
1



2



▪

▪

▪

▪

▪

▪

▪

▪

▪

3



▪

▪

▪

▪

▪

▪

▪

▪

4



5



Source

What you see here is a typical configuration for cellular IoT devices.

6



▪

▪

▪

▪

7



▪

▪

A device needs to send its sensor readings (like position, temperature) and information 
about its health to the backend, first an foremost is the battery level a critical health 
indicator. This data is considered the device state.

Because we want to always be able to quickly see the latest state of the device, a digital 
twin can be used to store this state on the backend side: whenever the device sends an 
update, the digital twin is updated. This allows an application to access the most recent 
device state immediately without needing to wait for the device to connect and publish 
its state.

8



▪

▪

▪

▪

▪

It is an important criterion for the robustness of any IoT product to gracefully handle 
situations in which the device is not connected to the internet. It might even not be 
favorable to be connected all the time—wireless communication is relatively expensive 
consumes a lot of energy and therefore increases the power consumption.

To optimize for ultra-low power 
consumption, we want to turn off the 
modem as quickly as possible and keep 
it off as long as possible.

This can be achieved by making the device smart and allowing it to decide based on the 
situation whether it should try to send data.

For example could an asset tracker use the motion sensor to decide whether to publish 
its state frequently or if it detects no movement for a while go into a passive mode, 
where it turns of the modem and waits until it detects movement again. It could also 

9



use the internal clock to wake up every hour to sent a heartbeat, after all we might want 
to know that the device is healthy, even it is not in motion.

9



▪

▪

Depending on the product we might also want to change the device configuration. This 
could on the one hand be use during development to tweak the aforementioned 
behavior using variables instead of pushing a new firmware over the air to the device. 
We observe firmware sizes of around 250 KB which will, even when compressed, be 
expensive because it will take a device some time to download and apply the updated, 
not to mention the costs for transferring the firmware update over the cellular network. 
Especially in NB-IoT-only deployments is the data rate low. Updating a fleet of devices 
with a new firmware involves orchestrating the roll-out and observing for faults. All 
these challenges lead to the need to be able to configure the device, which allows to 
tweak the behavior of the device until the inflection point is reached: battery life 
vs. data granularity. Interesting configuration options are for example the sensitivity of 
the motion sensor: depending on the tracked subject what is considered “movement” 
can vary greatly. Various timeout settings have an important influence on power- and 
data-consumption: the time the device waits to acquire a GPS fix, or the time it waits 
between sending updates when in motion.

On the other hand is device configuration needed if the device controls something: 
imaging a smart lock which needs to manipulate the state of a physical lock. The 
backend needs a way to tell the device which state that lock should be in, and this 
setting needs to be persisted on the backend, since the device could lose power, crash 
or otherwise lose the information if the lock should be open or closed.

10



Here again is the digital twin used on the cloud side to store the latest desired 
configuration of the device immediately, so the application does not have to wait for the 
device to be connected to record the configuration change. The implementation of the 
digital twin then will take care of sending only the latest required changes to the device 
(all changes since the device did last request its configuration are combined into one 
change) thus also minimizing the amount of data which needs to be transferred to the 
device.

10



11



Source

Imagine a reindeer tracker which tracks the position of a herd. If position updates are 
only collected when a cellular connection can be established there will be an interesting 
observation: the reindeers are only walking along ridges, but never in valleys. The 
reason is not because they don’t like the valley, but because the cellular signal does not 
reach deep down into remote valleys. The GPS signal however will be received there 
from the tracker because satellites are high on the horizon and can send their signal 
down into the valley.

There are many scenarios where cellular connection might not be available or 
unreliable but reading sensors work. Robust ultra-mobile IoT products therefore must 
make this a normal mode of operation: the absence of a cellular connection must be 
treated as a temporary condition which will eventually resolve and until then business 
as usual ensues. This means devices should keep measuring and storing these measures 
in a ring-buffer or employ other strategies to decide which data to discard once the 
memory limit is reached.

Once the device is successfully able to establish a connection it will then (after 
publishing its most recent measurements) publish past data in batch.

On a side note: the same is true for devices that control a system. They should have 
built-in decision rules and must not depend on an answer from a cloud backend to 
provide the action to execute based on the current condition.

12



▪

▪

▪

Arguably a firmware update over the air can be seen as configuration, however the size 
of a typical firmware image (250 KB) is 2-3 magnitudes larger than a control message. 
Therefore it can be beneficial to treat it differently. Typically an update is initiated by a 
configuration change, once acknowledged by the device will initiate the firmware 
download. The download itself is done out of band using not MQTT but HTTP(s) to 
reduce overhead.

Additionally firmware updates are so large compared to other messages that the device 
may suspend all other operation until the firmware update has been applied to 
conserve resources.

13



▪

▪

▪

It’s these messages that are exchanged between your devices and your backend which 
are the most important aspect to optimize for when developing an ultra-low power 
product because initiating and maintaining network connection is relatively expensive 
compared to other device operations (for example reading a sensor value).

It is therefore recommended to invest a substantial amount of time to revisit the 
principles explained here and customize them to your specific needs. The more the 
modem-uptime can be reduced and the smaller the total transferred amount of data 
becomes, the longer your battery will last.

14



15



▪

▪

▪

▪

Let’s look at the “default” protocol for encoding Application data and what alternatives 
exist to reduce the amount of data needed to transmit a typical device message: a GPS 
location.

16



{

"v": {

"lng": 10.414394,

"lat": 63.430588,

"acc": 17.127758,

"alt": 221.639832,

"spd": 0.320966,

"hdg": 0

},

"ts": 1566042672382

}

👍

👍

👎

17



{

"v": {

"lng": 10.414394,

"lat": 63.430588,

"acc": 17.127758,

"alt": 221.639832,

"spd": 0.320966,

"hdg": 0

},

"ts": 1566042672382

}

02 36 01 37 51 4b 73 2b

d4 24 40 09 68 06 f1 81

1d b7 4f 40 11 68 cd 8f

bf b4 20 31 40 19 e6 5d

f5 80 79 b4 6b 40 21 1a

30 48 fa b4 8a d4 3f 29

00 00 00 00 00 00 00 00

09 00 e0 cf ac f6 c9 76

42

Consider this GPS message. It contains a lot of data which is intended for humans, but 
not needed for machines sending or receiving the data.

The pure binary message would be transmitting only the 6 floats and 1 integer of the 
message. However a strucured message format is always preferred because we also 
want to ensure it’s integrity.

In JSON notation this document (without newlines) has 114 bytes. If the message were 
to be transferred using for example Protocol Buffers the data can be encoded with only 
65 bytes (a 42% improvement).

See also: RION Performance Benchmarks

18



▪

▪

▪

▪

▪

▪

In the comparison on the previous slide we showed how using Protocol Buffers can 
dramatically reduce the transferred data size, while keeping a typed message.

The implementation of Protocol Buffers is however quite big (for a resource constrained 
device like the nRF9160), and no official encoder/decoder implementation exists for C, 
inofficial does.

Flatbuffers is the best candidate with similar data savings.

Especially the ability to access members of a message directly in place makes it ideal for 
memory-constrained devices: no need to create a second copy of the received values.

It also offers flexibility during development is also supported because FlatBuffers offers 
a schema-less (self-describing) version.

Unfortunately there is no official support in the nRF Connect SDK or Zephyr as of now.

19



▪

▪

▪

Therefore the best alternative to JSON right now is CBOR.

CBOR is standard for encoding JSON data in a set of binary structures. It reduces volume 
by using more compact one byte values to replace two or more punctuation marks.

Official support is available in Zephyr.

20



{

"v": {

"lng": 10.414394,

"lat": 63.430588,

"acc": 17.127758,

"alt": 221.639832,

"spd": 0.320966,

"hdg": 0

},

"ts": 1566042672382

}

A2 61 76 A6 63 6C 6E 67

FB 40 24 D4 2B 73 4B 51

37 63 6C 61 74 FB 40 4F

B7 1D 81 F1 06 68 63 61

63 63 FB 40 31 20 B4 BF

8F CD 68 63 61 6C 74 FB

40 6B B4 79 80 F5 5D E6

63 73 70 64 FB 3F D4 8A

B4 FA 48 30 1A 63 68 64

67 00 62 74 73 1B 00 00

01 6C 9F 6A CC FE

This shows the possible savings when encoding the GPS location message using CBOR.

21



▪

▪

▪ №

▪

▪

22



23



▪

▪

▪

24



▪

▪

▪

№

▪

▪

MQTT with TLS is the default protocol when using IoT offerings from “ecommerce” 
cloud vendors like Amazon, Microsoft or Google. It’s a great fit for the event-driven 
communication in IoT and allows both sides to initiate communication.

However the protocol overhead for both MQTT and TLS are substantial: the initial 
handshake is large, and then every MQTT package contains repeated information. The 
MQTT topic name is quite long (typical size is around 60 Byte), which could actually be 
omitted.

25



▪

▪

▪

▪

▪

▪

MQTT-SN was specifically designed for IoT devices and tries to address the issues 
mentioned earlier.

The main differences involve:

Reducing the size of the message payload

Removing the need for a permanent connection by using UDP as the transport 
protocol.

26



▪

▪

▪

▪

This protocol is mostly used for device management. Especially LwM2M comes with a 
large set of predefined operations (e.g. firmware update) and uses very lightweight 
messaging. It also supports UDP out of the box which makes it an ideal protoco for 
resource constraint devices.

However there is no out-of-the box support by ecommerce cloud vendors, so here 
again one needs to operate a Gateway.

27



28



▪

▪

▪

One of the biggest cost factors when operating a cellular IoT product are data transfers. 
Not only are prices for IoT connectivity multiple magnitudes more expensive to what 
we are used from smartphone contracts, but transmitting data also requires a lot of 
energy. The longer the devices needs to transmit a payload the more likely it is also that 
the connection deteriorates (especially when the device is moving) and re-transmits 
need to happen. Therefore it is important to pay close attention to the amount of data 
your product is sending from the beginning. Having knowledge about the data usage 
profile of your application at hand also becomes important when picking the right 
connectivity partner.

While it is possible to infer a device’s data consumption on the terminating endpoint, 
this information is not accurate, because it can observe successfully incoming 
messages. It can also become challenging to cover all endpoints, for example Firmware 
over the Air updates are typically downloaded via HTTPs from a web server and not 
through MQTT.

29



AT%XCONNSTAT=1 

#include <modem/at_cmd.h>

int err = at_cmd_write("AT%XCONNSTAT=1", NULL, 0, NULL);

if (err != 0) {

printk("Could not enable connection statistics, error: %d\n", err);

}

30



AT%XCONNSTAT? 

static struct k_delayed_work connstat_work;

static int query_modem(const char *cmd, char *buf, size_t buf_len) { ... }

static void connstat_work_fn(struct k_work *work)

{

query_modem("AT%XCONNSTAT?", connStatBuffer, sizeof(connStatBuffer));

// NOTE: k_uptime_get_32() cannot hold a system uptime time

// larger than approximately 50 days

printk("Connection stats: %s | Uptime: %d seconds\n",

connStatBuffer, k_uptime_get_32() / 1000);

// Schedule next run

k_delayed_work_submit(&connstat_work, K_SECONDS(60));

}

k_delayed_work_init(&connstat_work, connstat_work_fn);

k_delayed_work_submit(&connstat_work, K_SECONDS(60));

31



Connection stats: %XCONNSTAT: 0,0,14,16,748,134 | Uptime: 5041 seconds

%XCONNSTAT: <SMS Tx>,<SMS Rx>,<Data Tx>,<Data Rx>,<Packet max>,<Packet average>

Now you have access to the connectivity statistics, and can for example publish this to 
the cloud every hour so you can collect precise data consumption usage from your 
devices. Together with the uptime information collected on the device you will be able 
to develop a very good understand of what the typical data usage per day, week and 
month will be for your devices.

See this blog post: https://devzone.nordicsemi.com/nordic/cellular-iot-
guides/b/software-and-protocols/posts/monitoring-nrf9160-data-usage-with-
connectivity-statistics

32



33



34



The nRF9160 supports two cellular networking protocols: LTE-M and NB-IoT. 
Fundamentally they both provide IP connectivity to your device, however they are 
significant differences, which are important to consider when developing your IoT 
product.

See this comparison

35



▪

▪

▪

▪

▪

LTE-M (also known as Cat-M1) is designed for low power applications requiring medium 
throughput. It has a narrower bandwidth of 1.4 MHz compared to 20 MHz for regular 
LTE, giving longer range, but less throughput. The throughput is 375 kbps downlink and 
300 kbps uplink, providing approximately 100 kbps application throughput running IP. It 
is suitable for TCP/TLS end-to-end secure connections. Mobility is fully supported, using 
the same cell handover features as in regular LTE. It is currently possible to roam with 
LTE-M, meaning it is suitable for applications that will operate across multiple regions. 
The latency is in the millisecond range offering real time communication for time-
critical applications.

36



▪

▪

▪

▪

▪

NB-IoT (also known as Cat-NB1) is a narrowband technology standard that does not use 
a traditional LTE physical layer, but is designed to operate in or around LTE bands and 
coexist with other LTE devices. It has a bandwidth of 200 kHz, giving it longer range and 
lower throughput compared to LTE-M and regular LTE. The throughput is 60 kbps 
downlink and 30 kbps uplink. It is suitable for static, low power applications requiring 
low throughput.

37



▪

▪

▪

▪

▪

▪

▪

▪

LTE-M is perfect for medium throughput applications requiring low power, low latency 
and/or mobility, like asset tracking, wearables, medical, POS and home security 
applications.

NB-IoT is perfect for static, low throughput applications requiring low power and long 
range, like smart metering, smart agriculture and smart city applications. It also 
provides better penetration in, for example, cellars and parking garages compared to 
LTE-M.

38



Low power operation is key for many IoT devices

Application protocols on cellular devices like the nRF9160

Master thesis on the subject

39



▪

▪

▪

▪

Last spring, before starting at Nordic

Titled …, where I compared TCP and UDP over LTE-M and NB-IoT using the nRF9160
Used the data to model energy consumption given parameters like payload size and 
transmission interval

Will talk about findings and observations

40



▪

▪

▪

▪

▪

▪

▪

▪ µ

Quick runthrough

nRF9160DK version 0.8.5

nRF Connect SDK version 1.2

Otii ARC for current measurement

The Norwegian network provider Telenor and their LTE-M and NB-IoT networks

Two applications

Regular transmissions

Both using the Power Saving Mode feature defined for LTE-M and NB-IoT.

The PSM specification allows for a device to initiate transmissions during the defined 
PSM interval. 

A long PSM interval was used to avoid other wakeups than those initiated by regular 
transmissions.

Did not focus on optimizing the power consumption performance of the applications. 

Rather wanted to focus on how the protocols performed with relation to eachother.

41



▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

Short summary of important factors affecting the energy consumption of a cellular 
device

Connection establishment is relevant on application protocol level and for cellular 
networks

TCP has persistent connection, requiring more traffic

To enable reliable communication acknowledgements are important.

They lead to unpredictable behavior as well as more traffic

There are many limits imposed by different protocols

MTU from IP and Ethernet

MSS on TCP to avoid IP fragmentation

Connecting to the cellular network is costly. PSM lowers the cost.
With PSM the devices stays active during an RRC inactive countdown consuming power.

(network defined)

Test and read about additional parameters in our online power profiler

42



Example diagram of a transmission. 
Exits PSM and reconnects

Transmits

Stays active.
Last part is active timer. Only relevant if you expect data to be received.

Not used in my research.

43



Example transmissions for MQTT over LTE-M and NB-IoT.
Notice where the transmission is finished and inactive countdown starts.
Very different on the LTE-M and NB-IoT
LTE-M has higher peaks and more frequent activity, which in turn affects the power 
consumption.

44



45



Averaged out plots for energy used on transmission

Dashed line – with RRC inactive
Solid line – without RRC inactive energy

The RRC inactive energy is dependent on network provider and was therefore not 
considered

Notice how much it contributes to the total energy consumed 

NB-IoT is linearly dependent on payload size. 

LTE-M, with higher capacity, is not. Within the tested payload size range.

Some outliers for TCP over LTE-M resulting in energy consumption spikes. Restarting of 
RRC inactive timer due to activity

CoAP in general use less energy than MQTT. 

Mentioned MSS earlier. These results evidently shows how this affects energy 
consumption

For MQTT on both LTE-M and NB-IoT there is an increase in consumed power after 
payload exceeds ~500 bytes

The base MSS is 536 bytes.

46



Note at last that there is a starting cost to every transmission.

46



Violin plots showing variation and distribution of measurements, based on residuals 
from regression analysis. 

Small for NB-IoT
More spurious for LTE-M

47



Plot of transmission time. The dashed line shows how long the device stays active in 
total

LTE-M is as expected faster than NB-IoT. 

Not a strong correlation for any of them with payload size

Notice that the MSS affects time used on transmission aswell

48



Violin plots of variation and distribution of transmission time measurements

NB-IoT is wide and latent. 
LTE-M especially for CoAP has a low variation.

49



▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

Finalizing the observations.

MQTT is well supported, but TCP is not ideal for low power use. We saw more spurious 
timing and energy consumption

CoAP has less overhead, supports reliability, but is not very popular(yet?)

LTE-M and NB-IoT are as expected suited for different purposes. 

LTE-M saw higher peak currents as well as some spurious behavior during the inactive 
countdown.

When transmitting large amounts of data on a network that provides a short inactive 
countdown LTE-M can actually outperform NB-IoT in terms of power consumption.

Due to the linear dependency of NB-IoT with relation to payload size. 

Brings me to my last point:

50



51



52



▪

▪

▪

53



54



▪

▪

Now, if you want to get started with developing your cellular IoT product here are some 
resources…

55



▪

▪

▪

▪

nRF Connect for Cloud is an integral part of you cellular IoT development workflow. We 
have made nRF Connect for Cloud simple to use, yet powerful and efficient when 
getting your cellular designs and products connected.

56



▪

▪

▪

▪

▪

Bifravst aims to provide a concrete end-to-end example for an ultra-low power IoT 
product in the asset tracker space, namely a Cat Tracker.

Bifravst enables the developers to set up a real world IoT solution using the 
respective cloud provider and adapt the example firmware and software quickly for a 
specific use case.

Bifravst aims to provide answers and recommend best practices to the following 
questions :

How can you connect Nordic’s cellular IoT chips to your cloud provider?

How do devices send data into the cloud?

How can the data be sent to the devices?

How can users and other services interact with the devices?

57



How can you update the application firmware of your devices while they are 
deployed in the field?

How can you develop a cellular IoT product that maximizes battery life, minimizes 
data usage, and handles unreliable connectivity gracefully?

57



58



59


