BLE Mesh Demo

Document version | Author | Comment
Nov30-2018 MQ Original release.
Dec10-2018 MQ Update for Mesh SDK 3.0; added persistent storage
info.
Jan31-2019 MQ Update for Mesh SDK 3.1.0.
Purpose

This document will explain the Mesh Demo and the motivations behind the design
decisions.

Architecture
The mesh network realized in this demo has the following points to show:

1. Create a mesh network with two groups of nRF52832 Development Kits
(DKs). The two groups are on the same mesh network (common network
key) but they cannot decode the other group’s messages because they
have separate application keys yet all nodes in this network will
participate in relaying data for all nodes. The purpose of creating and
bifurcating two groups such as this is to demonstrate data isolation.

2. Get one node from one group to be able to “move” to the other group
and be part of the new group. This will demonstrate dynamic
reconfiguration of the nodes in the mesh network.

3. Finally, overall demonstrate that the real power of a mesh network lies
not just in radio range-extension but in being able to dynamically define
the mesh network topology intricately.

X

App Key

1 Group
et

i [
Provisioner\

Picture above shows the division of the mesh network. The Provisioner is attached to
the PC via USB and allows for PyACI to send commands to it.

Below is a diagram of a node and the capabilities built into it via the firmware:

Element 1

1. Configuration Server

2. Health Server
3. Generic On/Off Server

Please see BLE Mesh profile document for definitions of Elements.

In this demo, we only use the Generic On/Off Server on Element 1. In a mesh
network, a server controls access to a resource. In this case, the resource is the LED.
We will command the Generic On/Off Server via a Generic On/Off Client. In this
case, the Client will be the same as the Provisioner but they do not have to be. In
other words, another node in the mesh network with the proper network and
application key can successfully command the server to switch the LED on and off.
The Provisioner is a special node that assigns each node its role. So, in this instance,
a provisioner assigns which application key and which group an unprovisioned node
belongs to. Nodes can be erased and re-provisioned as needed.

Installation
Please install Mesh SDK 3.1.0 and SDK 15.2. Please follow the instructions here to

install the toolchain and Segger Embedded Studio SES.

The following diagram illustrates the directory structure:

0_9412b36

nRF5_SDK_15. 2.
Ccomponents

config
ment at 168

external_tools
integration
modules

Arfs Meshv3ilOsrc
bin
CMake

https://www.nordicsemi.com/Software-and-Tools/Software/nRF5-SDK-for-Mesh/Download#infotabs
https://www.nordicsemi.com/Software-and-Tools/Software/nRF5-SDK/Download#infotabs
https://www.nordicsemi.com/DocLib/Content/SDK_Doc/Mesh_SDK/v3-1-0/md_doc_getting_started_how_to_toolchain
https://www.nordicsemi.com/en/DocLib/Content/SDK_Doc/Mesh_SDK/v3-1-0/md_doc_getting_started_how_to_toolchain#toolchain_build_environment_ses

Within the Mesh SDK 3.1.0 source code, the example source code used lies in the
<Mesh SDK 3.1.0>/examples/light_switch/:

Tight_switch/

client

T__ img
include
Tinker

img

include
Tinker

src

v er
build

Open the Segger Embedded Studio (SES) project file in the <Mesh SDK
3.1.0>/examples/light_switch/server/.

With the DK connected to the PC, erase the node with the following command (not
necessary step but good precautionary step):

able code and UICR flash areas.

Now launch SES and flash the project to the DK. Repeat steps for all DK nodes.

Provisioning

This section will provide information how to set up a mesh network from scratch.

These steps will guide one to set up a 6 node mesh network with 3 nodes bound to Application
Key 0 and 3 nodes bound to Application Key 1. However, this methodology can be extended to
any number of nodes.

1. All nodes should be programmed with the firmware as shown in the Installation
section.

Please keep in mind that the nodes save their provisioning data on the on-board flash.
This information can be erased so the node is unprovisioned again by pressing button
4 on the DK.

2. Connect a nRF52-DK to the PC; launch SES with the project in <Mesh SDK
3.1.0>/examples/serial/. Open the nrf_mesh_config_app.h file in <Mesh SDK
3.1.0>/examples/serial/include/ and modify DSM_DEVICE_MAX to surpass or
equal the maximum number of nodes you intend to provision using the nRF52-
DK provisioner:

> serial_nrf52832_xxAA_s132_6,0.0 - SEGGER Embedded Studia for ARM V3,50 (64-bit) - Licensed to Nordic Semiconductor -

File Edit View . Search Navigate Project Build Debug Target Tools Window Help
Prject xplarer | sesma maine

I Voas 0o

%% Debug
Project [tems
] Solution “serial_nif62632 A §132_6.0,0°
4 [T Project ‘serial nif52832 30eAA _s132_6.0.0°
> (0 Actess Siies
4 4 Application T
§] app_erroreak. &
> Erj assertion_Randler weak.c
£ main.c
> Ej mesh_provisignee, ¢
> fi) mesh_softdevite_inite
E‘j nrf_mesh_weakic

» [Configuration Model 3fies

(L] SEGGERRTT 2fies
> [0 Serial 14 fies
» [Toolchain 1fie
[0 uEcc 1me
>l Output Files

€

J/** Number of owed parallel transfers (size of internal context p
#define ACCESS_RELIABLE_TRANSFER_COUNT (ACCESS_MODEL_COUNT)

/** @} end of ACCESS_RELIABLE_CONFIG */

/** @} end of ACCESS_CONFIG */

* @defgroup DSM_CONFIG Device State Manager configuration
* sizes for the internal storage of the Device State Manager.
* el

J** maximum number of subnetworks. */

> f) simple_hal.c 0K #define DSM_SUBNET_MAX (8)
@ |Z-F /** maximum number of applications */
Bearer e #define DSM_APP_MAX (8)

/** Maxinum number of device keys */

. 112 fdefine DSM_DEVICE_MAX (48)
> (] Core (d7fles r” Maximum number of virtual addresses. */
(1 Health Madel 17 #define DSM_VIRTUAL_ADDR_MAX (8)
> [Meshstack 16 /** Maxinum number of non-virtual addresses. */
#define DSM_NONVIRTUAL_ADDR_MAX (32)
I;I NRFS SDK 7 fles /** Number of flash pages reserved for the DM storage */
+ [Provisioning 7 fles #define DSM_FLASH_PAGE_COUNT (1)

/** @} end of DSM_CONFIG */

#endif /* NAF_MESH_CONFIG_APP_H__ %/

3. Right-click (or left-click if using left-handed input device) on the Project
‘serial...” line to launch the context menu and then click on Options:

o peral 3B i, 1140 815+ 1304 - bk Quresay - o
Be Ed Wiew Sk lwgsts Bowd Bold Debug Twpe Teoh Mindow Hen
[oeziect tiziee] O o« | sese sen: (EIINEIEREDY
X Rrteae -load oo G4y = |[E>
gt Remi) oo | e
5 Sontin dena e ka1 o :
« Cle el .
W e .
T~
vt et ¢
B =
sendence supps Epeet Busd v
oot askrine
e ung
T
iy 3 B Gentigutions
& vimphe_naie) Ao g Pt
ST B i s v
L Comtrguraten Moset 10 .']
Chcon T 4] e Fonans
T hiek, &
& T 1 =gt Fatkge Ftet
) e s Do , '
b ot
Chome ih D Dependencir
£ porwsianing o X oa e
23 HGoRETT T -
B o A0 L il hiec
L Tesenain ow L &
Cuece e K memere
3 s P i hename
04 Lestizn Pacemern
ot et Pacemert

* WAL CONRTE AR)

3,
) Frosarng e for dbvrasad
40,152 1.2, 0 e e 85 ik i nz
) oty 18 e
L) Cocomnected Hint) O Bt 06 W5 M et

4. Choose “Common” from drop-down menu, then click on Preprocessor, and we
must change the PERSISTENT_STORAGE=0 to 1 so click on the ellipses on the
Preprocessor Definitions line:

%» SEGGER Embedded Studio for ARM V3.50 - Options

Project ‘serial_nrf52840 A_5140_6.1.0° Options

| O3 show Madified options oniy

A &3 Common -

4 Code Option Value
Assemblep
Build 4 M Preprocessor
GodeGerieration « Ignore Includes No
Compiler = Preprocessor Definitions NO_VTOR_CONFIG; PERSISTENT_STORAGE=0;USE_APP_CONFIG;CONFIG_APF_IN_CORE;NRF52_SERIES;NRFS52840; NRF52840_XXAS140;5OFTDEVICE_PF=
External Build = Preprocessor Undefinitions > |
File * system Include Directories o” 2
Libril = Undefine All Preprocessor Definitions No < |
Lini® = User Include Directaries indude;..;../common/include;S(SDK_ROQT:../../../nRF5_SDK_15,2.0_9412b96)/companents/ble/comman;$(SDK_ROOT:../.A./nRFS_SDK_15.2.0_8412036)/cc
Preprocessor
Printf/Scant
Runtime Memory Arez
Section

Sousce Code

User Build Step
4 Depug

Debugger

JLink

Loader

Simulatar

Target Script

Target Trace

Preprocessor Definitions

Specifies one or more preprocessor definitions. This property will have macro expansion applied to it.

5. Change the PERSISTENT_STORAGE=0 to PERSISTENT_STORAGE=1 and click OK:

€ SEGGER Embedded Studio for ARM V3.50 - Property Editor

Set Preprocessor Definitions

Project: serial_nrf52840 x4 s140 6.1.0
Configuration: Common

Preprocessor Definitions:

NO_VTOR_CONFIG
PERSISTEMT_STORAGE=1|
USE_APP_CONFIG
CONFIG_APP_IN_CORE
NRF52_SERIES

NRF52840

NRF52840_XXAA

5140

SOFTDEVICE_PRESENT
NRF_SD_BLE_API_VERSION=6
BOARD_PCA10056
CONFIG_GPIO_AS_PINRESET

Macros:

Cancel

Specifies one or more preprocessor definitions, This property will have macro expansion applied to it.

6. Compile, flash, and run the firmware on the nRF52-DK Provisioner.

7. Follow instructions here to install Python 3 and launch the PyACI tool under
<Mesh SDK 3.1.0>/scripts/interactive_pyaci/:

riptshinteractive »python37 interactive_pyaci.py -d COMS

by the -d option.

8. Now we will provision each node one-at-a-time. Turn off all nodes except one
which would be provisioned.

9. We need to start with a fresh JSON file which will hold the database of the
mesh network. This file resides in the <Mesh SDK
3.1.0>/scripts/interactive_pyaci/database/ directory.

Note that this file can be edited by humans since it is human-readable. Copy
“example_database.json.backup” to “example_database.json” in the same
folder. Overwrite, if needed. This will be a necessary step each time only
when provisioning a brand new network.

https://www.nordicsemi.com/en/DocLib/Content/SDK_Doc/Mesh_SDK/v3-1-0/md_scripts_interactive_pyaci_README

10.Now we will provision the first node. In PyACI shell, type in the highlighted
input; example output shown for clarity (not highlighted):

In [1]: db = MeshDB(''database/example_database. json')

In [2]: db.provisioners

Out[2]: [{"name": "BT Mesh Provisioner®, “UUID":

_UUID(b " \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"),
"allocated unicast_range”: [{"low_address": 0010, "high_address®: 7fff}],
"allocated group range”: [{"low_address": c000, "high address": feff}]}]

In [3]: p = Provisioner(device, db)

In [4]: 2018-11-13 02:31:25,175 - INFO - COM5: Success

2018-11-13 02:31:25,181 - INFO - COM5: Success

2018-11-13 02:31:25,186 - INFO - COM5: SubnetAdd: {"subnet _handle®: 0}
2018-11-13 02:31:25,197 - INFO - COM5: AppkeyAdd: {"appkey handle®: 0}
2018-11-13 02:31:25,202 - INFO - COM5: AppkeyAdd: {"appkey handle®: 1}
In [4]:

In [4]: p-scan_start()

In [5]: 2018-11-13 02:31:40,555 - INFO - COM5: Success
2018-11-13 02:31:51,343 - INFO - COM5: Received UUID
0059FFFF00000000a5ch9cc547cdcea9 with RSSI: -48 dB

In [5]:
In [5]: p-scan_stop()

In [6]: 2018-11-13 02:32:03,714 - INFO - COM5: Success
In [6]:

In [6]: p-provision(hame=""Light bulb #1')

In [7]: 2018-11-13 02:32:15,090 - INFO - COM5: Provision: {"context": 0}
2018-11-13 02:32:15,102 - INFO - COM5: Link established

2018-11-13 02:32:15,144 - INFO - COM5: Received capabilities

2018-11-13 02:32:15,146 - INFO - COM5: Number of elements: 3

2018-11-13 02:32:15,149 - INFO - COM5: OobUse: {"context”: O}

2018-11-13 02:32:15,368 - INFO - COM5: ECDH request received

2018-11-13 02:32:15,384 - INFO - COM5: EcdhSecret: {"context”: 0}
2018-11-13 02:32:15,749 - INFO - COM5: Provisioning complete

2018-11-13 02:32:15,753 - INFO - COM5: Address(es): 0x10-0x12
2018-11-13 02:32:15,754 - INFO - COM5: Device key:
ef4819898373alcef29db185ee4058b4

2018-11-13 02:32:15,756 - INFO - COM5: Network key:
18eed9c2a56add85049ffc3c59ad0el?2

2018-11-13 02:32:15,759 - INFO - COM5: Adding device key to subnet O
2018-11-13 02:32:15,766 INFO - COM5: Adding publication address of root
element

2018-11-13 02:32:15,783 - INFO - COM5: DevkeyAdd: {"devkey handle®: 8%
2018-11-13 02:32:15,786 - INFO - COM5: AddrPublicationAdd: {"address handle®:
0}

2018-11-13 02:32:15,853 - INFO - COM5: Provisioning link closed

In [7]:

In [7]: cc = ConfigurationClient(db)
In [8]: cc.force_segmented = True
In [9]: device.model add(cc)
In [10]: cc.publish_set(8, 0)
In [11]: cc.composition_data get()
In [12]: 2018-11-13 02:33:01,420 - INFO - COM5: Success
2018-11-13 02:33:01,521 - INFO - COM5.ConfigurationClient: Received
composition data (page 0x00): {
“cid": "0059",

"pidT: ""0000",
"vid": "0000",

“crpl™: 40,
“"features': {
“relay”: 0,
"proxy'': 2,
"friend": 2,
"low_power': 2
8
"elements": [
{
"index'": 0,
"location': "0000",
"models™: [
"model 1d™: 0000
3,
{
"model 1d": "0002"
3,
{
"model 1d": 1000
3,
{
"model Id": ""1001"
3
1
3
{
"index': 1,
"location': "0000",
"models": [
"model 1d"™: "1000"
3,
{
"model Id": 1001
3
1
3
1

In [12]:
In [12]: cc.appkey_add(0)

In [13]: 2018-11-13 02:33:09,562 - INFO - COM5: Success

2018-11-13 02:33:09,642 - INFO - COM5.ConfigurationClient: Appkey status:
AccessStatus.SUCCESS

2018-11-13 02:33:09,645 - INFO - COM5.ConfigurationClient: Appkey add O
succeded for subnet 0 at node 0010

In [13]:

In [13]: cc.appkey_ add(l)

In [14]: 2018-11-13 02:33:13,850 - INFO - COM5: Success

2018-11-13 02:33:13,936 - INFO - COM5.ConfigurationClient: Appkey status:
AccessStatus.SUCCESS

2018-11-13 02:33:13,939 - INFO - COM5.ConfigurationClient: Appkey add 1
succeded for subnet 0 at node 0010

In [14]:

In [14]: cc.model _app_bind(db.nodes[0]-unicast _address, O,
mt.Model 1d(0x1000)) #bind to appkeyO

In [15]: 2018-11-13 02:33:24,401 - INFO - COM5: Success

2018-11-13 02:33:25,361 - INFO - COM5.ConfigurationClient: Model app bind
status: AccessStatus.SUCCESS

2018-11-13 02:33:25,367 - INFO - COM5.ConfigurationClient: Appkey bind 0 to
model 1000 at 0010

In [15]:

In [15]: cc.model _subscription_add(db.nodes[0]-unicast _address, 0xc001,
mt.Model 1d(0x1000)) #Add to group 0xC001

2018-11-13 02:33:35,254 - INFO - COM5: Success

In [16]: 2018-11-13 02:33:36,299 - INFO - COM5.ConfigurationClient: Model
subscription status: AccessStatus.SUCCESS

2018-11-13 02:33:36,306 - INFO - COM5.ConfigurationClient: Added subscription
“c001" to model 1000 at element 0010

11.We will now provision the second node. We will leave the first node switched
on since it has already been provisioned and its LED should be off. Switch on
the second node.

12.In the same PyACI shell from step 6 above, we type in the highlighted Python
commands:

In [16]: p-.scan_start()

In [17]: 2018-11-13 03:01:21,404 - INFO - COM5: Success
2018-11-13 03:01:22,906 - INFO - COM5: Received UUID
0059FFFT00000000d4164b7a7253618c with RSSI: -46 dB

In [17]:

In [17]: p-scan_stop()

2018-11-13 03:01:32,809 - INFO -

In [18]:

In [18]: p-provision(name="Light

In [19]: 2018-11-13 03:01:55,598
03:01:55,609 - INFO -

2018-11-13
2018-11-13
2018-11-13
2018-11-13
2018-11-13
2018-11-13
2018-11-13
2018-11-13
2018-11-13

03:01:55,665
03:01:55,666
03:01:55,669
03:01:55,879
03:01:55,890
03:02:00,318
03:02:00,321
03:02:00,325

INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO -

T2eTd4734a036568Fda5d61t49929207
2018-11-13 03:02:00,331 - INFO

18eed9c2a56add85049ffc3c59adlel
2018-11-13 03:02:00,337 - INFO
2018-11-13 03:02:00,340 - INFO
element

2018-11-13 03:02:00,361 - INFO
2018-11-13 03:02:00,362 - INFO
1}

2018-11-13 03:02:00,422 - INFO
In [19]:

In [19]: cc.publish_set(9, 1)

1

2

COM5: Success

bulb #2')

- INFO - COM5: Provision:
COM5: Link established
COM5: Received capabilities
COM5: Number of elements: 3
COM5: OobUse: {"context": 0}
COM5: ECDH request received
COM5: EcdhSecret: {"context-”:
COM5: Provisioning complete
COM5: Address(es): 0x13-0x15
COM5: Device key:

{"context": 0}

0}

COM5:

COM5:
COM5:

COM5:
COM5:

COM5:

In [20]: cc.composition_data get()

Network key:

Adding device key to subnet O

Adding publication address of root

DevkeyAdd: {"devkey handle”: 9}

AddrPublicationAdd: {"address handle":

Provisioning link closed

In [21]: 2018-11-13 03:02:23,056 - INFO - COM5: Success
2018-11-13 03:02:23,143 - INFO - COM5.ConfigurationClient: Received

composition data (page 0x00): {
cid": "0059",
"pid": ""0000",
"vid": ""0000",
“crpl': 40,
“"features': {
“"relay": O,
"proxy': 2,
“friend": 2,
"low_power': 2
}.

"elements": [

"index'": 0,
"location':
"models™: [

'*0000",

"modelId™: ""0000"

''0002"

b
{
"model 1d":
b
{

"modelId™: ""1000"

}1
{
"model1d": "1001"

}
1

3,

{
"index'": 1,
"location': "0000",
"models”: [

"modelId™: ""1000"

v

"modelId™: "1001"
}
1
}
1

}
In [21]:
In [21]: cc.appkey add(0)

In [22]: 2018-11-13 03:02:44,436 - INFO - COM5: Success

2018-11-13 03:02:44,515 - INFO - COM5.ConfigurationClient: Appkey status:
AccessStatus.SUCCESS

2018-11-13 03:02:44,519 - INFO - COM5.ConfigurationClient: Appkey add O
succeded for subnet 0 at node 0013

In [22]:

In [22]: cc.appkey_ add(1l)

In [23]: 2018-11-13 03:02:48,471 - INFO - COM5: Success

2018-11-13 03:02:48,562 - INFO - COM5.ConfigurationClient: Appkey status:
AccessStatus.SUCCESS

2018-11-13 03:02:48,568 - INFO - COM5.ConfigurationClient: Appkey add 1
succeded for subnet 0 at node 0013

In [23]:

In [23]: cc.model _app_bind(db.nodes[1]-unicast _address, O,
mt.Model 1d(0x1000)) #bind to appkeyO

In [24]: 2018-11-13 03:03:02,567 - INFO - COM5: Success

2018-11-13 03:03:02,632 - INFO - COM5.ConfigurationClient: Model app bind
status: AccessStatus.SUCCESS

2018-11-13 03:03:02,636 - INFO - COM5.ConfigurationClient: Appkey bind 0 to
model 1000 at 0013

In [24]:

In [24]: cc.model _subscription_add(db.nodes[1]-unicast _address, 0xc001,
mt.Model 1d(0x1000)) #Add to group 0xCO001

In [25]: 2018-11-13 03:03:11,058 - INFO - COM5: Success
2018-11-13 03:03:11,189 - INFO - COM5.ConfigurationClient: Model subscription
status: AccessStatus.SUCCESS

2018-11-13 03:03:11,192 - INFO - COM5.ConfigurationClient: Added subscription
“c001" to model 1000 at element 0013

13. Switch on the third node. Now we will provision it, same as above, now shown
for brevity without the output:

In [27]: p-scan_start()

In [28]: p-scan_stop()

In [29]: p.provision(name="Light bulb #3')
In [30]: cc.publish_set(10, 2)

In [31]: cc.composition_data get()

In [32]: cc.appkey_add(0)

In [33]: cc.appkey_ add(l)

In [34]: cc.model _app_bind(db.nodes[2]-unicast _address, O,
mt.Model 1d(0x1000)) #bind to appkeyO

In [35]: cc.model_subscription_add(db.nodes[2] -unicast_address, 0xc001,
mt.Model 1d(0x1000)) #Add to group 0xC001

14.Now we will provision the fourth node so switch that node on and it should
signal unprovisioned state. However, we will bind it to Application Key 1
instead of Application Key 0. We will note a pattern here that we can use to
provision any number of devices:

]: p.scan_stop()

p.provision(name="Light bulb #4")

In [39]: cc.publish_set(11, 3)

As seen above, the provision function opens a provisioning link with the device. As a
result, we see the devkey_handle of 11 and address_handle of 3. We then plug in the
devkey handle as the first parameter of the publish_set function and address_handle
as the second parameter of the publish_set function, as seen above. This is the same
pattern that we followed to provision the previous three nodes. The handles here are
used as a shortcut to refer to devices, as opposed to having to specify their Mesh
address.

Similarly, when we call the model_app_bind function, we specify the unique
increasing node index number and the application key to bind to:

In [47]: cc.model_app_bind(db.nodes[3].unicast_address, 1, mt.ModelId(@x1@86)) #bind to appkeyl

In [48]: g

1E
15

The node index is simply a number which provides an index into the JSON database
file that PyACI creates for a Mesh network. For all intents and purposes, when
provisioning a number of devices, this index number simply increments by one for
each new node and always starts with 0. In this case, we used 3 because we used 2 in
the previous node provision. The second parameter of 1 specifies which application
key to bind the node to so the node will respond only to messages encrypted with that
particular application key.

Summary commands for provisioning the fourth node are:

In [36]:
In [37]:
In [38]:
In [39]:
In [40]:
In [41]:
In [46]:

In [47]:

p-scan_start()

p-.scan_stop()
p-provision(name="Light bulb #4')
cc.publish_set(11, 3)
cc.appkey_add(1)

cc.appkey_add(0)
cc.composition_data_get()

cc.model _app_bind(db.nodes[3]-unicast_address, 1,

mt.Model1d(0x1000)) #bind to appkeyl

In [48]:

cc.model_subscription_add(db.nodes[3]-unicast_address, 0xc001,

mt.Model1d(0x1000)) #Add to group O0xCO01

15. Switch on the fifth node and provision as before. It will follow the same
pattern explained in step 10. Here is the summary of commands:

In [49]:
In [50]:
In [51]:
In [52]:
In [53]:
In [54]:
In [55]:

In [56]:

p.scan_start()

p-scan_stop()
p-provision(name="Light bulb #5')
cc.publish_set(12, 4)
cc.composition_data get()
cc.appkey_add(1)

cc.appkey_add(0)

cc.model _app_bind(db.nodes[4] -unicast_address, 1,

mt.Model1d(0x1000)) #bind to appkeyl

In [57]:

cc.model _subscription_add(db.nodes[4]-unicast _address, 0xc001,

mt.Model 1d(0x1000)) #Add to group 0xCO001

In

In

In

In

In

In

In

In
mt

In

mt.

16. Switch on the sixth node and provision as before. It will follow the same
pattern explained in step 10. Here is the summary of commands:

[58]: p-scan_start()

[59]: p-scan_stop()

[60]: p-provision(name="Light bulb #6™)

[61]: cc.publish_set(13, 5)

[62]: cc.composition_data get()

[63]: cc.appkey_ add(0)

[64]: cc.appkey_add(l)

[65]: cc.model app_ bind(db.nodes[5]-unicast _address, 1,

-Model 1d(0x1000)) #bind to appkeyl

[67]: cc.model_subscription_add(db.nodes[5]-unicast_address, 0xc001,

Model 1d(0x1000)) #Add to group 0xC001

17.Now we will test the mesh network to see if it is working. To do this, we will
send a group message out bound to Application Key 0 to turn on nodes 1, 2, and
3. The message will go to all the nodes that we have added to the group
address 0xC001 but only the nodes with the correct application key will

respond by turning on their LED:

device.send(cmd.AddrSubscriptionAd

gc_Group = GenericOnOffClient()

1: gc_Group.force_segmentec

72]: device.model_ad

gc_Group.publish_: [6) econd parameter from above "AddrSubscriptionAdd” and first is appkey

1: gc_Group.set(True)

As seen above, we use the address_handle for the group message to pass to
publish_set function as its second parameter and the application key to bind to as its
first parameter (Application Key 0, in this case).

Summary of commands and output for this step:

In [68]: device.send(cmd.AddrSubscriptionAdd(0xc001))

In [69]: 2018-11-13 13:33:33,720 - INFO - COM5: AddrSubscriptionAdd:
{"address_handle®": 6}

In [69]:

In [69]: gc_Group = GenericOnOffClient()

In [71]: gc_Group.force segmented = True

In [72]: device.model add(gc_Group)

In [73]: gc_Group.publish_set(0, 6) #second parameter from above
"AddrSubscriptionAdd” and first is appkey

In [74]: gc_Group.set(True)

In [75]: 2018-11-13 13:37:05,358 - INFO - COM5: Success

2018-11-13 13:37:05,387 - INFO - COM5.GenericOnOffClient: Present OnOff: on
2018-11-13 13:37:05,390 - INFO - COM5.GenericOnOffClient: Present OnOff: on
2018-11-13 13:37:05,392 - INFO - COM5.GenericOnOffClient: Present OnOff: on

18. Observe the LED on nodes bound to Application Key 0 to illuminate:

19. Turn off the LEDs on Application Key 0 nodes by issuing command:

In [75]: gc_Group.set(False)

In [76]: 2018-11-13 14:11:13,148 - INFO - COM5: Success
2018-11-13 14:11:13,170 - INFO - COM5.GenericOnOffClient: off
2018-11-13 14:11:13,179 - INFO - COM5.GenericOnOffClient: off
2018-11-13 14:11:13,227 - INFO - COM5.GenericOnOffClient: off

20.Now test nodes bound with Application Key 1 to see if they illuminate properly:

In [76]: gc_Group.-publish_set(1, 6) #second parameter from above
"AddrSubscriptionAdd” and first is appkey

In [77]: gc_Group.set(True)

In [78]: 2018-11-13 14:15:10,181 - INFO - COM5: Success

2018-11-13 14:15:10,203 - INFO - COM5.GenericOnOffClient: Present OnOff: on
2018-11-13 14:15:10,206 - INFO - COM5.GenericOnOffClient: Present OnOff: on
2018-11-13 14:15:10,230 - INFO - COM5.GenericOnOffClient: Present OnOff: on

21.0bserve the LED on nodes bound to Application Key 1 to illuminate:

22.Turn off the LEDs on Application Key 1 nodes by issuing command:
In [78]: gc_Group.set(False)

23.Now we shall look at “moving” one node from one group to another. Recall
that we have provisioned each node with both Application Key 0 and
Application Key 1. This means that both application keys are available to each
node but we “bind” each node with either Application Key 0 or Application Key
1. We will unbind a node from Application Key 1 to Application Key 0:

In [81]:

Command above will point the Configuration Client object (cc) to node 3 because
recall that 11 is its device_key and 3 is its address_handle and we want to perform a
configuration operation on that node. Then we unbind node 3 from Application Key 1
to Application Key 0 thereby allowing the node to be part of Application Key 0 Group.
Here are the commands and the outputs:

In [81]: cc.publish_set(11, 3)

In [83]: cc.model _app_unbind(db.nodes[3]-unicast_address, 1,
mt.Model 1d(0x1000))

In [84]: 2018-11-13 16:39:23,402 - INFO - COM5: Success

2018-11-13 16:39:23,450 - INFO - COM5.ConfigurationClient: Model app bind
status: AccessStatus.SUCCESS

2018-11-13 16:39:23,455 - INFO - COM5.ConfigurationClient: Appkey unbind 1 to
model 1000 at 0019

In [84]:

In [84]: cc.model _app_bind(db.nodes[3]-unicast _address, O,
mt.Model 1d(0x1000))

In [85]: 2018-11-13 16:39:37,512 - INFO - COM5: Success

2018-11-13 16:39:37,547 - INFO - COM5.ConfigurationClient: Model app bind
status: AccessStatus.SUCCESS

2018-11-13 16:39:37,552 - INFO - COM5.ConfigurationClient: Appkey bind 0 to
model 1000 at 0019

24.Now we will send a group message to illuminate nodes with Application Key 1:

In [85]: gc_Group.set(True)

In [86]: 2018-11-13 16:39:54,319 - INFO - COM5: Success
2018-11-13 16:39:54,333 - INFO - COM5.GenericOnOffClient: Present OnOff: on
2018-11-13 16:39:54,340 - INFO - COM5.GenericOnOffClient: Present OnOff: on

Here we can see that node 3 is no longer responding to the command we sent to
illuminate its LED because we have changed its binding from Application Key 1 to

Application Key 0:

25.Now we will switch off Application Key 1 nodes and switch on Application Key 0
nodes:

In [88]: gc_Group.set(False) #Turn off AppKeyO nodes” LED
In [89]: 2018-11-13 16:42:31,181 - INFO - COM5: Success
2018-11-13 16:42:31,202 - INFO - COM5.GenericOnOffClient: off
2018-11-13 16:42:31,207 INFO - COM5.GenericOnOffClient: off
2018-11-13 16:42:31,209 INFO - COM5.GenericOnOffClient: off
2018-11-13 16:42:31,254 INFO - COM5.GenericOnOffClient: off

In [91]: gc_Group.publish _set(0, 6) #Switch Generic On/Off Client object to
AppKey 0
In [92]: gc_Group.set(True) #Turn on AppKeyO nodes” LED

In [93]: 2018-11-13 17:36:37,824 - INFO - COM5: Success

2018-11-13 17:36:37,856 - INFO - COM5.GenericOnOffClient: Present OnOff: on
2018-11-13 17:36:37,858 INFO - COM5.GenericOnOffClient: Present OnOff: on
2018-11-13 17:36:37,867 INFO - COM5.GenericOnOffClient: Present OnOff: on
2018-11-13 17:36:37,874 INFO - COM5.GenericOnOffClient: Present OnOff: on

Observe now that node 3 is now grouped together with Application Key 0 Group:

26.Now we bind node 3 back to Application Key 1, as it was originally, and then
turn on Application Key 0 Group:

In [93]: gc_Group.-set(False)

In [93]: 2018-11-13 16:42:31,181 - INFO - COM5: Success
2018-11-13 16:42:31,202 - INFO - COM5.GenericOnOffClient: off
2018-11-13 16:42:31,207 - INFO - COM5.GenericOnOffClient: off
2018-11-13 16:42:31,209 - INFO - COM5.GenericOnOffClient: off
2018-11-13 16:42:31,254 - INFO - COM5.GenericOnOffClient: off

In [94]: cc.model _app_unbind(db.nodes[3]-unicast_address, O,
mt.Model 1d(0x1000)) #unbind node 3 from AppkeyO

2018-11-13 18:00:09,068 - INFO - COM5: Success

In [95]: 2018-11-13 18:00:09,132 - INFO - COM5.ConfigurationClient: Model app
bind status: AccessStatus.SUCCESS

2018-11-13 18:00:09,139 - INFO - COM5.ConfigurationClient: Appkey unbind O to
model 1000 at 0019

In [95]:

In [95]: cc.model _app_ bind(db.nodes[3]-unicast _address, 1,
mt._.Model1d(0x1000)) #bind node 3 to Appkeyl

In [96]: 2018-11-13 18:00:29,008 - INFO - COM5: Success

2018-11-13 18:00:29,072 - INFO - COM5.ConfigurationClient: Model app bind
status: AccessStatus.SUCCESS

2018-11-13 18:00:29,077 - INFO - COM5.ConfigurationClient: Appkey bind 1 to
model 1000 at 0019

In [96]: gc_Group.-set(True) #llluminate AppkeyO Group

In [97]: 2018-11-13 18:00:38,334 - INFO - COM5: Success

2018-11-13 18:00:38,356 - INFO - COM5.GenericOnOffClient: Present OnOff: on
2018-11-13 18:00:38,358 - INFO - COM5.GenericOnOffClient: Present OnOff: on
2018-11-13 18:00:38,361 - INFO - COM5.GenericOnOffClient: Present OnOff: on

As a result, we see that now node 3 is no longer illuminated because we have bound it
back to Application Key 1:

27.Now we turn off Application Key 0 Group LEDs and turn on Application Key 1
Group LEDs to show that node 3 is now back to being part of Application 0
Group:

In [97]: gc_Group.set(False) #Turn off AppKeyO Group LEDs
In [98]: gc_Group-publish_set(1,6) #Set address to AppKeyl Group

In [99]: gc_Group.set(True) #Turn on AppKeyl Group LEDs

As a result, we see that node 3 is back into the Application Key 1 Group:

28.Now we will demonstrate network access to one single node by illuminating its

LED:
In [101]: device.send(cmd.AddrPublicationAdd(db.nodes[1]-unicast_address))

In [102]: 2018-11-13 19:14:47,860 - INFO - COM5: AddrPublicationAdd:
{"address_handle": 1}

In [103]: gc_Uni = GenericOnOffClient()
In [104]: gc_Uni.force_segmented = True
In [105]: device.model _add(gc_Uni)

In [107]: gc_Uni.publish_set(0,1) #first is appkey index, second is from
AddrPublicationAdd()

In [108]: gc_Uni.set(True) #Turn on single node
In [109]: gc _Uni.set(False) #Turn off single node

When switched on, we see only node 1 illuminated:

Profiling

Profiling allows one to measure the message latency in the mesh network.

1. To enable profiling, enable debug logging in the serial provisioner firmware
referred to in the Provisioning section, step 2. This is done by editing main.c in
the SES project and enabling debug logging (highlighted):

static void initialize(woid)

{

B1 __LoG_INIT(LOG_MSK_DEFAULT | LOG_SRC_ACCESS | LOG_SRC_SERIAL | LOG_SRC_AFP, |O&_LEVEL_DBG3, log_callback_rtt);
_ LOG(LOG_SRC_APP, LOG LEVEL_INFD, "----- Bluetooth Mesh Serial Interface application ----- il H

ERROR_CHECK (app_timer_init(});
hal_leds_init()};

nrf_clock 1f cfg t 1fc_cfg = DEV_BOARD _LF_CLK_CFG;
ERROR_CHECK (mesh_softdevice_init({1lfc_cfg));
mesh_init(};

_ LOG{LOG_SRC_APP, LOG LEVEL_INFD, "Initialization complete!ywn");
1

2. Launch the Segger RTT Client to see log output.
3. Compile and run the firmware on the DK in Debug mode.

4. Send a message to the mesh network (see Provisioning section for sending
messages). For instance:

In [103]: gc_Uni = GenericOnOffClient()
In [104]: gc_Uni.force_segmented = True
In [105]: device.model _add(gc_Uni)

In [107]: gc_Uni.publish_set(0,1)

In [108]: gc_Uni.set(True)

Note that when we set force_segmented to True, messages are sent with ACK
requested whereas setting for_segmented to False results in messages sent without an
ACK requested.

5. Observe RTT output with RTC tick count on the left:

<t:
<t:
<t:
<t:
<t:
<t:
<t:
<t:
<t:
<t:
<t:
<t:
<t:
<t:
<t:
<t:
<t:
<t:
<t:
<t:
<t:
<t:

48840855,
4897845,
4897915,
518745>,
5376185,
5388815,
5395185,
5396255,
5869225,
533873>,
5332085,
538914>,
6361105,
6366445,
5375943,
5376015,
5853445,
5860425,
5869765,
6869825,
7346615,
7354705,

transport.c, 1189, TX:54R packet: B2820187168&657A5

net_packet.c, 238, Unencrypted data: 28215F7A1EBESF4RATEL
transport.c, 932, Message decrypted
net_packet.c, 238, Unencrypted data: 20a1e6803420000021

transport.c, 1189, TX:5AR packet: B28221883CC4BE12
net_packet.c, 238, Unencrypted data: 0021e6003CeR000021
net_packet.c, 238, Unencrypted data: @a215F9D58301A33605%
transport.c, 932, Message decrypted

transport.c, 1189, TX:54R packet: B2820189251A34EF
net_packet.c, 238, Unencrypted data: 22921e22224222200281
net_packet.c, 23@, Unencrypted data: @@a15FEFSEFCITISCELF
transport.c, 932, Message decrypted

transport.c, 1189, TX:5AR packet: B2822184D084%FEDF
net_packet.c, 238, Unencrypted data: 002126004420000021
net_packet.c, 238, Unencrypted data: @a815F3C71923BC2FACS
transport.c, 932, Message decrypted

transport.c, 1189, TX:54R packet: B282010B26FC46CE
net_packet.c, 238, Unencrypted data: 2292128224 322200281
net_packet.c, 23@, Unencrypted data: 20215 FEo24DCCEEFABRS
transport.c, 932, Message decrypted

transport.c, 1189, T¥:5AR packst: B282010C36COGEED
net_packet.c, 238, Unencrypted data: 0021e6004C22000021

6. For transforming ticks displayed in the RTT output to milliseconds, use the

following Python function:
ticks_to_ms = lambda a, b: abs(a-b) * 1000000 / 32768 / 1000

7. Extracting the timestamps will give output:

Extracting the timestamps gives
[ticks to ms(489791, 488485),
ticks to ms(539625, 537618),
ticks to_ms(588914, 585922)
ticks _to ms(637601, 63511@)
ticks to ms(686982, 685344)
ticks to_ms(736309, 734661),
ticks to ms(785311, 783836),
)
)
)

¥
¥

¥

ticks to ms(834958, 533041
ticks to ms(B884048, 8582342
ticks to ms(933178, 931654),

ticks _to ms(982297, 988774),

ticks_to ms(1@3152@, 1038848),
ticks_to _ms(l@8@677, 187927@),
ticks_to ms(1129979, 1128534),
ticks_to ms(1179789, 11778@6),
ticks_to ms(1229238, 1227837),
ticks to ms(1277862, 1276243),
ticks to ms(1327655, 1325525),
ticks _to ms(1376@85, 1374774),
ticks to ms(1426011, 1423984)]

¥

¥

R T e T T T T T M

[42.297356328125,
61.248779296875,
0. 791815625,
45.581788984375,
4%.98775298875,
58. 29296875,
45.813427734375,
58.582197265625,
51.81884765625,
45.2640484375,
45.478271484375,
45.1e6015625,
42.938232421875,
44 .,897980398625,
60.516357421875,
67.16913%453125,
4%.487958984375,
£5.898244140625,
40.,8838544921875,
€1.853130859375]

The last list are times in milliseconds.

	BLE Mesh Demo
	Purpose
	Architecture
	Installation
	Provisioning
	This section will provide information how to set up a mesh network from scratch.
	These steps will guide one to set up a 6 node mesh network with 3 nodes bound to Application Key 0 and 3 nodes bound to Application Key 1. However, this methodology can be extended to any number of nodes.

	Profiling
	Profiling allows one to measure the message latency in the mesh network.

