#include #include #include #include #include "nordic_common.h" #include "nrf.h" #include "ble_hci.h" #include "ble_advdata.h" #include "ble_advertising.h" #include "ble_conn_params.h" #include "nrf_sdh.h" #include "nrf_sdh_soc.h" #include "nrf_sdh_ble.h" #include "nrf_ble_gatt.h" #include "nrf_ble_qwr.h" #include "app_timer.h" #include "ble_nus.h" #include "app_util_platform.h" #include "bsp_btn_ble.h" #include "nrf_pwr_mgmt.h" #include "app_error.h" #include "bsp.h" #include "app_pwm.h" #include "nrf_libuarte_async.h" #include "nrf_log.h" #include "nrf_log_ctrl.h" #include "nrf_log_default_backends.h" #include "nrf_delay.h" #include "nrf_gpio.h" #define Button 18 #define APP_BLE_CONN_CFG_TAG 1 /**< A tag identifying the SoftDevice BLE configuration. */ // #define DEVICE_NAME "xFinder" /**< Name of device. Will be included in the advertising data. */ #define NUS_SERVICE_UUID_TYPE BLE_UUID_TYPE_VENDOR_BEGIN /**< UUID type for the Nordic UART Service (vendor specific). */ #define APP_BLE_OBSERVER_PRIO 3 /**< Application's BLE observer priority. You shouldn't need to modify this value. */ #define APP_ADV_INTERVAL 64 /**< The advertising interval (in units of 0.625 ms. This value corresponds to 40 ms). */ //#define APP_ADV_DURATION 6000 /**< The advertising duration (180 seconds) in units of 10 milliseconds. */ #define APP_ADV_DURATION 0 #define MIN_CONN_INTERVAL MSEC_TO_UNITS(20, UNIT_1_25_MS) /**< Minimum acceptable connection interval (20 ms), Connection interval uses 1.25 ms units. */ #define MAX_CONN_INTERVAL MSEC_TO_UNITS(75, UNIT_1_25_MS) /**< Maximum acceptable connection interval (75 ms), Connection interval uses 1.25 ms units. */ #define SLAVE_LATENCY 0 /**< Slave latency. */ #define CONN_SUP_TIMEOUT MSEC_TO_UNITS(4000, UNIT_10_MS) /**< Connection supervisory timeout (4 seconds), Supervision Timeout uses 10 ms units. */ #define FIRST_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(5000) /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */ #define NEXT_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(30000) /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */ #define MAX_CONN_PARAMS_UPDATE_COUNT 3 /**< Number of attempts before giving up the connection parameter negotiation. */ #define DEAD_BEEF 0xDEADBEEF /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */ NRF_LIBUARTE_ASYNC_DEFINE(libuarte, 0, 1, 2, NRF_LIBUARTE_PERIPHERAL_NOT_USED,255, 3); NRF_LIBUARTE_ASYNC_DEFINE(libuarte2, 1, 2, NRF_LIBUARTE_PERIPHERAL_NOT_USED, NRF_LIBUARTE_PERIPHERAL_NOT_USED, 255, 3); BLE_NUS_DEF(m_nus, NRF_SDH_BLE_TOTAL_LINK_COUNT); /**< BLE NUS service instance. */ NRF_BLE_GATT_DEF(m_gatt); /**< GATT module instance. */ NRF_BLE_QWR_DEF(m_qwr); /**< Context for the Queued Write module.*/ BLE_ADVERTISING_DEF(m_advertising); /**< Advertising module instance. */ bool checkPreviousBufferFull = false; bool checkCurrentBufferFull = false; uint8_t tempBuffer[100]; uint8_t GPS_RMC[] ="$PMTK314,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0*29"; uint8_t GPS_timeInterval[] ="$PMTK220,2000*1C"; uint8_t coordinate[30]; uint8_t dataGPS[180]; char longitude[30]; char latitude[30]; uint8_t valuePWM = 0; bool checkRec2 = false; char valueText[50]; APP_PWM_INSTANCE(PWM1, 3); bool checkBuzzer = false; static volatile bool ready_flag; // A flag indicating PWM status. void pwm_ready_callback(uint32_t pwm_id) // PWM callback function { ready_flag = true; } static uint16_t m_conn_handle = BLE_CONN_HANDLE_INVALID; /**< Handle of the current connection. */ static uint16_t m_ble_nus_max_data_len = BLE_GATT_ATT_MTU_DEFAULT - 3; /**< Maximum length of data (in bytes) that can be transmitted to the peer by the Nordic UART service module. */ static ble_uuid_t m_adv_uuids[] = /**< Universally unique service identifier. */ { {BLE_UUID_NUS_SERVICE, NUS_SERVICE_UUID_TYPE}}; /**@brief Function for assert macro callback. * * @details This function will be called in case of an assert in the SoftDevice. * * @warning This handler is an example only and does not fit a final product. * You need to analyse * how your product is supposed to react in case of Assert. * @warning On assert from the SoftDevice, the system can only recover on reset. * * @param[in] line_num Line number of the failing ASSERT call. * @param[in] p_file_name File name of the failing ASSERT call. */ void assert_nrf_callback(uint16_t line_num, const uint8_t *p_file_name) { NRF_LOG_INFO("call assert_nrf_callback"); app_error_handler(DEAD_BEEF, line_num, p_file_name); } /**@brief Function for initializing the timer module. */ static void timers_init(void) { ret_code_t err_code = app_timer_init(); APP_ERROR_CHECK(err_code); } /**@brief Function for the GAP initialization. * * @details This function will set up all the necessary GAP (Generic Access * Profile) parameters of * the device. It also sets the permissions and appearance. */ static void gap_params_init(void) { uint32_t err_code; ble_gap_conn_params_t gap_conn_params; ble_gap_conn_sec_mode_t sec_mode; char DEVICE_NAME[25]; ble_gap_addr_t addr; sd_ble_gap_addr_get(&addr); NRF_LOG_RAW_INFO("\n%02X:%02X:%02X:%02X:%02X:%02X\n", addr.addr[0], addr.addr[1], addr.addr[2], addr.addr[3], addr.addr[4], addr.addr[5]); sprintf(DEVICE_NAME, "xFinder:%02X:%02X:%02X:%02X:%02X:%02X", addr.addr[5], addr.addr[4], addr.addr[3], addr.addr[2], addr.addr[1], addr.addr[0]); BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode); err_code = sd_ble_gap_device_name_set(&sec_mode, (const uint8_t *)DEVICE_NAME, strlen(DEVICE_NAME)); APP_ERROR_CHECK(err_code); memset(&gap_conn_params, 0, sizeof(gap_conn_params)); gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL; gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL; gap_conn_params.slave_latency = SLAVE_LATENCY; gap_conn_params.conn_sup_timeout = CONN_SUP_TIMEOUT; err_code = sd_ble_gap_ppcp_set(&gap_conn_params); APP_ERROR_CHECK(err_code); } /**@brief Function for handling Queued Write Module errors. * * @details A pointer to this function will be passed to each service which may * need to inform the * application about an error. * * @param[in] nrf_error Error code containing information about what went * wrong. */ static void nrf_qwr_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } /**@brief Function for handling the data from the Nordic UART Service. * * @details This function will process the data received from the Nordic UART * BLE Service and send * it to the UART module. * * @param[in] p_evt Nordic UART Service event. */ /**@snippet [Handling the data received over BLE] */ static void nus_data_handler(ble_nus_evt_t *p_evt) { ret_code_t ret; uint16_t index = 0; if (p_evt->type == BLE_NUS_EVT_RX_DATA) { uint32_t err_code; NRF_LOG_INFO("receieved data from mobile phone"); NRF_LOG_DEBUG("Received data from BLE NUS. Writing data on UART."); NRF_LOG_HEXDUMP_DEBUG(p_evt->params.rx_data.p_data, p_evt->params.rx_data.length); NRF_LOG_INFO("%s", p_evt->params.rx_data.p_data); uint8_t uart_string[BLE_NUS_MAX_DATA_LEN + 2] = ""; memcpy(uart_string, p_evt->params.rx_data.p_data, p_evt->params.rx_data.length); uart_string[p_evt->params.rx_data.length] = '\r'; uart_string[p_evt->params.rx_data.length + 1] = '\n'; if (strcmp(uart_string, "1\r\n") == 0) { checkBuzzer = true; } if (strcmp(uart_string, "2\r\n") == 0) { checkBuzzer = false; } do { err_code = nrf_libuarte_async_tx(&libuarte, uart_string, p_evt->params.rx_data.length + 2); if ((err_code != NRF_SUCCESS) && (err_code != NRF_ERROR_BUSY)) { NRF_LOG_ERROR("Failed receiving NUS message. Error 0x%x. ", err_code); APP_ERROR_CHECK(err_code); } } while (err_code == NRF_ERROR_BUSY); } } /**@snippet [Handling the data received over BLE] */ /**@brief Function for initializing services that will be used by the * application. */ static void services_init(void) { NRF_LOG_INFO("call services_init"); uint32_t err_code; ble_nus_init_t nus_init; nrf_ble_qwr_init_t qwr_init = {0}; // Initialize Queued Write Module. qwr_init.error_handler = nrf_qwr_error_handler; err_code = nrf_ble_qwr_init(&m_qwr, &qwr_init); APP_ERROR_CHECK(err_code); // Initialize NUS. memset(&nus_init, 0, sizeof(nus_init)); nus_init.data_handler = nus_data_handler; err_code = ble_nus_init(&m_nus, &nus_init); APP_ERROR_CHECK(err_code); } /**@brief Function for handling an event from the Connection Parameters Module. * * @details This function will be called for all events in the Connection * Parameters Module * which are passed to the application. * * @note All this function does is to disconnect. This could have been done by * simply setting * the disconnect_on_fail config parameter, but instead we use the event * handler * mechanism to demonstrate its use. * * @param[in] p_evt Event received from the Connection Parameters Module. */ static void on_conn_params_evt(ble_conn_params_evt_t *p_evt) { NRF_LOG_INFO("call on_conn_params_evt"); uint32_t err_code; if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED) { err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE); APP_ERROR_CHECK(err_code); } } /**@brief Function for handling errors from the Connection Parameters module. * * @param[in] nrf_error Error code containing information about what went * wrong. */ static void conn_params_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } /**@brief Function for initializing the Connection Parameters module. */ static void conn_params_init(void) { uint32_t err_code; ble_conn_params_init_t cp_init; memset(&cp_init, 0, sizeof(cp_init)); cp_init.p_conn_params = NULL; cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY; cp_init.next_conn_params_update_delay = NEXT_CONN_PARAMS_UPDATE_DELAY; cp_init.max_conn_params_update_count = MAX_CONN_PARAMS_UPDATE_COUNT; cp_init.start_on_notify_cccd_handle = BLE_GATT_HANDLE_INVALID; cp_init.disconnect_on_fail = false; cp_init.evt_handler = on_conn_params_evt; cp_init.error_handler = conn_params_error_handler; err_code = ble_conn_params_init(&cp_init); APP_ERROR_CHECK(err_code); } /**@brief Function for putting the chip into sleep mode. * * @note This function will not return. */ static void sleep_mode_enter(void) { NRF_LOG_INFO("call slepp_mode_enter"); uint32_t err_code = bsp_indication_set(BSP_INDICATE_IDLE); APP_ERROR_CHECK(err_code); // Prepare wakeup buttons. err_code = bsp_btn_ble_sleep_mode_prepare(); APP_ERROR_CHECK(err_code); // Go to system-off mode (this function will not return; wakeup will cause a // reset). err_code = sd_power_system_off(); APP_ERROR_CHECK(err_code); } /**@brief Function for handling advertising events. * * @details This function will be called for advertising events which are passed * to the application. * * @param[in] ble_adv_evt Advertising event. */ static void on_adv_evt(ble_adv_evt_t ble_adv_evt) { uint32_t err_code; NRF_LOG_INFO("call on_adv_evt"); switch (ble_adv_evt) { case BLE_ADV_EVT_FAST: NRF_LOG_INFO("call BLE_ADV_EVT_FAST"); err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING); APP_ERROR_CHECK(err_code); break; case BLE_ADV_EVT_IDLE: NRF_LOG_INFO("call BLE_ADV_EVT_IDLE"); // sleep_mode_enter(); break; default: break; } } /**@brief Function for handling BLE events. * * @param[in] p_ble_evt Bluetooth stack event. * @param[in] p_context Unused. */ static void ble_evt_handler(ble_evt_t const *p_ble_evt, void *p_context) { uint32_t err_code; switch (p_ble_evt->header.evt_id) { case BLE_GAP_EVT_CONNECTED: NRF_LOG_INFO("Connected"); err_code = bsp_indication_set(BSP_INDICATE_CONNECTED); APP_ERROR_CHECK(err_code); m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle; err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr, m_conn_handle); APP_ERROR_CHECK(err_code); break; case BLE_GAP_EVT_DISCONNECTED: NRF_LOG_INFO("Disconnected"); // LED indication will be changed when advertising starts. m_conn_handle = BLE_CONN_HANDLE_INVALID; break; case BLE_GAP_EVT_PHY_UPDATE_REQUEST: { NRF_LOG_DEBUG("PHY update request."); ble_gap_phys_t const phys = { .rx_phys = BLE_GAP_PHY_AUTO, .tx_phys = BLE_GAP_PHY_AUTO, }; err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys); APP_ERROR_CHECK(err_code); } break; case BLE_GAP_EVT_SEC_PARAMS_REQUEST: // Pairing not supported err_code = sd_ble_gap_sec_params_reply( m_conn_handle, BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL); APP_ERROR_CHECK(err_code); break; case BLE_GATTS_EVT_SYS_ATTR_MISSING: // No system attributes have been stored. err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0, 0); APP_ERROR_CHECK(err_code); break; case BLE_GATTC_EVT_TIMEOUT: // Disconnect on GATT Client timeout event. err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; case BLE_GATTS_EVT_TIMEOUT: // Disconnect on GATT Server timeout event. err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; case BSP_EVENT_KEY_0: NRF_LOG_INFO("DA BAM NUT"); break; default: // No implementation needed. break; } } /**@brief Function for the SoftDevice initialization. * * @details This function initializes the SoftDevice and the BLE event * interrupt. */ static void ble_stack_init(void) { NRF_LOG_INFO("call ble_stack_init"); ret_code_t err_code; err_code = nrf_sdh_enable_request(); APP_ERROR_CHECK(err_code); // Configure the BLE stack using the default settings. // Fetch the start address of the application RAM. uint32_t ram_start = 0; err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start); APP_ERROR_CHECK(err_code); // Enable BLE stack. err_code = nrf_sdh_ble_enable(&ram_start); APP_ERROR_CHECK(err_code); // Register a handler for BLE events. NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL); } /**@brief Function for handling events from the GATT library. */ void gatt_evt_handler(nrf_ble_gatt_t *p_gatt, nrf_ble_gatt_evt_t const *p_evt) { if ((m_conn_handle == p_evt->conn_handle) && (p_evt->evt_id == NRF_BLE_GATT_EVT_ATT_MTU_UPDATED)) { m_ble_nus_max_data_len = p_evt->params.att_mtu_effective - OPCODE_LENGTH - HANDLE_LENGTH; NRF_LOG_INFO("Data len is set to 0x%X(%d)", m_ble_nus_max_data_len, m_ble_nus_max_data_len); } NRF_LOG_DEBUG("ATT MTU exchange completed. central 0x%x peripheral 0x%x", p_gatt->att_mtu_desired_central, p_gatt->att_mtu_desired_periph); } /**@brief Function for initializing the GATT library. */ void gatt_init(void) { ret_code_t err_code; err_code = nrf_ble_gatt_init(&m_gatt, gatt_evt_handler); APP_ERROR_CHECK(err_code); err_code = nrf_ble_gatt_att_mtu_periph_set(&m_gatt, NRF_SDH_BLE_GATT_MAX_MTU_SIZE); APP_ERROR_CHECK(err_code); } /**@brief Function for handling events from the BSP module. * * @param[in] event Event generated by button press. */ void bsp_event_handler(bsp_event_t event) { uint32_t err_code; switch (event) { case BSP_EVENT_KEY_0: NRF_LOG_INFO("BSP_EVENT_KEY_0"); // sleep_mode_enter(); break; default: break; } } char *datavalue(char Data[], char characters, int num) { memset(valueText,0,sizeof(valueText)); int found = 0; int strIndex[] = {0, -1}; int maxIndex = strlen(Data) - 1; for (int i = 0; i <= maxIndex && found <= num; i++) { if (Data[i] == characters || i == maxIndex) { found++; strIndex[0] = strIndex[1] + 1; strIndex[1] = (i == maxIndex) ? i + 1 : i; } } if (found > num) { strncpy(valueText, Data + strIndex[0], strIndex[1] - strIndex[0]); } else strcpy(valueText, ""); return valueText; } typedef struct { uint8_t *p_data; uint32_t length; } buffer_t; NRF_QUEUE_DEF(buffer_t, m_buf_queue, 10, NRF_QUEUE_MODE_NO_OVERFLOW); void send_Uart1(char *sdata, int len) { ret_code_t ret; do { ret = nrf_libuarte_async_tx(&libuarte, sdata, len); } while (ret == NRF_ERROR_BUSY); APP_ERROR_CHECK(ret); } void send_Uart2(char *sdata, int len) { ret_code_t ret; do { ret = nrf_libuarte_async_tx(&libuarte2, sdata, len); } while (ret == NRF_ERROR_BUSY); APP_ERROR_CHECK(ret); } void handleBuffer() { if (checkPreviousBufferFull == true) { NRF_LOG_INFO("call handleBuffer"); strcat(dataGPS, tempBuffer); } else { memset(dataGPS, 0, sizeof(dataGPS)); memcpy(dataGPS, tempBuffer, sizeof(tempBuffer)); } if (checkCurrentBufferFull == false) { //NRF_LOG_INFO("data = %s", dataGPS); stpcpy(longitude, datavalue(dataGPS, ',', 1)); strcpy(latitude, datavalue(dataGPS, ',', 9)); NRF_LOG_INFO("%s",longitude); NRF_LOG_INFO("%s",latitude); sprintf(coordinate, "%s;%s\r\n", longitude, latitude); send_Uart1(coordinate, sizeof(coordinate)); } checkPreviousBufferFull = checkCurrentBufferFull; memset(tempBuffer, 0, sizeof(tempBuffer)); } /**@brief Function for handling app_uart events. * * @details This function will receive a single character from the app_uart * module and append it to * a string. The string will be be sent over BLE when the last * character received was a * 'new line' '\n' (hex 0x0A) or if the string has reached the maximum * data length. */ /**@snippet [Handling the data received over UART] */ void uart_event_handler(void *context, nrf_libuarte_async_evt_t *p_evt) { nrf_libuarte_async_t *p_libuarte = (nrf_libuarte_async_t *)context; ret_code_t ret; uint16_t index = 0; switch (p_evt->type) { case NRF_LIBUARTE_ASYNC_EVT_OVERRUN_ERROR: break; case NRF_LIBUARTE_ASYNC_EVT_ERROR: break; case NRF_LIBUARTE_ASYNC_EVT_RX_DATA: //checkRec2 = true; //memcpy(tempBuffer, p_evt->data.rxtx.p_data, p_evt->data.rxtx.length); //if (p_evt->data.rxtx.src == 0) { // NRF_LOG_INFO("XX FULL BUFFER XX"); // checkCurrentBufferFull = true; //} else { // checkCurrentBufferFull = false; //} NRF_LOG_INFO("receive1"); nrf_libuarte_async_rx_free(p_libuarte, p_evt->data.rxtx.p_data, p_evt->data.rxtx.length); break; case NRF_LIBUARTE_ASYNC_EVT_TX_DONE: memset(coordinate,0, sizeof(coordinate)); memset(longitude,0,sizeof(longitude)); memset(latitude,0,sizeof(latitude)); break; default: break; } } uint8_t data1[100]; uint8_t data2[100]; char *ptrRx2; void uart_event_handler2(void *context, nrf_libuarte_async_evt_t *p_evt) { nrf_libuarte_async_t *p_libuarte = (nrf_libuarte_async_t *)context; ret_code_t ret; uint16_t index = 0; switch (p_evt->type) { case NRF_LIBUARTE_ASYNC_EVT_ERROR: break; case NRF_LIBUARTE_ASYNC_EVT_RX_DATA: checkRec2 = true; memcpy(tempBuffer, p_evt->data.rxtx.p_data, p_evt->data.rxtx.length); if (p_evt->data.rxtx.src == 0) { checkCurrentBufferFull = true; } else { checkCurrentBufferFull = false; } nrf_libuarte_async_rx_free(p_libuarte, p_evt->data.rxtx.p_data, p_evt->data.rxtx.length); break; case NRF_LIBUARTE_ASYNC_EVT_TX_DONE: break; default: break; } } /**@snippet [Handling the data received over UART] */ /**@brief Function for initializing the UART module. */ /**@snippet [UART Initialization] */ static void uart1_init(void) { uint32_t err_code; nrf_libuarte_async_config_t nrf_libuarte_async_config = { .tx_pin = TX_PIN_NUMBER1, .rx_pin = RX_PIN_NUMBER1, .baudrate = NRF_UARTE_BAUDRATE_115200, .parity = NRF_UARTE_PARITY_EXCLUDED, .hwfc = NRF_UARTE_HWFC_DISABLED, .timeout_us = 100, .int_prio = APP_IRQ_PRIORITY_LOW_MID}; err_code = nrf_libuarte_async_init(&libuarte, &nrf_libuarte_async_config, uart_event_handler, (void *)&libuarte); APP_ERROR_CHECK(err_code); nrf_libuarte_async_enable(&libuarte); //static uint8_t text[] = "ble_app_libUARTE example started.\r\n"; //static uint8_t text_size = sizeof(text); //err_code = nrf_libuarte_async_tx(&libuarte, text, text_size); APP_ERROR_CHECK(err_code); } static void uart2_init(void) { uint32_t err_code; nrf_libuarte_async_config_t nrf_libuarte_async_config2 = { .tx_pin = TX_PIN_NUMBER2, .rx_pin = RX_PIN_NUMBER2, .baudrate = NRF_UARTE_BAUDRATE_115200, .parity = NRF_UARTE_PARITY_EXCLUDED, .hwfc = NRF_UARTE_HWFC_DISABLED, .timeout_us = 100, .int_prio = APP_IRQ_PRIORITY_LOW_MID}; ret_code_t err_code2 = nrf_libuarte_async_init(&libuarte2, &nrf_libuarte_async_config2, uart_event_handler2, (void *)&libuarte2); APP_ERROR_CHECK(err_code2); nrf_libuarte_async_enable(&libuarte2); //static uint8_t text[] = "ble_app_libUARTE example started.\r\n"; //static uint8_t text_size = sizeof(text); //err_code2 = nrf_libuarte_async_tx(&libuarte2, text, text_size); APP_ERROR_CHECK(err_code2); } /**@snippet [UART Initialization] */ /**@brief Function for initializing the Advertising functionality. */ static void advertising_init(void) { uint32_t err_code; ble_advertising_init_t init; memset(&init, 0, sizeof(init)); init.advdata.name_type = BLE_ADVDATA_FULL_NAME; init.advdata.include_appearance = false; // init.advdata.flags = // BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE; init.advdata.flags = BLE_GAP_ADV_FLAGS_LE_ONLY_GENERAL_DISC_MODE; init.srdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]); init.srdata.uuids_complete.p_uuids = m_adv_uuids; init.config.ble_adv_fast_enabled = true; init.config.ble_adv_fast_interval = APP_ADV_INTERVAL; init.config.ble_adv_fast_timeout = APP_ADV_DURATION; init.evt_handler = on_adv_evt; err_code = ble_advertising_init(&m_advertising, &init); APP_ERROR_CHECK(err_code); ble_advertising_conn_cfg_tag_set(&m_advertising, APP_BLE_CONN_CFG_TAG); } /**@brief Function for initializing buttons and leds. * * @param[out] p_erase_bonds Will be true if the clear bonding button was * pressed to wake the application up. */ static void buttons_leds_init(bool *p_erase_bonds) { bsp_event_t startup_event; uint32_t err_code = bsp_init(BSP_INIT_LEDS | BSP_INIT_BUTTONS, bsp_event_handler); APP_ERROR_CHECK(err_code); err_code = bsp_btn_ble_init(NULL, &startup_event); APP_ERROR_CHECK(err_code); *p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA); } /**@brief Function for initializing the nrf log module. */ static void log_init(void) { ret_code_t err_code = NRF_LOG_INIT(NULL); APP_ERROR_CHECK(err_code); NRF_LOG_DEFAULT_BACKENDS_INIT(); } /**@brief Function for initializing power management. */ static void power_management_init(void) { ret_code_t err_code; err_code = nrf_pwr_mgmt_init(); APP_ERROR_CHECK(err_code); } /**@brief Function for handling the idle state (main loop). * * @details If there is no pending log operation, then sleep until next the next * event occurs. */ static void idle_state_handle(void) { if (NRF_LOG_PROCESS() == false) { nrf_pwr_mgmt_run(); } } /**@brief Function for starting advertising. */ static void advertising_start(void) { NRF_LOG_INFO("call advertising start"); uint32_t err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST); APP_ERROR_CHECK(err_code); } /**@brief Application main function. */ static void uart_init(void) { uint32_t err_code; nrf_libuarte_async_config_t nrf_libuarte_async_config = { .tx_pin = TX_PIN_NUMBER1, .rx_pin = RX_PIN_NUMBER1, .baudrate = NRF_UARTE_BAUDRATE_115200, .parity = NRF_UARTE_PARITY_EXCLUDED, .hwfc = NRF_UARTE_HWFC_DISABLED, .timeout_us = 100, .int_prio = APP_IRQ_PRIORITY_LOW_MID }; nrf_libuarte_async_config_t nrf_libuarte_async_config2 = { .tx_pin = TX_PIN_NUMBER2, .rx_pin = RX_PIN_NUMBER2, .baudrate = NRF_UARTE_BAUDRATE_115200, .parity = NRF_UARTE_PARITY_EXCLUDED, .hwfc = NRF_UARTE_HWFC_DISABLED, .timeout_us = 100, .int_prio = APP_IRQ_PRIORITY_LOW_MID }; err_code = nrf_libuarte_async_init( & libuarte, & nrf_libuarte_async_config, uart_event_handler, (void * ) & libuarte); ret_code_t err_code2 = nrf_libuarte_async_init( & libuarte2, & nrf_libuarte_async_config2, uart_event_handler2, (void * ) & libuarte2); //edited2 APP_ERROR_CHECK(err_code); APP_ERROR_CHECK(err_code2); //edited2 nrf_libuarte_async_enable( & libuarte); nrf_libuarte_async_enable( & libuarte2); //edited2 static uint8_t text[] = "ble_app_libUARTE example started.\r\n"; static uint8_t text_size = sizeof(text); err_code = nrf_libuarte_async_tx( & libuarte, text, text_size); err_code2 = nrf_libuarte_async_tx( & libuarte2, text, text_size); //edited2 APP_ERROR_CHECK(err_code); APP_ERROR_CHECK(err_code2); //edited2 } bool checkConfig = true; int main(void) { bool erase_bonds; log_init(); // Initialize. timers_init(); //uart2_init(); uart_init(); checkConfig = true; NRF_LOG_INFO("1==="); send_Uart2(GPS_RMC, sizeof(GPS_RMC)); NRF_LOG_INFO("2==="); send_Uart2(GPS_RMC, sizeof(GPS_RMC)); NRF_LOG_INFO("3==="); send_Uart2(GPS_timeInterval, sizeof(GPS_timeInterval)); NRF_LOG_INFO("4==="); send_Uart2(GPS_timeInterval, sizeof(GPS_timeInterval)); NRF_LOG_INFO("5==="); checkConfig = false; //uart1_init(); buttons_leds_init(&erase_bonds); power_management_init(); ble_stack_init(); gap_params_init(); gatt_init(); services_init(); advertising_init(); conn_params_init(); // Start execution. NRF_LOG_INFO("Debug logging for UART over RTT started."); advertising_start(); ret_code_t err_code; app_pwm_config_t pwm1_cfg = APP_PWM_DEFAULT_CONFIG_1CH(500, LED_2); pwm1_cfg.pin_polarity[1] = APP_PWM_POLARITY_ACTIVE_HIGH; err_code = app_pwm_init(&PWM1, &pwm1_cfg, pwm_ready_callback); APP_ERROR_CHECK(err_code); app_pwm_enable(&PWM1); // Enter main loop. for (;;) { idle_state_handle(); if (checkRec2 && checkConfig == false) { handleBuffer(); checkRec2 = false; } while (checkBuzzer == true) { //app_pwm_channel_duty_set(&PWM1, 0, 50); //nrf_delay_ms(25); //app_pwm_channel_duty_set(&PWM1, 0, 100); //nrf_delay_ms(25); for (uint8_t i = 0; i < 40; ++i) { valuePWM = (i < 20) ? (i * 5) : (100 - (i - 20) * 5); ready_flag = false; while (app_pwm_channel_duty_set(&PWM1, 0, valuePWM) == NRF_ERROR_BUSY); while (!ready_flag); APP_ERROR_CHECK(app_pwm_channel_duty_set(&PWM1, 0, valuePWM)); nrf_delay_ms(25); } } if (checkBuzzer == false) { while (app_pwm_channel_duty_set(&PWM1, 0, 100) == NRF_ERROR_BUSY); } } } /** * @} */