I am sampling 3 sensors using the ADC peripheral, clocking it once every 15us to sample the 3 sensors (3us acquisition time + 2us processing = 5us per channel).
I use the easy DMA in double buffer to sample 402 samples and interrupt me so i can process them and prepare the DMA next buffer (interrupt every 402*15/3=2100us).
In the interrupt context, I copy the buffer into a continuous big buffer and to excel and this is what i see:
when i stop the adc sampling and start it again (vertical spike above), i sometimes have a glitch that looks as if one sample is missed and i thus get channel 2 instead of 1 as shown in the above image. The vertical spike seen in the image is just a marker i add to the debug software buffer to mark where i re-enabled adc sampling.
The image above contains ~6 concatenated buffers (each buffer holds 402 samples = 134 samples from each of the 3).
Following is the code i use:
// this is double buffer hooked to the adc pointer. it is used to sample 3 channels static nrf_saadc_value_t adc_3_channels_double_buffer[2][402]; static uint32_t adc_3_channels_double_buffer_index = 0; //this is a debug buffer holding 50 adc buffers static nrf_saadc_value_t adc_3_channels_debug_buffer[402*50]; static int adc_3_channels_debug_buffer_index = 0; // tis function is called to start adc sampling void start_adc_sampling(void) { // NRF_TIMER1 is a timer used to clock adc sampling of the 3 sensors we have - clock every 15us NRF_TIMER1->MODE = (TIMER_MODE_MODE_Timer << TIMER_MODE_MODE_Pos); NRF_TIMER1->PRESCALER = 4; // 1mhz --> 1us NRF_TIMER1->CC[0] = 15; NRF_TIMER1->SHORTS = TIMER_SHORTS_COMPARE0_CLEAR_Msk; // ppi #6: connect adc timer to adc sampling NRF_PPI->CH[5].EEP = (uint32_t) &NRF_TIMER1->EVENTS_COMPARE[0]; NRF_PPI->CH[5].TEP = (uint32_t) &NRF_SAADC->TASKS_SAMPLE; // ppi #9: connect adc buffer end to buffer start to get continuous double buffer sampling with no sampl NRF_PPI->CH[8].EEP = (uint32_t) &NRF_SAADC->EVENTS_END; NRF_PPI->CH[8].TEP = (uint32_t) &NRF_SAADC->TASKS_START; // Enable all ppi channels NRF_PPI->CHENSET = (PPI_CHENSET_CH5_Enabled << PPI_CHENSET_CH5_Pos) | (PPI_CHENSET_CH8_Enabled << PPI_CHENSET_CH8_Pos); // general adc config (nrf_drv_saadc_init) NRF_SAADC->ENABLE = (SAADC_ENABLE_ENABLE_Enabled << SAADC_ENABLE_ENABLE_Pos); NRF_SAADC->RESOLUTION = NRF_SAADC_RESOLUTION_12BIT; NRF_SAADC->OVERSAMPLE = NRF_SAADC_OVERSAMPLE_DISABLED; NRF_SAADC->INTENCLR = NRF_SAADC_INT_ALL; NRF_SAADC->EVENTS_END = 0x0UL; volatile uint32_t dummy = NRF_SAADC->EVENTS_END; NRF_SAADC->EVENTS_STARTED = 0x0UL; dummy = NRF_SAADC->EVENTS_STARTED; (void)dummy; NVIC_SetPriority(SAADC_IRQn, SAADC_CONFIG_IRQ_PRIORITY); NVIC_ClearPendingIRQ(SAADC_IRQn); NVIC_EnableIRQ(SAADC_IRQn); NRF_SAADC->INTENSET = NRF_SAADC_INT_END; // configure the adc to sample the 3 sensors for ( int i=0; i<3; i++ ) { NRF_SAADC->CH[i].PSELN = NRF_SAADC_INPUT_DISABLED; NRF_SAADC->CH[i].PSELP = NRF_SAADC_INPUT_DISABLED; NRF_SAADC->CH[i].CONFIG = ((NRF_SAADC_RESISTOR_DISABLED << SAADC_CH_CONFIG_RESP_Pos) & SAADC_CH_CONFIG_RESP_Msk) | ((NRF_SAADC_RESISTOR_DISABLED << SAADC_CH_CONFIG_RESN_Pos) & SAADC_CH_CONFIG_RESN_Msk) | ((NRF_SAADC_GAIN1_4 << SAADC_CH_CONFIG_GAIN_Pos) & SAADC_CH_CONFIG_GAIN_Msk) | ((NRF_SAADC_REFERENCE_VDD4 << SAADC_CH_CONFIG_REFSEL_Pos) & SAADC_CH_CONFIG_REFSEL_Msk) | ((NRF_SAADC_ACQTIME_3US << SAADC_CH_CONFIG_TACQ_Pos) & SAADC_CH_CONFIG_TACQ_Msk) | ((NRF_SAADC_MODE_SINGLE_ENDED << SAADC_CH_CONFIG_MODE_Pos) & SAADC_CH_CONFIG_MODE_Msk) | ((NRF_SAADC_BURST_DISABLED << SAADC_CH_CONFIG_BURST_Pos) & SAADC_CH_CONFIG_BURST_Msk); } NRF_SAADC->CH[0].PSELP = NRF_SAADC_INPUT_AIN1; NRF_SAADC->CH[1].PSELP = NRF_SAADC_INPUT_AIN2; NRF_SAADC->CH[2].PSELP = NRF_SAADC_INPUT_AIN3; // assigne the 1st adc buffer without starting it yet (nrf_drv_saadc_buffer_convert) NRF_SAADC->RESULT.PTR = (uint32_t)adc_3_channels_double_buffer[0]; NRF_SAADC->RESULT.MAXCNT = 402; NRF_SAADC->EVENTS_STARTED = 0x0UL; dummy = NRF_SAADC->EVENTS_STARTED; // trigger samplig uint8_t val; sd_nvic_critical_region_enter(&val); NRF_TIMER1->TASKS_START = 1; NRF_SAADC->TASKS_START = 1; sd_nvic_critical_region_exit(val); // configure the 2nd adc buffer once the 1st is started while (NRF_SAADC->EVENTS_STARTED==0); NRF_SAADC->EVENTS_STARTED = 0x0UL; dummy = NRF_SAADC->EVENTS_STARTED; NRF_SAADC->RESULT.PTR = (uint32_t)adc_3_channels_double_buffer[1]; adc_3_channels_double_buffer_index = 0; } // adc interrupt - called once every 402 samples to process the sampled buffer and prepare the nexe buffer void SAADC_IRQHandler(void) { // only event end interruopt is enabled anyway if ( nrf_saadc_event_check(NRF_SAADC_EVENT_END) ) { // clear event NRF_SAADC->EVENTS_END = 0x0UL; volatile uint32_t dummy = NRF_SAADC->EVENTS_END; // get filled buffer and swap logically nrf_saadc_value_t *src = adc_3_channels_double_buffer[adc_3_channels_double_buffer_index]; adc_3_channels_double_buffer_index = 1 - adc_3_channels_double_buffer_index; if ( !flag_stop_sampling ) { // ensure start before init while (NRF_SAADC->EVENTS_STARTED==0); NRF_SAADC->EVENTS_STARTED = 0x0UL; dummy = NRF_SAADC->EVENTS_STARTED; (void)dummy; // init next buffer (current buffer being sampled is the other buffer so we have time to do this) NRF_SAADC->RESULT.PTR = (uint32_t)src; NRF_SAADC->RESULT.MAXCNT = 402; } // copy the buffer into a big continuous buffer with room for 50 buffers for ( int i=0; i<402; i+=3, src += 3 ) { adc_3_channels_debug_buffer[adc_3_channels_debug_buffer_index++] = src[0]; adc_3_channels_debug_buffer[adc_3_channels_debug_buffer_index++] = src[1]; adc_3_channels_debug_buffer[adc_3_channels_debug_buffer_index++] = src[2]; } // if someone sets this flag - i want to stop the adc sampling if ( flag_stop_sampling ) { // disconenct ppi NRF_PPI->CHENCLR = ((PPI_CHENCLR_CH5_Clear << PPI_CHENCLR_CH5_Pos) | (PPI_CHENCLR_CH8_Clear << PPI_CHENCLR_CH8_Pos)); // adc timer shutdown (nrf_drv_timer_uninit) NRF_TIMER1->SHORTS = 0; NRF_TIMER1->INTENCLR = 0xFFFFFFFF; NRF_TIMER1->TASKS_SHUTDOWN = 1; #if 0 // problem ! - this block must be commented out in order to avoid channels switching in between trains // adc shutdown (nrf_drv_saadc_uninit) NRF_SAADC->INTENCLR = NRF_SAADC_INT_ALL; NVIC_DisableIRQ(SAADC_IRQn); NRF_SAADC->TASKS_STOP = 0x1UL; uint32_t timeout = 10000; while (NRF_SAADC->EVENTS_STOPPED==0 && timeout > 0) { --timeout; } ASSERT(timeout > 0); NRF_SAADC->ENABLE = (SAADC_ENABLE_ENABLE_Disabled << SAADC_ENABLE_ENABLE_Pos); NRF_SAADC->CH[0].PSELP = NRF_SAADC_INPUT_DISABLED; NRF_SAADC->CH[1].PSELP = NRF_SAADC_INPUT_DISABLED; NRF_SAADC->CH[2].PSELP = NRF_SAADC_INPUT_DISABLED; #endif } } else { ASSERT(0); } }
In the code i have '#if 0' in line 131 commenting out the bit of code that causes the glitch problem.
When i remove it i see no glitches.
In the blocked code shuts down the ADc in order to save power.
It blocked code is art of code within the ADC interrupt that is trigered when someone set 'flag_stop_sampling' to 1 in order to stop ADC sampling.
My point is - if i disable the ADC peripheral (as i do) in between samples and later on wake it up again and re configure the entire logic - how come i see glitches of channels in my buffer.
My target was to make my software implementation to do the sampling regardless of softdevice and other tasks interrupts.