron represents and Customer acknowledges that this product is neither designed nor 

intended for use in life support appliances, devices, or systems where malfunction can 

reasonably be expected to result in personal injury. 

This product is covered by U.S. patents 7586385 and 8081043; other patents pending.  

Chameleon® and Magnus® are trademarks of RFMicron. 

 


