
BLE Mesh Demo 
 

Document version Author Comment 
Nov30-2018 MQ Original release. 
Dec10-2018 MQ Update for Mesh SDK 3.0; added persistent storage 

info. 
Jan31-2019 MQ Update for Mesh SDK 3.1.0. 

 

Purpose 
This document will explain the Mesh Demo and the motivations behind the design 
decisions. 

Architecture 
The mesh network realized in this demo has the following points to show: 

1. Create a mesh network with two groups of nRF52832 Development Kits 
(DKs).  The two groups are on the same mesh network (common network 
key) but they cannot decode the other group’s messages because they 
have separate application keys yet all nodes in this network will 
participate in relaying data for all nodes.  The purpose of creating and 
bifurcating two groups such as this is to demonstrate data isolation. 

2. Get one node from one group to be able to “move” to the other group 
and be part of the new group.  This will demonstrate dynamic 
reconfiguration of the nodes in the mesh network. 

3. Finally, overall demonstrate that the real power of a mesh network lies 
not just in radio range-extension but in being able to dynamically define 
the mesh network topology intricately. 
  



 

Picture above shows the division of the mesh network.  The Provisioner is attached to 
the PC via USB and allows for PyACI to send commands to it. 

 

 

 

 

 

 

 

 

 

 

 

  



Below is a diagram of a node and the capabilities built into it via the firmware: 

Please see BLE Mesh profile document for definitions of Elements. 

In this demo, we only use the Generic On/Off Server on Element 1.  In a mesh 
network, a server controls access to a resource.  In this case, the resource is the LED.  
We will command the Generic On/Off Server via a Generic On/Off Client.  In this 
case, the Client will be the same as the Provisioner but they do not have to be.  In 
other words, another node in the mesh network with the proper network and 
application key can successfully command the server to switch the LED on and off.  
The Provisioner is a special node that assigns each node its role.  So, in this instance, 
a provisioner assigns which application key and which group an unprovisioned node 
belongs to.  Nodes can be erased and re-provisioned as needed. 

  

1. Configuration Server 
2. Health Server 
3. Generic On/Off Server 

Element 1 



Installation 
Please install Mesh SDK 3.1.0 and SDK 15.2.  Please follow the instructions here to 
install the toolchain and Segger Embedded Studio SES. 

 

The following diagram illustrates the directory structure: 

 

  

https://www.nordicsemi.com/Software-and-Tools/Software/nRF5-SDK-for-Mesh/Download#infotabs
https://www.nordicsemi.com/Software-and-Tools/Software/nRF5-SDK/Download#infotabs
https://www.nordicsemi.com/DocLib/Content/SDK_Doc/Mesh_SDK/v3-1-0/md_doc_getting_started_how_to_toolchain
https://www.nordicsemi.com/en/DocLib/Content/SDK_Doc/Mesh_SDK/v3-1-0/md_doc_getting_started_how_to_toolchain#toolchain_build_environment_ses


Within the Mesh SDK 3.1.0 source code, the example source code used lies in the 
<Mesh SDK 3.1.0>/examples/light_switch/: 

 

Open the Segger Embedded Studio (SES) project file in the <Mesh SDK 
3.1.0>/examples/light_switch/server/. 

  



With the DK connected to the PC, erase the node with the following command (not 
necessary step but good precautionary step): 

 

Now launch SES and flash the project to the DK.  Repeat steps for all DK nodes. 

  



Provisioning 
This section will provide information how to set up a mesh network from scratch.  
These steps will guide one to set up a 6 node mesh network with 3 nodes bound to Application 
Key 0 and 3 nodes bound to Application Key 1.  However, this methodology can be extended to 
any number of nodes. 
 

1. All nodes should be programmed with the firmware as shown in the Installation 
section. 

Please keep in mind that the nodes save their provisioning data on the on-board flash.  
This information can be erased so the node is unprovisioned again by pressing button 
4 on the DK.  



2. Connect a nRF52-DK to the PC; launch SES with the project in <Mesh SDK 
3.1.0>/examples/serial/.  Open the nrf_mesh_config_app.h file in <Mesh SDK 
3.1.0>/examples/serial/include/ and modify DSM_DEVICE_MAX to surpass or 
equal the maximum number of nodes you intend to provision using the nRF52-
DK provisioner: 

 

  



3. Right-click (or left-click if using left-handed input device) on the Project 
‘serial…’ line to launch the context menu and then click on Options: 

 

 

  



4. Choose “Common” from drop-down menu, then click on Preprocessor, and we 
must change the PERSISTENT_STORAGE=0 to 1 so click on the ellipses on the 
Preprocessor Definitions line: 

 

 

  



5. Change the PERSISTENT_STORAGE=0 to PERSISTENT_STORAGE=1 and click OK: 

 

  



6. Compile, flash, and run the firmware on the nRF52-DK Provisioner. 
 

7. Follow instructions here to install Python 3 and launch the PyACI tool under 
<Mesh SDK 3.1.0>/scripts/interactive_pyaci/: 

 

 

8. Now we will provision each node one-at-a-time.  Turn off all nodes except one 
which would be provisioned. 
 

9. We need to start with a fresh JSON file which will hold the database of the 
mesh network.  This file resides in the <Mesh SDK 
3.1.0>/scripts/interactive_pyaci/database/ directory. 
Note that this file can be edited by humans since it is human-readable.  Copy 
“example_database.json.backup” to “example_database.json” in the same 
folder.  Overwrite, if needed.  This will be a necessary step each time only 
when provisioning a brand new network. 

  

https://www.nordicsemi.com/en/DocLib/Content/SDK_Doc/Mesh_SDK/v3-1-0/md_scripts_interactive_pyaci_README


10. Now we will provision the first node.  In PyACI shell, type in the highlighted 
input; example output shown for clarity (not highlighted): 

 
In [1]: db = MeshDB("database/example_database.json") 
 
In [2]: db.provisioners 
Out[2]: [{'name': 'BT Mesh Provisioner', 'UUID': 
_UUID(b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'), 
'allocated_unicast_range': [{'low_address': 0010, 'high_address': 7fff}], 
'allocated_group_range': [{'low_address': c000, 'high_address': feff}]}] 
 
In [3]: p = Provisioner(device, db) 
 
In [4]: 2018-11-13 02:31:25,175 - INFO - COM5: Success 
2018-11-13 02:31:25,181 - INFO - COM5: Success 
2018-11-13 02:31:25,186 - INFO - COM5: SubnetAdd: {'subnet_handle': 0} 
2018-11-13 02:31:25,197 - INFO - COM5: AppkeyAdd: {'appkey_handle': 0} 
2018-11-13 02:31:25,202 - INFO - COM5: AppkeyAdd: {'appkey_handle': 1} 
In [4]: 
 
In [4]: p.scan_start() 
 
In [5]: 2018-11-13 02:31:40,555 - INFO - COM5: Success 
2018-11-13 02:31:51,343 - INFO - COM5: Received UUID 
0059ffff00000000a5cb9cc547cdcea9 with RSSI: -48 dB 
In [5]: 
 
In [5]: p.scan_stop() 
 
In [6]: 2018-11-13 02:32:03,714 - INFO - COM5: Success 
In [6]: 
 
In [6]: p.provision(name="Light bulb #1") 
 
In [7]: 2018-11-13 02:32:15,090 - INFO - COM5: Provision: {'context': 0} 
2018-11-13 02:32:15,102 - INFO - COM5: Link established 
2018-11-13 02:32:15,144 - INFO - COM5: Received capabilities 
2018-11-13 02:32:15,146 - INFO - COM5: Number of elements: 3 
2018-11-13 02:32:15,149 - INFO - COM5: OobUse: {'context': 0} 
2018-11-13 02:32:15,368 - INFO - COM5: ECDH request received 
2018-11-13 02:32:15,384 - INFO - COM5: EcdhSecret: {'context': 0} 
2018-11-13 02:32:15,749 - INFO - COM5: Provisioning complete 
2018-11-13 02:32:15,753 - INFO - COM5:  Address(es): 0x10-0x12 
2018-11-13 02:32:15,754 - INFO - COM5:  Device key: 
ef48f9898373a1cef29db185ee4058b4 
2018-11-13 02:32:15,756 - INFO - COM5:  Network key: 
18eed9c2a56add85049ffc3c59ad0e12 
2018-11-13 02:32:15,759 - INFO - COM5: Adding device key to subnet 0 
2018-11-13 02:32:15,766 - INFO - COM5: Adding publication address of root 
element 
2018-11-13 02:32:15,783 - INFO - COM5: DevkeyAdd: {'devkey_handle': 8} 
2018-11-13 02:32:15,786 - INFO - COM5: AddrPublicationAdd: {'address_handle': 
0} 
2018-11-13 02:32:15,853 - INFO - COM5: Provisioning link closed 
In [7]: 



 
In [7]: cc = ConfigurationClient(db) 
 
In [8]: cc.force_segmented = True 
 
In [9]: device.model_add(cc) 
 
In [10]: cc.publish_set(8, 0) 
 
In [11]: cc.composition_data_get() 
 
In [12]: 2018-11-13 02:33:01,420 - INFO - COM5: Success 
2018-11-13 02:33:01,521 - INFO - COM5.ConfigurationClient: Received 
composition data (page 0x00): { 
  "cid": "0059", 
  "pid": "0000", 
  "vid": "0000", 
  "crpl": 40, 
  "features": { 
    "relay": 0, 
    "proxy": 2, 
    "friend": 2, 
    "low_power": 2 
  }, 
  "elements": [ 
    { 
      "index": 0, 
      "location": "0000", 
      "models": [ 
        { 
          "modelId": "0000" 
        }, 
        { 
          "modelId": "0002" 
        }, 
        { 
          "modelId": "1000" 
        }, 
        { 
          "modelId": "1001" 
        } 
      ] 
    }, 
    { 
      "index": 1, 
      "location": "0000", 
      "models": [ 
        { 
          "modelId": "1000" 
        }, 
        { 
          "modelId": "1001" 
        } 
      ] 
    } 
  ] 
} 



In [12]: 
 
In [12]: cc.appkey_add(0) 
 
In [13]: 2018-11-13 02:33:09,562 - INFO - COM5: Success 
2018-11-13 02:33:09,642 - INFO - COM5.ConfigurationClient: Appkey status: 
AccessStatus.SUCCESS 
2018-11-13 02:33:09,645 - INFO - COM5.ConfigurationClient: Appkey add 0 
succeded for subnet 0 at node 0010 
In [13]: 
 
In [13]: cc.appkey_add(1) 
 
In [14]: 2018-11-13 02:33:13,850 - INFO - COM5: Success 
2018-11-13 02:33:13,936 - INFO - COM5.ConfigurationClient: Appkey status: 
AccessStatus.SUCCESS 
2018-11-13 02:33:13,939 - INFO - COM5.ConfigurationClient: Appkey add 1 
succeded for subnet 0 at node 0010 
In [14]: 
 
In [14]: cc.model_app_bind(db.nodes[0].unicast_address, 0, 
mt.ModelId(0x1000)) #bind to appkey0 
 
In [15]: 2018-11-13 02:33:24,401 - INFO - COM5: Success 
2018-11-13 02:33:25,361 - INFO - COM5.ConfigurationClient: Model app bind 
status: AccessStatus.SUCCESS 
2018-11-13 02:33:25,367 - INFO - COM5.ConfigurationClient: Appkey bind 0 to 
model 1000 at 0010 
In [15]: 
 
In [15]: cc.model_subscription_add(db.nodes[0].unicast_address, 0xc001, 
mt.ModelId(0x1000)) #Add to group 0xC001 
 
2018-11-13 02:33:35,254 - INFO - COM5: Success 
In [16]: 2018-11-13 02:33:36,299 - INFO - COM5.ConfigurationClient: Model 
subscription status: AccessStatus.SUCCESS 
2018-11-13 02:33:36,306 - INFO - COM5.ConfigurationClient: Added subscription 
'c001' to model 1000 at element 0010 
 

11. We will now provision the second node.  We will leave the first node switched 
on since it has already been provisioned and its LED should be off.  Switch on 
the second node. 
 

12. In the same PyACI shell from step 6 above, we type in the highlighted Python 
commands: 
 

In [16]: p.scan_start() 
 
In [17]: 2018-11-13 03:01:21,404 - INFO - COM5: Success 
2018-11-13 03:01:22,906 - INFO - COM5: Received UUID 
0059ffff00000000d4164b7a7253618c with RSSI: -46 dB 
In [17]: 
 
In [17]: p.scan_stop() 
 



2018-11-13 03:01:32,809 - INFO - COM5: Success 
In [18]: 
 
In [18]: p.provision(name="Light bulb #2") 
 
In [19]: 2018-11-13 03:01:55,598 - INFO - COM5: Provision: {'context': 0} 
2018-11-13 03:01:55,609 - INFO - COM5: Link established 
2018-11-13 03:01:55,665 - INFO - COM5: Received capabilities 
2018-11-13 03:01:55,666 - INFO - COM5: Number of elements: 3 
2018-11-13 03:01:55,669 - INFO - COM5: OobUse: {'context': 0} 
2018-11-13 03:01:55,879 - INFO - COM5: ECDH request received 
2018-11-13 03:01:55,890 - INFO - COM5: EcdhSecret: {'context': 0} 
2018-11-13 03:02:00,318 - INFO - COM5: Provisioning complete 
2018-11-13 03:02:00,321 - INFO - COM5:  Address(es): 0x13-0x15 
2018-11-13 03:02:00,325 - INFO - COM5:  Device key: 
f2efd4734a036568fda5d6f499292071 
2018-11-13 03:02:00,331 - INFO - COM5:  Network key: 
18eed9c2a56add85049ffc3c59ad0e12 
2018-11-13 03:02:00,337 - INFO - COM5: Adding device key to subnet 0 
2018-11-13 03:02:00,340 - INFO - COM5: Adding publication address of root 
element 
2018-11-13 03:02:00,361 - INFO - COM5: DevkeyAdd: {'devkey_handle': 9} 
2018-11-13 03:02:00,362 - INFO - COM5: AddrPublicationAdd: {'address_handle': 
1} 
2018-11-13 03:02:00,422 - INFO - COM5: Provisioning link closed 
In [19]: 
 
In [19]: cc.publish_set(9, 1) 
 
In [20]: cc.composition_data_get() 
 
In [21]: 2018-11-13 03:02:23,056 - INFO - COM5: Success 
2018-11-13 03:02:23,143 - INFO - COM5.ConfigurationClient: Received 
composition data (page 0x00): { 
  "cid": "0059", 
  "pid": "0000", 
  "vid": "0000", 
  "crpl": 40, 
  "features": { 
    "relay": 0, 
    "proxy": 2, 
    "friend": 2, 
    "low_power": 2 
  }, 
  "elements": [ 
    { 
      "index": 0, 
      "location": "0000", 
      "models": [ 
        { 
          "modelId": "0000" 
        }, 
        { 
          "modelId": "0002" 
        }, 
        { 
          "modelId": "1000" 



        }, 
        { 
          "modelId": "1001" 
        } 
      ] 
    }, 
    { 
      "index": 1, 
      "location": "0000", 
      "models": [ 
        { 
          "modelId": "1000" 
        }, 
        { 
          "modelId": "1001" 
        } 
      ] 
    } 
  ] 
} 
In [21]: 
 
In [21]: cc.appkey_add(0) 
 
In [22]: 2018-11-13 03:02:44,436 - INFO - COM5: Success 
2018-11-13 03:02:44,515 - INFO - COM5.ConfigurationClient: Appkey status: 
AccessStatus.SUCCESS 
2018-11-13 03:02:44,519 - INFO - COM5.ConfigurationClient: Appkey add 0 
succeded for subnet 0 at node 0013 
In [22]: 
 
In [22]: cc.appkey_add(1) 
 
In [23]: 2018-11-13 03:02:48,471 - INFO - COM5: Success 
2018-11-13 03:02:48,562 - INFO - COM5.ConfigurationClient: Appkey status: 
AccessStatus.SUCCESS 
2018-11-13 03:02:48,568 - INFO - COM5.ConfigurationClient: Appkey add 1 
succeded for subnet 0 at node 0013 
In [23]: 
 
In [23]: cc.model_app_bind(db.nodes[1].unicast_address, 0, 
mt.ModelId(0x1000)) #bind to appkey0 
 
In [24]: 2018-11-13 03:03:02,567 - INFO - COM5: Success 
2018-11-13 03:03:02,632 - INFO - COM5.ConfigurationClient: Model app bind 
status: AccessStatus.SUCCESS 
2018-11-13 03:03:02,636 - INFO - COM5.ConfigurationClient: Appkey bind 0 to 
model 1000 at 0013 
In [24]: 
 
In [24]: cc.model_subscription_add(db.nodes[1].unicast_address, 0xc001, 
mt.ModelId(0x1000)) #Add to group 0xC001 
 
In [25]: 2018-11-13 03:03:11,058 - INFO - COM5: Success 
2018-11-13 03:03:11,189 - INFO - COM5.ConfigurationClient: Model subscription 
status: AccessStatus.SUCCESS 



2018-11-13 03:03:11,192 - INFO - COM5.ConfigurationClient: Added subscription 
'c001' to model 1000 at element 0013 
 

13. Switch on the third node.  Now we will provision it, same as above, now shown 
for brevity without the output: 

In [27]: p.scan_start() 
In [28]: p.scan_stop() 
In [29]: p.provision(name="Light bulb #3") 
In [30]: cc.publish_set(10, 2) 
 
In [31]: cc.composition_data_get() 
 
In [32]: cc.appkey_add(0) 
 
In [33]: cc.appkey_add(1) 
In [34]: cc.model_app_bind(db.nodes[2].unicast_address, 0, 
mt.ModelId(0x1000)) #bind to appkey0 

 
In [35]: cc.model_subscription_add(db.nodes[2].unicast_address, 0xc001, 
mt.ModelId(0x1000)) #Add to group 0xC001 
  



14. Now we will provision the fourth node so switch that node on and it should 
signal unprovisioned state.  However, we will bind it to Application Key 1 
instead of Application Key 0.  We will note a pattern here that we can use to 
provision any number of devices: 

 
As seen above, the provision function opens a provisioning link with the device.  As a 
result, we see the devkey_handle of 11 and address_handle of 3.  We then plug in the 
devkey_handle as the first parameter of the publish_set function and address_handle 
as the second parameter of the publish_set function, as seen above.  This is the same 
pattern that we followed to provision the previous three nodes.  The handles here are 
used as a shortcut to refer to devices, as opposed to having to specify their Mesh 
address. 
Similarly, when we call the model_app_bind function, we specify the unique 
increasing node index number and the application key to bind to: 

 
The node index is simply a number which provides an index into the JSON database 
file that PyACI creates for a Mesh network.  For all intents and purposes, when 
provisioning a number of devices, this index number simply increments by one for 
each new node and always starts with 0.  In this case, we used 3 because we used 2 in 
the previous node provision.  The second parameter of 1 specifies which application 
key to bind the node to so the node will respond only to messages encrypted with that 
particular application key. 
 



Summary commands for provisioning the fourth node are: 
 
In [36]: p.scan_start() 
 
In [37]: p.scan_stop() 
 
In [38]: p.provision(name="Light bulb #4") 
 
In [39]: cc.publish_set(11, 3) 
 
In [40]: cc.appkey_add(1) 
 
In [41]: cc.appkey_add(0) 
 
In [46]: cc.composition_data_get() 
 
In [47]: cc.model_app_bind(db.nodes[3].unicast_address, 1, 
mt.ModelId(0x1000)) #bind to appkey1 
 
In [48]: cc.model_subscription_add(db.nodes[3].unicast_address, 0xc001, 
mt.ModelId(0x1000)) #Add to group 0xC001 
 

 
15. Switch on the fifth node and provision as before.  It will follow the same 

pattern explained in step 10.  Here is the summary of commands: 
 
In [49]: p.scan_start() 
 
In [50]: p.scan_stop() 
 
In [51]: p.provision(name="Light bulb #5") 
 
In [52]: cc.publish_set(12, 4) 
 
In [53]: cc.composition_data_get() 
 
In [54]: cc.appkey_add(1) 
 
In [55]: cc.appkey_add(0) 
 
In [56]: cc.model_app_bind(db.nodes[4].unicast_address, 1, 
mt.ModelId(0x1000)) #bind to appkey1 
 
In [57]: cc.model_subscription_add(db.nodes[4].unicast_address, 0xc001, 
mt.ModelId(0x1000)) #Add to group 0xC001 
 
  



16. Switch on the sixth node and provision as before.  It will follow the same 
pattern explained in step 10.  Here is the summary of commands: 

 
In [58]: p.scan_start() 
 
In [59]: p.scan_stop() 
 
In [60]: p.provision(name="Light bulb #6") 
 
In [61]: cc.publish_set(13, 5) 
 
In [62]: cc.composition_data_get() 
 
In [63]: cc.appkey_add(0) 
 
In [64]: cc.appkey_add(1) 
 
In [65]: cc.model_app_bind(db.nodes[5].unicast_address, 1, 
mt.ModelId(0x1000)) #bind to appkey1 
 
In [67]: cc.model_subscription_add(db.nodes[5].unicast_address, 0xc001, 
mt.ModelId(0x1000)) #Add to group 0xC001 
 
 
 
 

 
  



17. Now we will test the mesh network to see if it is working.  To do this, we will 
send a group message out bound to Application Key 0 to turn on nodes 1, 2, and 
3.  The message will go to all the nodes that we have added to the group 
address 0xC001 but only the nodes with the correct application key will 
respond by turning on their LED: 

 
As seen above, we use the address_handle for the group message to pass to 
publish_set function as its second parameter and the application key to bind to as its 
first parameter (Application Key 0, in this case). 
Summary of commands and output for this step: 
 
In [68]: device.send(cmd.AddrSubscriptionAdd(0xc001)) 
 
In [69]: 2018-11-13 13:33:33,720 - INFO - COM5: AddrSubscriptionAdd: 
{'address_handle': 6} 
In [69]: 
 
In [69]: gc_Group = GenericOnOffClient() 
 
In [71]: gc_Group.force_segmented = True 
 
In [72]: device.model_add(gc_Group) 
 
In [73]: gc_Group.publish_set(0, 6) #second parameter from above 
"AddrSubscriptionAdd" and first is appkey 
 
In [74]: gc_Group.set(True) 
 
In [75]: 2018-11-13 13:37:05,358 - INFO - COM5: Success 
2018-11-13 13:37:05,387 - INFO - COM5.GenericOnOffClient: Present OnOff: on 
2018-11-13 13:37:05,390 - INFO - COM5.GenericOnOffClient: Present OnOff: on 
2018-11-13 13:37:05,392 - INFO - COM5.GenericOnOffClient: Present OnOff: on 
 

  



18. Observe the LED on nodes bound to Application Key 0 to illuminate: 

 

 
19. Turn off the LEDs on Application Key 0 nodes by issuing command: 

In [75]: gc_Group.set(False) 
In [76]: 2018-11-13 14:11:13,148 - INFO - COM5: Success 
2018-11-13 14:11:13,170 - INFO - COM5.GenericOnOffClient: off 
2018-11-13 14:11:13,179 - INFO - COM5.GenericOnOffClient: off 
2018-11-13 14:11:13,227 - INFO - COM5.GenericOnOffClient: off 

 

20. Now test nodes bound with Application Key 1 to see if they illuminate properly: 

In [76]: gc_Group.publish_set(1, 6) #second parameter from above 
"AddrSubscriptionAdd" and first is appkey 
 
In [77]: gc_Group.set(True) 
 
In [78]: 2018-11-13 14:15:10,181 - INFO - COM5: Success 
2018-11-13 14:15:10,203 - INFO - COM5.GenericOnOffClient: Present OnOff: on 
2018-11-13 14:15:10,206 - INFO - COM5.GenericOnOffClient: Present OnOff: on 
2018-11-13 14:15:10,230 - INFO - COM5.GenericOnOffClient: Present OnOff: on 

  



21. Observe the LED on nodes bound to Application Key 1 to illuminate: 

 

 

22. Turn off the LEDs on Application Key 1 nodes by issuing command: 

In [78]: gc_Group.set(False) 

  



23. Now we shall look at “moving” one node from one group to another.  Recall 
that we have provisioned each node with both Application Key 0 and 
Application Key 1.  This means that both application keys are available to each 
node but we “bind” each node with either Application Key 0 or Application Key 
1.  We will unbind a node from Application Key 1 to Application Key 0: 

 

Command above will point the Configuration Client object (cc) to node 3 because 
recall that 11 is its device_key and 3 is its address_handle and we want to perform a 
configuration operation on that node.  Then we unbind node 3 from Application Key 1 
to Application Key 0 thereby allowing the node to be part of Application Key 0 Group.  
Here are the commands and the outputs: 

In [81]: cc.publish_set(11, 3) 
 
In [83]: cc.model_app_unbind(db.nodes[3].unicast_address, 1, 
mt.ModelId(0x1000)) 
 
In [84]: 2018-11-13 16:39:23,402 - INFO - COM5: Success 
2018-11-13 16:39:23,450 - INFO - COM5.ConfigurationClient: Model app bind 
status: AccessStatus.SUCCESS 
2018-11-13 16:39:23,455 - INFO - COM5.ConfigurationClient: Appkey unbind 1 to 
model 1000 at 0019 
In [84]: 
 
In [84]: cc.model_app_bind(db.nodes[3].unicast_address, 0, 
mt.ModelId(0x1000)) 
 
In [85]: 2018-11-13 16:39:37,512 - INFO - COM5: Success 
2018-11-13 16:39:37,547 - INFO - COM5.ConfigurationClient: Model app bind 
status: AccessStatus.SUCCESS 
2018-11-13 16:39:37,552 - INFO - COM5.ConfigurationClient: Appkey bind 0 to 
model 1000 at 0019 
 
 

  



24. Now we will send a group message to illuminate nodes with Application Key 1: 

In [85]: gc_Group.set(True) 
 
In [86]: 2018-11-13 16:39:54,319 - INFO - COM5: Success 
2018-11-13 16:39:54,333 - INFO - COM5.GenericOnOffClient: Present OnOff: on 
2018-11-13 16:39:54,340 - INFO - COM5.GenericOnOffClient: Present OnOff: on 

Here we can see that node 3 is no longer responding to the command we sent to 
illuminate its LED because we have changed its binding from Application Key 1 to 
Application Key 0: 

 

 

  



25. Now we will switch off Application Key 1 nodes and switch on Application Key 0 
nodes: 

In [88]: gc_Group.set(False)   #Turn off AppKey0 nodes’ LED 
In [89]: 2018-11-13 16:42:31,181 - INFO - COM5: Success 
2018-11-13 16:42:31,202 - INFO - COM5.GenericOnOffClient: off 
2018-11-13 16:42:31,207 - INFO - COM5.GenericOnOffClient: off 
2018-11-13 16:42:31,209 - INFO - COM5.GenericOnOffClient: off 
2018-11-13 16:42:31,254 - INFO - COM5.GenericOnOffClient: off 
 
In [91]: gc_Group.publish_set(0, 6) #Switch Generic On/Off Client object to 
AppKey 0 
In [92]: gc_Group.set(True)  #Turn on AppKey0 nodes’ LED 
 
In [93]: 2018-11-13 17:36:37,824 - INFO - COM5: Success 
2018-11-13 17:36:37,856 - INFO - COM5.GenericOnOffClient: Present OnOff: on 
2018-11-13 17:36:37,858 - INFO - COM5.GenericOnOffClient: Present OnOff: on 
2018-11-13 17:36:37,867 - INFO - COM5.GenericOnOffClient: Present OnOff: on 
2018-11-13 17:36:37,874 - INFO - COM5.GenericOnOffClient: Present OnOff: on 

Observe now that node 3 is now grouped together with Application Key 0 Group: 

 

 

 

  



26. Now we bind node 3 back to Application Key 1, as it was originally, and then 
turn on Application Key 0 Group: 

In [93]: gc_Group.set(False) 
In [93]: 2018-11-13 16:42:31,181 - INFO - COM5: Success 
2018-11-13 16:42:31,202 - INFO - COM5.GenericOnOffClient: off 
2018-11-13 16:42:31,207 - INFO - COM5.GenericOnOffClient: off 
2018-11-13 16:42:31,209 - INFO - COM5.GenericOnOffClient: off 
2018-11-13 16:42:31,254 - INFO - COM5.GenericOnOffClient: off 
   
In [94]: cc.model_app_unbind(db.nodes[3].unicast_address, 0, 
mt.ModelId(0x1000)) #unbind node 3 from Appkey0 

 
2018-11-13 18:00:09,068 - INFO - COM5: Success 
In [95]: 2018-11-13 18:00:09,132 - INFO - COM5.ConfigurationClient: Model app 
bind status: AccessStatus.SUCCESS 
2018-11-13 18:00:09,139 - INFO - COM5.ConfigurationClient: Appkey unbind 0 to 
model 1000 at 0019 
In [95]: 
In [95]: cc.model_app_bind(db.nodes[3].unicast_address, 1, 
mt.ModelId(0x1000))  #bind node 3 to Appkey1 
 
In [96]: 2018-11-13 18:00:29,008 - INFO - COM5: Success 
2018-11-13 18:00:29,072 - INFO - COM5.ConfigurationClient: Model app bind 
status: AccessStatus.SUCCESS 
2018-11-13 18:00:29,077 - INFO - COM5.ConfigurationClient: Appkey bind 1 to 
model 1000 at 0019 
 
In [96]: gc_Group.set(True)  #Illuminate Appkey0 Group 
 
In [97]: 2018-11-13 18:00:38,334 - INFO - COM5: Success 
2018-11-13 18:00:38,356 - INFO - COM5.GenericOnOffClient: Present OnOff: on 
2018-11-13 18:00:38,358 - INFO - COM5.GenericOnOffClient: Present OnOff: on 
2018-11-13 18:00:38,361 - INFO - COM5.GenericOnOffClient: Present OnOff: on 



As a result, we see that now node 3 is no longer illuminated because we have bound it 
back to Application Key 1:

 

 

  



27. Now we turn off Application Key 0 Group LEDs and turn on Application Key 1 
Group LEDs to show that node 3 is now back to being part of Application 0 
Group: 

In [97]: gc_Group.set(False)  #Turn off AppKey0 Group LEDs 
 
In [98]: gc_Group.publish_set(1,6)  #Set address to AppKey1 Group 
 
In [99]: gc_Group.set(True)   #Turn on AppKey1 Group LEDs 
 
As a result, we see that node 3 is back into the Application Key 1 Group: 

 
 
 
  



28. Now we will demonstrate network access to one single node by illuminating its 
LED: 

In [101]: device.send(cmd.AddrPublicationAdd(db.nodes[1].unicast_address)) 
 
In [102]: 2018-11-13 19:14:47,860 - INFO - COM5: AddrPublicationAdd: 
{'address_handle': 1} 
 
In [103]: gc_Uni = GenericOnOffClient() 
 
In [104]: gc_Uni.force_segmented = True 
 
In [105]: device.model_add(gc_Uni) 
 
In [107]: gc_Uni.publish_set(0,1) #first is appkey index, second is from 
AddrPublicationAdd() 
 
In [108]: gc_Uni.set(True) #Turn on single node 
In [109]: gc_Uni.set(False) #Turn off single node 
 
When switched on, we see only node 1 illuminated: 

 
 
 
 
  



Profiling 
Profiling allows one to measure the message latency in the mesh network. 
 

1. To enable profiling, enable debug logging in the serial provisioner firmware 
referred to in the Provisioning section, step 2.  This is done by editing main.c in 
the SES project and enabling debug logging (highlighted): 

 

 

2. Launch the Segger RTT Client to see log output. 
 

3. Compile and run the firmware on the DK in Debug mode. 
 

4. Send a message to the mesh network (see Provisioning section for sending 
messages).  For instance: 

In [103]: gc_Uni = GenericOnOffClient() 
 
In [104]: gc_Uni.force_segmented = True 
 
In [105]: device.model_add(gc_Uni) 
 
In [107]: gc_Uni.publish_set(0,1)  
 
In [108]: gc_Uni.set(True) 

Note that when we set force_segmented to True, messages are sent with ACK 
requested whereas setting for_segmented to False results in messages sent without an 
ACK requested. 

  



5. Observe RTT output with RTC tick count on the left: 

 

 

6. For transforming ticks displayed in the RTT output to milliseconds, use the 
following Python function: 
ticks_to_ms = lambda a, b: abs(a-b) * 1000000 / 32768 / 1000 
 

  



7. Extracting the timestamps will give output: 

 

The last list are times in milliseconds. 

 

 

 

 


	BLE Mesh Demo
	Purpose
	Architecture
	Installation
	Provisioning
	This section will provide information how to set up a mesh network from scratch.
	These steps will guide one to set up a 6 node mesh network with 3 nodes bound to Application Key 0 and 3 nodes bound to Application Key 1.  However, this methodology can be extended to any number of nodes.


	Profiling
	Profiling allows one to measure the message latency in the mesh network.


