PARTNER WEBINAR Laird

CONNECTIVITY

NORDICTECH WEBINARS

BL5340PA - nRF5340 SoC

and nRF21540 RF FEM

module for extended range

Today's hosts

Jonathan Kaye

VP Product Management & Marketing Product Marketing Engineer

Bjørn Kvaale

Practicalities

- Duration: 50-60 mins
- Questions are encouraged!
- Please type questions in the top of the right sidebar
 - All questions are anonymous
 - Try to keep them relevant to the topic
- We will answer questions towards the end
- The chat is not anonymous, and should not be used for questions
- If you have more questions:
 - Go to DevZone for Nordic related questions
 - https://www.lairdconnect.com/contact
- A recording of the webinar will be available together with the presentation at webinars.nordicsemi.com

Agenda

- Overview of the Nordic nRF5340 advanced dual-core wireless SoC and nRF21540 RF FEM
- Detailed architecture descriptions of nRF5340 SoC and nRF21540 RF FEM
- Overview of how they are integrated into a certified BL5340PA module range from Laird Connectivity
- Review of use cases where this solution maximizes product performance and wireless range

- Overview of the Nordic nRF5340 advanced dual-core wireless SoC and nRF21540 RF FEM
- Detailed architecture descriptions of nRF5340 SoC and nRF21540 RF FEM
- Overview of how they are integrated into a certified BL5340PA module range from Laird Connectivity
- Review of use cases where this solution maximizes product performance and wireless range
- Q&A

Agenda

nRF5340 overview and highlights

- High-performance application processor
- Fully programmable, ultra-low power network processor
- Redesigned multiprotocol radio
- Advanced security features
- 1.7-5.5 V supply range
- -40 to +105°C

Multi-core flexibility

- High performance and high efficiency – no trade-off
- Distinct optimization
 - Performance
 - Efficiency
- Separation of concerns
 - Real-time requirements
 - Software split

Multiprotocol radio

- Bluetooth 5.3 and beyond
 - LE Audio
 - Direction Finding
 - 2 Mbps, Long Range and Advertising Extensions
- Bluetooth mesh, 802.15.4 (Thread, Zigbee)
- Matter

Radio improvements

- TX current reduced by 29 % down to 3.2 mA
- RX current reduced by 41 % down to 2.6 mA
- -98 dBm RX sensitivity
- 1 dB resolution of TX power

All-in-one

- nRF52 Series feature superset
 - Bluetooth 5.3, Thread and Zigbee
 - CryptoCell, USB, QSPI, HS-SPI
 - 1.7-5.5 V and up to 105 °C
- More
 - Performance
 - Memory
 - Integration
- While minimizing power consumption

nRF21540 overview

- RF front-end module (FEM)
- Includes both a power amplifier (PA) and low noise amplifier (LNA)
- Supports
 - Bluetooth LE, Bluetooth mesh
 - Thread/Zigbee
 - 2.4 GHz proprietary
- +13 dB receive gain, 2.7 dB noise figure
 - Up to 5 dB improvement in RX sensitivity
- Configurable TX output power up to +21 dBm

nRF21540 overview

- SoC + nRF21540 configurable to be <u>ARIB, ETSI and/or FCC approved</u>
- Interfaces and TX gain control
 - GPIO control, SPI control or a combination
 - TX gain control, antenna switching and power modes

nRF21540 overview

- Single ended 50 Ω matched input and output
- Antenna diversity support (Thread/Zigbee)
- No bypass mode support
- Operating Conditions
 - 1.7 to 3.6V supply range
 - -40°C to +105°C
- Package Variants
 - 4x4mm QFN16, 0.65mm pitch

- Overview of the Nordic nRF5340 advanced dual-core wireless SoC and nRF21540 RF FEM
- Detailed architecture descriptions of nRF5340 SoC and nRF21540 RF FEM
- Overview of how they are integrated into a certified BL5340PA module range from Laird Connectivity
- Review of use cases where this solution maximizes product performance and wireless range
- Q&A

Agenda

Application processor

Application Processor								
64/128 MHz	1024 KE	1024 KB Flash						
Cortex®-M33,	512 KB	RAM						
TrustZone	8 KB I-	Cache	IPC					
AHB / APB / EasyDMA / DPPI								
System Peripherals								
3×TIMER	2×RTC	2×RTC 2×WDT		6×EGU				
Security								
Arm CryptoCel	I-312	-312 SPU		KMU				
Digital, analog I/F and GPIO								
USB QSPI	HS-SPI	HS-SPI 4×UART,		/SPI/TWI				
125	PDM	4×PWM		2×QDEC				
NFC-A Tag	SAADC	LPCOMP		COMP				
GPIOTE	Share	Shared 48-pin crossbar						

- Arm Cortex-M33 with DSP and floating-point instructions
- 128 MHz and 64 MHz clock speeds
- Voltage-frequency scaling
- Optimized for performance
- Arm TrustZone support
- 8 KB 2-way set associative cache
- 1024 KB flash
- 512 KB RAM

Network processor

- Arm Cortex-M33
- 64 MHz clock speed
- Optimized for efficiency
- Fully programmable
- 2 KB instruction cache
- 256 KB Flash
- 64 KB RAM

Network Processor							
		64 MHz Arm®		256 KB Flash			
		Cortex®-M33		64 KB RAM			
IPC				2 KB I-Cache			
A	AHB / APB / EasyDMA / DPPI						
System Pe	System Peripherals						
3×TIMER	3×TIMER 2×R		WDT	EGU	RNG	TEMP	
ECB	ECB		AAR		ССМ		
Digital I/F	Digital I/F and GPIO						
	UART/SPI/TWI						
GPIOTE	GPIOTE Shared 48-pin crossbar						
Multiprotocol 2.4 GHz radio							

Multi-core flexibility

Efficiency [CoreMark/mA]

Power and clock

Power and clock					
Power supply					
LD	LDO				
Buck DC/DC					
POR	BOR				
Oscillators					
32 MHz	32 MHz RC/XO				
32 kHz RC/XO					
Audio PLL					
Debug					
Debug					
<u>.</u>					

- Power supply
 - 1.7 to 5.5 V
 - LDO and DC/DC options
 - Direct supply from USB
- Oscillators
 - Integrated load capacitors
 - 32 MHz and optional 32 kHz crystals
- Tunable on-chip Audio PLL
 - 11.289 or 12.288 MHz
 - Low jitter, suitable for audio applications

Up to 10x range increase with nRF21540 RF FEM

Up to 10x range increase

- Between 6.3-10 x the range in a symmetric link
 - Valid for all nRF52 Series SoCs and the nRF5340 SoC
- Up to ~5 dB improvement in RX sensitivity
- Useful for Bluetooth Low Energy, Bluetooth mesh, Thread and Zigbee and 2.4 GHz proprietary applications

Increased link robustness

- Up to 20 dB increased link budget
 - Up to 17 dB from TX, up to 5 dB from RX (depends on the wireless SoC)
- Minimize packet loss and retransmissions
 - Improved communication latency
- Dynamic output power adjustments
 - Customers can optimize link budget via RSSI measurements to improve link robustness when link environment or link range changes
 - Bluetooth LE Power control experimental support as of nRF Connect SDK 2.2.0

Adjustable output power

- Output power adjustable to +/- 1 dB around 10/20 dBm (ETSI/FCC limits), upper limit 21 dBm
- User programmable modes for TX gain
- Worldwide coverage with one device with different output power settings possible
- Easy adjustments possible via SPI, GPIOs or combination of both

- Overview of the Nordic nRF5340 advanced dual-core wireless SoC and nRF21540 RF FEM
- Detailed architecture descriptions of nRF5340 SoC and nRF21540 RF FEM
- Overview of how they are integrated into a certified BL5340PA module range from Laird Connectivity

Review of use cases where this solution maximizes product performance and wireless range

Q&A

Agenda

Overview of the BL5340PA Series

Inside BL5340PA vs BL5340

Pin out differences BL5340 to BL5340PA

Review of the interconnects between SoC & FEM

BL5340PA – Voltage Modes

Link Budget – BL5340PA vs BL5340

20.5dB increase in link budget!

TX power BLE	Peak Antenna gain TX and RX side	RX sensitivity BLE 1Mbps	Total Link Budget radiated	LoS Range estimate
+18.5dBm	+1.49dBi	-103dBm	124.48dB	23,000 meters

TX power BLE	X power BLE Peak Antenna gain TX and RX side		Total Link Budget radiated	LoS Range estimate	
+3dBm	+1.49dBi	-98dBm	103.98dB	2,180 meters	

Antenna Options and Capabilities

BL5340PA has 2 dedicated skus

- 453-00068 has an integrated PCB antenna
- 453-00076 has **BOTH** integrated antenna and MHF4 connector
 - Enables option for antenna selection or switching!

_aird

CONNECTIVITY

M/N:BL5340PA R2 P/N:453-00068 Int

M/N:BL5340PA R2 P/N:453-00076 Ext

The Kitchen Sink Development Kit!

BL5340PA software implementation

- BL5340PA DVK Boards File added to nRFConnect SDK fork of Zephyr
- This describes the features of the DVK, but also critically the characteristics of the BL5340PA module

The critical importance of power tables

- BL5340PA Power Tables added to nRFConnect SDK Drivers section
- These describe the limitations to apply to radio channels to ensure regulatory compliance
- The Power Tables are referenced by the BL5340PA DVK Boards File

Multi Protocol Server Layer

- BL5340PA Power Tables work in conjunction with Nordic's <u>Multi Protocol Service Layer (MPSL)</u>
- Only currently available in the nRFConnect SDK

Regulatory Certification

- To date the BL5340PA series is certified for
 - FCC (US)
 - ISED (Canada)
 - RCM (Australia & New Zealand)
- Bluetooth LE and 802.15.4 certified for each supported region
- Full range of pre certified antennas per region

What about CE / UKCA?

- ETSI EN300 328 certification for high output radio devices relies on complex control of the radio duty cycle (Time on Air or TOA)
- This needs to be performed at the lower levels of the radio driver
- Currently using the SoftDevice and MPSL, limited to a maximum of +10dBm for Europe, so to date not proceeded with certification due to this limited performance improvement over the BL5340.

CE

UK

- Overview of the Nordic nRF5340 advanced dual-core wireless SoC and nRF21540 RF FEM
- Detailed architecture descriptions of nRF5340 SoC and nRF21540 RF FEM
- Overview of how they are integrated into a certified BL5340PA module range from Laird Connectivity
- Review of use cases where this solution maximizes product performance and wireless range
- Q&A

Agenda

Predictive Maintenance with Machine Learning

Industrial / Manufacturing

LE Audio

Transport Infrastructure

CONNECTIVITY

Asset Tracking

Industrial / Warehouse applications

42

Locationing

Hospital Environments

Further details on BL5340PA – https://www.lairdconnect.com/bl5340pa-series