If you ask five different people “How would you define the Internet of Things?”, you will probably get five different answers! The term has generated a lot of buzz in the media in the past few years. You may see this as an unjustified hype, but one thing that’s for sure a reality: all sorts of new devices around us are getting connected each and every day, and in almost all of these cases, it is wireless connectivity that’s getting integrated into these devices.
When it comes to wireless connectivity, there are quite a few different technologies available to an IoT developer. Some of these have been around for a long time (e.g. Wi-Fi, Bluetooth, and ZigBee) and some are relatively new (e.g. LoRaWAN, SigFox, NB-IoT, and LTE-M). Of course, there’s no one-size-fits-all when it comes to choosing a wireless technology for your product, so it’s important to know the advantages and limitations of each technology at the time of design.
In the past few years, cellular IoT technologies such as LTE-M, NB-IoT, and 5G have gained a lot of media attention, and this is for good reason. The promise of ubiquitous 5G connectivity and the release of game-changing NB-IoT and LTE-M solutions such Nordic’s nRF9160 chipset open up opportunities for use cases that were not possible before.
Bluetooth, on the other hand, has been around for many years and has gone through quite a few updates and has adapted well to the needs of the market. For example, Bluetooth Low Energy (BLE) was introduced in 2010 and has become the go-to solution for wearables and personal fitness devices.
In December 2016, the Bluetooth Special Interest Group (SIG) released version 5.0 of the Bluetooth specification which introduced two new modes: long-range (Coded PHY) and high-speed (2M PHY). This release allowed Bluetooth to be used in more use cases such as short-range high-speed transfer and long-range remote-control applications. In January 2019, the SIG introduced yet another version (5.1) of the Bluetooth specification which made it possible to use Bluetooth for direction finding applications.
One unique specification, which was released by the SIG in July 2017, is the Bluetooth mesh specification. What makes this release unique is that it’s the first whole specification that’s separate from the core Bluetooth specification and that focuses on an application-level implementation of the technology (specifically Bluetooth Low Energy).
The feature that BLE lacked since the beginning was the capability of supporting a many-to-many topology (often referred to as mesh), where multiple BLE devices can send each other messages and relay messages to other devices within a network. Bluetooth changed this by introducing the capability of many-to-many device communication in the Bluetooth mesh specification.
Other low-power wireless technologies such as Z-Wave and Zigbee have supported the mesh topology for many years, so it’s only natural for Bluetooth to adapt and provide this capability. The major applications that benefit from mesh topologies are home automation, building automation, and industrial applications.
With the introduction of Bluetooth mesh, Bluetooth can now target these applications and provide another option for IoT solution manufacturers. It was built from the ground up to support thousands of devices to participate within the network. This fact in addition to the security measures supported by the specification make it ideal for commercial-grade mesh network deployments.
We won’t dive deep into the technical details of Bluetooth mesh here – we’ll leave that to another post. Instead, we’ll just list some of the most important technical facts about the protocol.
In this post we gave a background view of Bluetooth mesh and went over some of the most important technical facts of Bluetooth mesh. We barely scratched the surface and there’s so much to cover that would go beyond a reasonable length post!
To learn more about the Bluetooth mesh standard, check out the official specification documents which can be found here:
https://bluetooth.com/specifications/mesh-specifications/
Once you’re ready to take your knowledge into practice, the next step would be to learn how to implement a Bluetooth mesh on a real development platform such as the Nordic nRF52 series chipsets. This page provides a good starting point:
https://www.nordicsemi.com/Products/Low-power-short-range-wireless/Bluetooth-mesh
In the Internet of Things, machines often need to send short data in extremely noisy environments. With hundreds of sensors and devices sending data, Wi-Fi brings too many complications during setup, then…
Have some doubts about testimonials on PapersHelm? Are you not sure about service online ratings? Then check out this papershelm rating, it's based on real experience.
In the Internet of Things, machines often need to send short data in extremely noisy environments. With hundreds of sensors and devices sending data, Wi-Fi brings too many complications during setup, then Bluetooth is a reasonable geometry dash choice.