Hii nordic;
I need to encrypt and decrypt my advertising data i.e;UUID,Major,Minor,etc.; of my nrf52832
So it cannot be seen by third parties
my sdk version is 15.2 and softdevice is 132
Hii nordic;
I need to encrypt and decrypt my advertising data i.e;UUID,Major,Minor,etc.; of my nrf52832
So it cannot be seen by third parties
my sdk version is 15.2 and softdevice is 132
Hi Naralasetty and Shivali,
I apologize for the very late reply.
I have modified the decryption_central project's main.c file to extract the nounce from the scan response packet and extract the beacon info from the advertisment packet. It then calls ctr_init() to update the nounce and then calls ctr_decrypt on the extracted beacon data. the main file is attached:
#include <stdio.h> #include <stdint.h> #include <stdbool.h> #include "nordic_common.h" #include "app_error.h" #include "app_uart.h" #include "ble_db_discovery.h" #include "app_timer.h" #include "app_util.h" #include "bsp_btn_ble.h" #include "ble.h" #include "ble_gap.h" #include "ble_hci.h" #include "nrf_sdh.h" #include "nrf_sdh_ble.h" #include "nrf_sdh_soc.h" #include "ble_nus_c.h" #include "nrf_ble_gatt.h" #include "nrf_pwr_mgmt.h" #include "nrf_ble_scan.h" #include "nrf_log.h" #include "nrf_log_ctrl.h" #include "nrf_log_default_backends.h" #include "nrf_delay.h" #include "ble_srv_common.h" #include "ble_advdata.h" #define APP_BLE_CONN_CFG_TAG 1 /**< Tag that refers to the BLE stack configuration set with @ref sd_ble_cfg_set. The default tag is @ref BLE_CONN_CFG_TAG_DEFAULT. */ #define APP_BLE_OBSERVER_PRIO 3 /**< BLE observer priority of the application. There is no need to modify this value. */ #define UART_TX_BUF_SIZE 256 /**< UART TX buffer size. */ #define UART_RX_BUF_SIZE 256 /**< UART RX buffer size. */ #define NUS_SERVICE_UUID_TYPE BLE_UUID_TYPE_VENDOR_BEGIN /**< UUID type for the Nordic UART Service (vendor specific). */ #define ECHOBACK_BLE_UART_DATA 1 /**< Echo the UART data that is received over the Nordic UART Service (NUS) back to the sender. */ #define ECB_KEY_LEN (16UL) #define COUNTER_BYTE_LEN (4UL) #define NONCE_RAND_BYTE_LEN (12UL) // The RNG wait values are typical and not guaranteed. See Product Specifications for more info. #ifdef NRF51 #define RNG_BYTE_WAIT_US (677UL) #elif defined NRF52 #define RNG_BYTE_WAIT_US (124UL) #else #error "Either NRF51 or NRF52 must be defined." #endif BLE_NUS_C_DEF(m_ble_nus_c); /**< BLE Nordic UART Service (NUS) client instance. */ NRF_BLE_GATT_DEF(m_gatt); /**< GATT module instance. */ BLE_DB_DISCOVERY_DEF(m_db_disc); /**< Database discovery module instance. */ NRF_BLE_SCAN_DEF(m_scan); /**< Scanning Module instance. */ static uint16_t m_ble_nus_max_data_len = BLE_GATT_ATT_MTU_DEFAULT - OPCODE_LENGTH - HANDLE_LENGTH; /**< Maximum length of data (in bytes) that can be transmitted to the peer by the Nordic UART service module. */ static bool m_initialized = false; static nrf_ecb_hal_data_t m_ecb_data; static uint8_t m_ecb_key[16] = {0x6E,0x88,0x90,0x8D,0x75,0xBB,0x95,0xEA,0x2C,0x65,0x93,0x01,0x43,0xF8,0x1B,0x5F}; static uint8_t nounce[16]; static uint8_t m_beacon_info[0x17]; /**@brief NUS UUID. */ static ble_uuid_t const m_nus_uuid = { .uuid = BLE_UUID_IMMEDIATE_ALERT_SERVICE, .type = BLE_UUID_TYPE_BLE }; void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name) { app_error_handler(0xDEADBEEF, line_num, p_file_name); } void ctr_init(const uint8_t * p_nonce, const uint8_t * p_ecb_key) { m_initialized = true; // Save the key. memcpy(&m_ecb_data.key[0], p_ecb_key, ECB_KEY_LEN); // Copy the nonce. memcpy(&m_ecb_data.ciphertext[COUNTER_BYTE_LEN], &p_nonce[COUNTER_BYTE_LEN], NONCE_RAND_BYTE_LEN); // Zero the counter value. memset(&m_ecb_data.cleartext[0], 0x00, COUNTER_BYTE_LEN); } static uint32_t crypt(uint8_t * buf) { uint8_t i; uint32_t err_code; if (!m_initialized) { return NRF_ERROR_INVALID_STATE; } err_code = sd_ecb_block_encrypt(&m_ecb_data); if (NRF_SUCCESS != err_code) { return err_code; } for (i=0; i < ECB_KEY_LEN; i++) { buf[i] ^= m_ecb_data.ciphertext[i]; } // Increment the counter. (*((uint32_t*) m_ecb_data.cleartext))++; return NRF_SUCCESS; } uint32_t ctr_encrypt(uint8_t * p_clear_text) { return crypt(p_clear_text); } uint32_t ctr_decrypt(uint8_t * p_cipher_text) { return crypt(p_cipher_text); } /**@brief Function for starting scanning. */ static void scan_start(void) { ret_code_t ret; ret = nrf_ble_scan_start(&m_scan); APP_ERROR_CHECK(ret); ret = bsp_indication_set(BSP_INDICATE_SCANNING); APP_ERROR_CHECK(ret); } /**@brief Function for handling Scanning Module events. */ static void scan_evt_handler(scan_evt_t const * p_scan_evt) { ret_code_t err_code; switch(p_scan_evt->scan_evt_id) { case NRF_BLE_SCAN_EVT_CONNECTING_ERROR: { err_code = p_scan_evt->params.connecting_err.err_code; APP_ERROR_CHECK(err_code); } break; case NRF_BLE_SCAN_EVT_CONNECTED: { ble_gap_evt_connected_t const * p_connected = p_scan_evt->params.connected.p_connected; // Scan is automatically stopped by the connection. NRF_LOG_INFO("Connecting to target %02x%02x%02x%02x%02x%02x", p_connected->peer_addr.addr[0], p_connected->peer_addr.addr[1], p_connected->peer_addr.addr[2], p_connected->peer_addr.addr[3], p_connected->peer_addr.addr[4], p_connected->peer_addr.addr[5] ); } break; case NRF_BLE_SCAN_EVT_SCAN_TIMEOUT: { NRF_LOG_INFO("Scan timed out."); scan_start(); } break; case NRF_BLE_SCAN_EVT_SCAN_REQ_REPORT: { NRF_LOG_INFO("Scan Request Report received!"); break; } case NRF_BLE_SCAN_EVT_FILTER_MATCH: { NRF_LOG_INFO("Received Advertisment Report that matches the scan filter(s)!"); break; } default: break; } } /**@brief Function for initializing the scanning and setting the filters. */ static void scan_init(void) { ret_code_t err_code; nrf_ble_scan_init_t init_scan; ble_gap_scan_params_t scan_params; memset(&scan_params,0,sizeof(scan_params)); scan_params.active = 1; scan_params.interval = NRF_BLE_SCAN_SCAN_INTERVAL; scan_params.window = NRF_BLE_SCAN_SCAN_WINDOW; scan_params.timeout = 0; scan_params.filter_policy = BLE_GAP_SCAN_FP_ACCEPT_ALL; scan_params.scan_phys = BLE_GAP_PHY_1MBPS; //scan_params.report_incomplete_evts = true; memset(&init_scan, 0, sizeof(init_scan)); init_scan.connect_if_match = false; init_scan.conn_cfg_tag = APP_BLE_CONN_CFG_TAG; init_scan.p_scan_param = &scan_params; err_code = nrf_ble_scan_init(&m_scan, &init_scan, scan_evt_handler); APP_ERROR_CHECK(err_code); /* err_code = nrf_ble_scan_filter_set(&m_scan, SCAN_UUID_FILTER, &m_nus_uuid); APP_ERROR_CHECK(err_code); err_code = nrf_ble_scan_filters_enable(&m_scan, NRF_BLE_SCAN_UUID_FILTER, false); APP_ERROR_CHECK(err_code); */ } static void db_disc_handler(ble_db_discovery_evt_t * p_evt) { ble_nus_c_on_db_disc_evt(&m_ble_nus_c, p_evt); } static void ble_nus_chars_received_uart_print(uint8_t * p_data, uint16_t data_len) { ret_code_t ret_val; NRF_LOG_DEBUG("Receiving data."); NRF_LOG_HEXDUMP_DEBUG(p_data, data_len); for (uint32_t i = 0; i < data_len; i++) { do { ret_val = app_uart_put(p_data[i]); if ((ret_val != NRF_SUCCESS) && (ret_val != NRF_ERROR_BUSY)) { NRF_LOG_ERROR("app_uart_put failed for index 0x%04x.", i); APP_ERROR_CHECK(ret_val); } } while (ret_val == NRF_ERROR_BUSY); } if (p_data[data_len-1] == '\r') { while (app_uart_put('\n') == NRF_ERROR_BUSY); } if (ECHOBACK_BLE_UART_DATA) { // Send data back to the peripheral. do { ret_val = ble_nus_c_string_send(&m_ble_nus_c, p_data, data_len); if ((ret_val != NRF_SUCCESS) && (ret_val != NRF_ERROR_BUSY)) { NRF_LOG_ERROR("Failed sending NUS message. Error 0x%x. ", ret_val); APP_ERROR_CHECK(ret_val); } } while (ret_val == NRF_ERROR_BUSY); } } void uart_event_handle(app_uart_evt_t * p_event) { static uint8_t data_array[BLE_NUS_MAX_DATA_LEN]; static uint16_t index = 0; uint32_t ret_val; switch (p_event->evt_type) { /**@snippet [Handling data from UART] */ case APP_UART_DATA_READY: UNUSED_VARIABLE(app_uart_get(&data_array[index])); index++; if ((data_array[index - 1] == '\n') || (index >= (m_ble_nus_max_data_len))) { NRF_LOG_DEBUG("Ready to send data over BLE NUS"); NRF_LOG_HEXDUMP_DEBUG(data_array, index); do { ret_val = ble_nus_c_string_send(&m_ble_nus_c, data_array, index); if ( (ret_val != NRF_ERROR_INVALID_STATE) && (ret_val != NRF_ERROR_RESOURCES) ) { APP_ERROR_CHECK(ret_val); } } while (ret_val == NRF_ERROR_RESOURCES); index = 0; } break; /**@snippet [Handling data from UART] */ case APP_UART_COMMUNICATION_ERROR: NRF_LOG_ERROR("Communication error occurred while handling UART."); APP_ERROR_HANDLER(p_event->data.error_communication); break; case APP_UART_FIFO_ERROR: NRF_LOG_ERROR("Error occurred in FIFO module used by UART."); APP_ERROR_HANDLER(p_event->data.error_code); break; default: break; } } /**@snippet [Handling events from the ble_nus_c module] */ static void ble_nus_c_evt_handler(ble_nus_c_t * p_ble_nus_c, ble_nus_c_evt_t const * p_ble_nus_evt) { ret_code_t err_code; switch (p_ble_nus_evt->evt_type) { case BLE_NUS_C_EVT_DISCOVERY_COMPLETE: NRF_LOG_INFO("Discovery complete."); err_code = ble_nus_c_handles_assign(p_ble_nus_c, p_ble_nus_evt->conn_handle, &p_ble_nus_evt->handles); APP_ERROR_CHECK(err_code); err_code = ble_nus_c_tx_notif_enable(p_ble_nus_c); APP_ERROR_CHECK(err_code); NRF_LOG_INFO("Connected to device with Nordic UART Service."); break; case BLE_NUS_C_EVT_NUS_TX_EVT: ble_nus_chars_received_uart_print(p_ble_nus_evt->p_data, p_ble_nus_evt->data_len); break; case BLE_NUS_C_EVT_DISCONNECTED: NRF_LOG_INFO("Disconnected."); scan_start(); break; } } /**@snippet [Handling events from the ble_nus_c module] */ /** * @brief Function for handling shutdown events. * * @param[in] event Shutdown type. */ static bool shutdown_handler(nrf_pwr_mgmt_evt_t event) { ret_code_t err_code; err_code = bsp_indication_set(BSP_INDICATE_IDLE); APP_ERROR_CHECK(err_code); switch (event) { case NRF_PWR_MGMT_EVT_PREPARE_WAKEUP: // Prepare wakeup buttons. err_code = bsp_btn_ble_sleep_mode_prepare(); APP_ERROR_CHECK(err_code); break; default: break; } return true; } NRF_PWR_MGMT_HANDLER_REGISTER(shutdown_handler, APP_SHUTDOWN_HANDLER_PRIORITY); /**@brief Function for handling BLE events. * * @param[in] p_ble_evt Bluetooth stack event. * @param[in] p_context Unused. */ static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context) { ret_code_t err_code; ble_gap_evt_t const * p_gap_evt = &p_ble_evt->evt.gap_evt; uint8_t uuid[26]; switch (p_ble_evt->header.evt_id) { case BLE_GAP_EVT_CONNECTED: err_code = ble_nus_c_handles_assign(&m_ble_nus_c, p_ble_evt->evt.gap_evt.conn_handle, NULL); APP_ERROR_CHECK(err_code); err_code = bsp_indication_set(BSP_INDICATE_CONNECTED); APP_ERROR_CHECK(err_code); // start discovery of services. The NUS Client waits for a discovery result err_code = ble_db_discovery_start(&m_db_disc, p_ble_evt->evt.gap_evt.conn_handle); APP_ERROR_CHECK(err_code); break; case BLE_GAP_EVT_DISCONNECTED: NRF_LOG_INFO("Disconnected. conn_handle: 0x%x, reason: 0x%x", p_gap_evt->conn_handle, p_gap_evt->params.disconnected.reason); break; case BLE_GAP_EVT_TIMEOUT: if (p_gap_evt->params.timeout.src == BLE_GAP_TIMEOUT_SRC_CONN) { NRF_LOG_INFO("Connection Request timed out."); } break; case BLE_GAP_EVT_SEC_PARAMS_REQUEST: // Pairing not supported. err_code = sd_ble_gap_sec_params_reply(p_ble_evt->evt.gap_evt.conn_handle, BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL); APP_ERROR_CHECK(err_code); break; case BLE_GAP_EVT_CONN_PARAM_UPDATE_REQUEST: // Accepting parameters requested by peer. err_code = sd_ble_gap_conn_param_update(p_gap_evt->conn_handle, &p_gap_evt->params.conn_param_update_request.conn_params); APP_ERROR_CHECK(err_code); break; case BLE_GAP_EVT_PHY_UPDATE_REQUEST: { NRF_LOG_DEBUG("PHY update request."); ble_gap_phys_t const phys = { .rx_phys = BLE_GAP_PHY_AUTO, .tx_phys = BLE_GAP_PHY_AUTO, }; err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys); APP_ERROR_CHECK(err_code); } break; case BLE_GATTC_EVT_TIMEOUT: // Disconnect on GATT Client timeout event. NRF_LOG_DEBUG("GATT Client Timeout."); err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; case BLE_GATTS_EVT_TIMEOUT: // Disconnect on GATT Server timeout event. NRF_LOG_DEBUG("GATT Server Timeout."); err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; case BLE_GAP_EVT_ADV_REPORT: { //NRF_LOG_INFO("Advertise received"); scan_start(); /*//nrf_gpio_pin_toggle(LED1_PIN); NRF_LOG_INFO("Scannable: %d",p_gap_evt->params.adv_report.type.scannable); NRF_LOG_INFO("Scan-response: %d",p_gap_evt->params.adv_report.type.scan_response); */ ble_gap_addr_t addr; memcpy(addr.addr, p_gap_evt->params.adv_report.peer_addr.addr, 6); /* NRF_LOG_INFO("Beacon address: %02x:%02x:%02x:%02x:%02x:%02x", p_gap_evt->params.adv_report.peer_addr.addr[5], p_gap_evt->params.adv_report.peer_addr.addr[4], p_gap_evt->params.adv_report.peer_addr.addr[3], p_gap_evt->params.adv_report.peer_addr.addr[2], p_gap_evt->params.adv_report.peer_addr.addr[1], p_gap_evt->params.adv_report.peer_addr.addr[0]); */ // Filter on peripheral address. Should iterate over a list of known peripherals. uint8_t beacon_addr[6] ={0xec,0x97,0x40,0x5b,0xaf,0xfa}; if(!memcmp(addr.addr,beacon_addr, sizeof(beacon_addr))){ //NRF_LOG_INFO("Scannable: %d",p_gap_evt->params.adv_report.type.scan_response); uint16_t data_offset = 0; uint16_t maunf_data_len; //Check if it is a scan response packet if(p_gap_evt->params.adv_report.type.scan_response) { NRF_LOG_INFO("Scan response report received"); // Search for manuf data in the scan response packet maunf_data_len = ble_advdata_search(p_gap_evt->params.adv_report.data.p_data, p_gap_evt->params.adv_report.data.len,&data_offset,BLE_GAP_AD_TYPE_MANUFACTURER_SPECIFIC_DATA); NRF_LOG_HEXDUMP_INFO((p_gap_evt->params.adv_report.data.p_data+data_offset),maunf_data_len); // Extract nounce memcpy(nounce,p_gap_evt->params.adv_report.data.p_data+data_offset,maunf_data_len); // Intialize the crypto module ctr_init(nounce,m_ecb_key); } else { // Find the manuf data in the advertisment packet maunf_data_len = ble_advdata_search(p_gap_evt->params.adv_report.data.p_data, p_gap_evt->params.adv_report.data.len,&data_offset,BLE_GAP_AD_TYPE_MANUFACTURER_SPECIFIC_DATA); NRF_LOG_HEXDUMP_INFO((p_gap_evt->params.adv_report.data.p_data+data_offset),maunf_data_len); // Copy manuf data to beacon info array memcpy(m_beacon_info,p_gap_evt->params.adv_report.data.p_data+data_offset,maunf_data_len); // Decrypt the advertisment manuf data ctr_decrypt(m_beacon_info); ctr_decrypt(&m_beacon_info[16]); NRF_LOG_INFO("Decrypted info:"); NRF_LOG_HEXDUMP_INFO(m_beacon_info, sizeof(m_beacon_info)); // Reset counter values for next decrypt m_ecb_data.cleartext[0] = 0x00; m_ecb_data.cleartext[1] = 0x00; m_ecb_data.cleartext[2] = 0x00; m_ecb_data.cleartext[3] = 0x00; memmove(uuid, p_gap_evt->params.adv_report.data.p_data, p_gap_evt->params.adv_report.data.len); NRF_LOG_INFO("UUID: %02x%02x%02x%02x%02x%02x", uuid[9], uuid[10], uuid[11], uuid[12], uuid[13], uuid[14]); NRF_LOG_INFO("TX_POWER: %02x", p_gap_evt->params.adv_report.tx_power); NRF_LOG_INFO("RSSI: %02x", p_gap_evt->params.adv_report.rssi); } // uint8_t batt_lvl; // NRF_LOG_INFO("battery level: %02x", p_gap_evt->params.adv_report.batt_lvl); } } break; case BLE_GAP_EVT_SCAN_REQ_REPORT: NRF_LOG_INFO("Scan response report received"); break; default: break; } } /**@brief Function for initializing the BLE stack. * * @details Initializes the SoftDevice and the BLE event interrupt. */ static void ble_stack_init(void) { ret_code_t err_code; err_code = nrf_sdh_enable_request(); APP_ERROR_CHECK(err_code); // Configure the BLE stack using the default settings. // Fetch the start address of the application RAM. uint32_t ram_start = 0; err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start); APP_ERROR_CHECK(err_code); // Enable BLE stack. err_code = nrf_sdh_ble_enable(&ram_start); APP_ERROR_CHECK(err_code); // Register a handler for BLE events. NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL); } /**@brief Function for handling events from the GATT library. */ void gatt_evt_handler(nrf_ble_gatt_t * p_gatt, nrf_ble_gatt_evt_t const * p_evt) { if (p_evt->evt_id == NRF_BLE_GATT_EVT_ATT_MTU_UPDATED) { NRF_LOG_INFO("ATT MTU exchange completed."); m_ble_nus_max_data_len = p_evt->params.att_mtu_effective - OPCODE_LENGTH - HANDLE_LENGTH; NRF_LOG_INFO("Ble NUS max data length set to 0x%X(%d)", m_ble_nus_max_data_len, m_ble_nus_max_data_len); } } /**@brief Function for initializing the GATT library. */ void gatt_init(void) { ret_code_t err_code; err_code = nrf_ble_gatt_init(&m_gatt, gatt_evt_handler); APP_ERROR_CHECK(err_code); err_code = nrf_ble_gatt_att_mtu_central_set(&m_gatt, NRF_SDH_BLE_GATT_MAX_MTU_SIZE); APP_ERROR_CHECK(err_code); } /**@brief Function for handling events from the BSP module. * * @param[in] event Event generated by button press. */ void bsp_event_handler(bsp_event_t event) { ret_code_t err_code; switch (event) { case BSP_EVENT_SLEEP: nrf_pwr_mgmt_shutdown(NRF_PWR_MGMT_SHUTDOWN_GOTO_SYSOFF); break; case BSP_EVENT_DISCONNECT: err_code = sd_ble_gap_disconnect(m_ble_nus_c.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); if (err_code != NRF_ERROR_INVALID_STATE) { APP_ERROR_CHECK(err_code); } break; default: break; } } /**@brief Function for initializing the UART. */ static void uart_init(void) { ret_code_t err_code; app_uart_comm_params_t const comm_params = { .rx_pin_no = RX_PIN_NUMBER, .tx_pin_no = TX_PIN_NUMBER, .rts_pin_no = RTS_PIN_NUMBER, .cts_pin_no = CTS_PIN_NUMBER, .flow_control = APP_UART_FLOW_CONTROL_DISABLED, .use_parity = false, .baud_rate = UART_BAUDRATE_BAUDRATE_Baud115200 }; APP_UART_FIFO_INIT(&comm_params, UART_RX_BUF_SIZE, UART_TX_BUF_SIZE, uart_event_handle, APP_IRQ_PRIORITY_LOWEST, err_code); APP_ERROR_CHECK(err_code); } /**@brief Function for initializing the Nordic UART Service (NUS) client. */ static void nus_c_init(void) { ret_code_t err_code; ble_nus_c_init_t init; init.evt_handler = ble_nus_c_evt_handler; err_code = ble_nus_c_init(&m_ble_nus_c, &init); APP_ERROR_CHECK(err_code); } /**@brief Function for initializing buttons and leds. */ static void buttons_leds_init(void) { ret_code_t err_code; bsp_event_t startup_event; err_code = bsp_init(BSP_INIT_LEDS, bsp_event_handler); APP_ERROR_CHECK(err_code); err_code = bsp_btn_ble_init(NULL, &startup_event); APP_ERROR_CHECK(err_code); } /**@brief Function for initializing the timer. */ static void timer_init(void) { ret_code_t err_code = app_timer_init(); APP_ERROR_CHECK(err_code); } /**@brief Function for initializing the nrf log module. */ static void log_init(void) { ret_code_t err_code = NRF_LOG_INIT(NULL); APP_ERROR_CHECK(err_code); NRF_LOG_DEFAULT_BACKENDS_INIT(); } /**@brief Function for initializing power management. */ static void power_management_init(void) { ret_code_t err_code; err_code = nrf_pwr_mgmt_init(); APP_ERROR_CHECK(err_code); } /** @brief Function for initializing the database discovery module. */ static void db_discovery_init(void) { ret_code_t err_code = ble_db_discovery_init(db_disc_handler); APP_ERROR_CHECK(err_code); } /**@brief Function for handling the idle state (main loop). * * @details Handles any pending log operations, then sleeps until the next event occurs. */ static void idle_state_handle(void) { if (NRF_LOG_PROCESS() == false) { nrf_pwr_mgmt_run(); } } void nonce_generate(uint8_t * p_buf) { uint8_t i = COUNTER_BYTE_LEN; uint8_t remaining = NONCE_RAND_BYTE_LEN; while(0 != remaining) { uint32_t err_code; uint8_t available = 0; err_code = sd_rand_application_bytes_available_get(&available); APP_ERROR_CHECK(err_code); available = ((available > remaining) ? remaining : available); if (0 != available) { err_code = sd_rand_application_vector_get((p_buf + i), available); APP_ERROR_CHECK(err_code); i += available; remaining -= available; } if (0 != remaining) { nrf_delay_us(RNG_BYTE_WAIT_US * remaining); } } } int main(void) { uint32_t err_code; // Initialize. log_init(); timer_init(); uart_init(); buttons_leds_init(); db_discovery_init(); power_management_init(); ble_stack_init(); gatt_init(); nus_c_init(); scan_init(); printf("BLE UART central example started.\r\n"); NRF_LOG_INFO("BLE UART central example started."); scan_start(); ble_gap_addr_t gap_address; err_code = sd_ble_gap_addr_get(&gap_address); APP_ERROR_CHECK(err_code); NRF_LOG_HEXDUMP_INFO(&gap_address.addr,sizeof(gap_address.addr)); uint8_t nonce[16] = {0}; uint8_t m_beacon_info[16]; ctr_init(nonce,m_ecb_key); NRF_LOG_INFO("Encrypted info:"); NRF_LOG_HEXDUMP_INFO(m_beacon_info, sizeof(m_beacon_info)); m_ecb_data.cleartext[0] = 0x00; m_ecb_data.cleartext[1] = 0x00; m_ecb_data.cleartext[2] = 0x00; m_ecb_data.cleartext[3] = 0x00; // Decrypt the ciphertext with the same counter value, i.e. 0x00,0x00,0x00,0x00, that was used for encrypting. ctr_decrypt(m_beacon_info); ctr_decrypt(&m_beacon_info[16]); NRF_LOG_INFO("Decrypted info:"); NRF_LOG_HEXDUMP_INFO(m_beacon_info, sizeof(m_beacon_info)); // Start execution. // Enter main loop. for (;;) { idle_state_handle(); } }
Best regards
Bjørn
Hi Bjorn, would like to know what's the different calling
ctr_encrypt(m_beacon_info);
ctr_encrypt(&m_beacon_info[16]);
we necessary have to do this twice to encrypt ?
Thank you.
Regards,
Kathleen
Hi,
Can you please tell why are you using ctr_decrypt() function twice for the same data in the above code?
ctr_decrypt(m_beacon_info); ctr_decrypt(&m_beacon_info[16]);
And is it necessary to add " case BLE_GAP_EVT_ADV_REPORT: " within