This post is older than 2 years and might not be relevant anymore
More Info: Consider searching for newer posts

UART integration with BLE Thread RTOS example

I am attempting to add a UART to interface to an external MCU. I have the uart example running (without any RTT info) yet when I port the uart code to the ble-thread example I am not getting any data out the TX pin, I am getting data from the RX pin. What am I missing? Is the RTT messing with the transmitting of UART data?

  • I am helping Mike work on this problem. I followed Mike's guidance and created a project that matched his and duplicated the hard fault. But then I wondered if I could debug the "ble_thread_dyn_hrs_coap_freertos" example that Mike is using as his starting point and this project without modification also Hard Faults when I attempt to debug it. So, it appears to have nothing to do with the addition of the UART. At least the Hard Faulting doesn't. 

    I'm looking at the UART code separately, but am confounded that the example cannot be debugged.

  • I tried a couple more multiprotocol examples. Is this related to debugging with the soft device running?

  • I tested the UART code in isolation and it appears to work just fine. I don't see a functional problem with it. 

    Does this have anything to do with this thread:

    https://devzone.nordicsemi.com/f/nordic-q-a/45065/thread-networking-in-nrf52840-dongle

    Which leads to this file:

    https://github.com/openthread/openthread/blob/master/examples/platforms/nrf528xx/nrf52840/platform-config.h

    which is a precompiled part of the Thread stack which may directly interfere with what Mike is attempting here?

    Is UART0 taken always by the Thread stack? Should we then use UART1 and to use UART1, use the Serial driver?

  • matt.heins said:
    Is UART0 taken always by the Thread stack? Should we then use UART1 and to use UART1, use the Serial driver?

     Good catch Matthew. UART0 is reserved  by thread, here is more info on this

  • Hi TawMater,

    I had some conversation with Matthew Adam, Andre Harris from the Nordic US team yesterday.

    I started looking into an email you shared with them few days ago regarding trying to reproduce the URAT issue you have. I managed to reproduce it. And I came pretty close to have a project for you. Even though I see that the TX line is still getting corrupted, I suspect it is a configuration issue now rather than architecture.

    I have made many changes to the hrs_dyn_coap_freertos example-

    1. remote retarget.c file that was causing some confusiong by integrating to _putchar of stdio lib.
    2. implemented an power optimization bug that we found lately when using RTOS and LOGS

      https://devzone.nordicsemi.com/f/nordic-q-a/56898/bus-fault-after-calling-__get_fpscr-in-freertos-configpre_sleep_processing-x

    3. Some bug fixes in the logic of use of nrf_drv_uart_functions that were previously shared to you.

    I will be leaving home for the weekend soon and thought to update you.with my current status of the project.

    I am attaching the local copy of the project.

    hrs_coap_srv_freertos.zip

    /**
     * Copyright (c) 2016 - 2019, Nordic Semiconductor ASA
     *
     * All rights reserved.
     *
     * Redistribution and use in source and binary forms, with or without modification,
     * are permitted provided that the following conditions are met:
     *
     * 1. Redistributions of source code must retain the above copyright notice, this
     *    list of conditions and the following disclaimer.
     *
     * 2. Redistributions in binary form, except as embedded into a Nordic
     *    Semiconductor ASA integrated circuit in a product or a software update for
     *    such product, must reproduce the above copyright notice, this list of
     *    conditions and the following disclaimer in the documentation and/or other
     *    materials provided with the distribution.
     *
     * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
     *    contributors may be used to endorse or promote products derived from this
     *    software without specific prior written permission.
     *
     * 4. This software, with or without modification, must only be used with a
     *    Nordic Semiconductor ASA integrated circuit.
     *
     * 5. Any software provided in binary form under this license must not be reverse
     *    engineered, decompiled, modified and/or disassembled.
     *
     * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
     * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
     * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
     * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
     * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     *
     */
    #include "sdk_common.h"
    #if NRF_MODULE_ENABLED(NRF_LOG)
    #include "app_util.h"
    #include "app_util_platform.h"
    #include "nrf_log.h"
    #include "nrf_log_internal.h"
    #include "nrf_log_ctrl.h"
    #include "nrf_log_backend_interface.h"
    #include "nrf_log_str_formatter.h"
    #include "nrf_section.h"
    #include "nrf_ringbuf.h"
    #include "nrf_memobj.h"
    #include "nrf_atomic.h"
    #include <string.h>
    
    STATIC_ASSERT((NRF_LOG_BUFSIZE % 4) == 0);
    STATIC_ASSERT(IS_POWER_OF_TWO(NRF_LOG_BUFSIZE));
    
    #define NRF_LOG_BUF_WORDS (NRF_LOG_BUFSIZE/4)
    
    #if NRF_MODULE_ENABLED(FDS) && NRF_LOG_FILTERS_ENABLED
    #define LOG_CONFIG_LOAD_STORE_ENABLED 1
    #else
    #define LOG_CONFIG_LOAD_STORE_ENABLED 0
    #endif
    
    #if NRF_LOG_BUF_WORDS < 32
    #warning "NRF_LOG_BUFSIZE too small, significant number of logs may be lost."
    #endif
    
    NRF_MEMOBJ_POOL_DEF(log_mempool, NRF_LOG_MSGPOOL_ELEMENT_SIZE, NRF_LOG_MSGPOOL_ELEMENT_COUNT);
    NRF_RINGBUF_DEF(m_log_push_ringbuf, NRF_LOG_STR_PUSH_BUFFER_SIZE);
    
    #define NRF_LOG_BACKENDS_FULL           0xFF
    #define NRF_LOG_FILTER_BITS_PER_BACKEND 3
    #define NRF_LOG_MAX_BACKENDS           (32/NRF_LOG_FILTER_BITS_PER_BACKEND)
    #define NRF_LOG_MAX_HEXDUMP            (NRF_LOG_MSGPOOL_ELEMENT_SIZE*NRF_LOG_MSGPOOL_ELEMENT_COUNT/2)
    #define NRF_LOG_INVALID_BACKEND_U32    0xFFFFFFFF
    /**
     * brief An internal control block of the logger
     *
     * @note Circular buffer is using never cleared indexes and a mask. It means
     * that logger may break when indexes overflows. However, it is quite unlikely.
     * With rate of 1000 log entries with 2 parameters per second such situation
     * would happen after 12 days.
     */
    typedef struct
    {
        uint32_t                  wr_idx;          // Current write index (never reset)
        uint32_t                  rd_idx;          // Current read index  (never_reset)
        uint32_t                  mask;            // Size of buffer (must be power of 2) presented as mask
        uint32_t                  buffer[NRF_LOG_BUF_WORDS];
        nrf_log_timestamp_func_t  timestamp_func;  // A pointer to function that returns timestamp
        nrf_log_backend_t const * p_backend_head;
        nrf_atomic_flag_t         log_skipping;
        nrf_atomic_flag_t         log_skipped;
        nrf_atomic_u32_t          log_dropped_cnt;
        bool                      autoflush;
    } log_data_t;
    
    static log_data_t   m_log_data;
    
    
    NRF_LOG_MODULE_REGISTER();
    
    // Helper macros for section variables.
    #define NRF_LOG_DYNAMIC_SECTION_VARS_GET(i)        NRF_SECTION_ITEM_GET(log_dynamic_data, nrf_log_module_dynamic_data_t, (i))
    #define NRF_LOG_FILTER_SECTION_VARS_GET(i)         NRF_SECTION_ITEM_GET(log_filter_data, nrf_log_module_filter_data_t, (i))
    
    #define NRF_LOG_CONST_SECTION_VARS_GET(i)          NRF_SECTION_ITEM_GET(log_const_data, nrf_log_module_const_data_t, (i))
    #define NRF_LOG_CONST_SECTION_VARS_COUNT           NRF_SECTION_ITEM_COUNT(log_const_data, nrf_log_module_const_data_t)
    
    ret_code_t nrf_log_init(nrf_log_timestamp_func_t timestamp_func, uint32_t timestamp_freq)
    {
        (void)NRF_LOG_ITEM_DATA_CONST(app);
    
        if (NRF_LOG_USES_TIMESTAMP && (timestamp_func == NULL))
        {
            return NRF_ERROR_INVALID_PARAM;
        }
    
        m_log_data.mask         = NRF_LOG_BUF_WORDS - 1;
        m_log_data.wr_idx       = 0;
        m_log_data.rd_idx       = 0;
        m_log_data.log_skipped  = 0;
        m_log_data.log_skipping = 0;
        m_log_data.autoflush    = NRF_LOG_DEFERRED ? false : true;
        if (NRF_LOG_USES_TIMESTAMP)
        {
            nrf_log_str_formatter_timestamp_freq_set(timestamp_freq);
            m_log_data.timestamp_func = timestamp_func;
        }
    
        ret_code_t err_code = nrf_memobj_pool_init(&log_mempool);
        if (err_code != NRF_SUCCESS)
        {
            return err_code;
        }
    
        nrf_ringbuf_init(&m_log_push_ringbuf);
    
        uint32_t modules_cnt = NRF_LOG_CONST_SECTION_VARS_COUNT;
        uint32_t i;
        if (NRF_LOG_FILTERS_ENABLED)
        {
            uint32_t j;
            //sort modules by name
            for (i = 0; i < modules_cnt; i++)
            {
                uint32_t idx = 0;
    
                for (j = 0; j < modules_cnt; j++)
                {
                    if  (i != j)
                    {
                        char const * p_name0 = NRF_LOG_CONST_SECTION_VARS_GET(i)->p_module_name;
                        char const * p_name1 = NRF_LOG_CONST_SECTION_VARS_GET(j)->p_module_name;
                        if (strncmp(p_name0, p_name1, 20) > 0)
                        {
                            idx++;
                        }
                    }
    
                }
                nrf_log_module_dynamic_data_t * p_module_ddata = NRF_LOG_DYNAMIC_SECTION_VARS_GET(i);
                p_module_ddata->order_idx = idx;
            }
    
            /* Initialize filters */
            for (i = 0; i < modules_cnt; i++)
            {
                nrf_log_module_dynamic_data_t * p_module_ddata = NRF_LOG_DYNAMIC_SECTION_VARS_GET(i);
                nrf_log_module_filter_data_t * p_module_filter = NRF_LOG_FILTER_SECTION_VARS_GET(i);
                p_module_ddata->filter = 0;
                p_module_filter->filter_lvls = 0;
            }
        }
    
        return NRF_SUCCESS;
    }
    
    uint32_t nrf_log_module_cnt_get(void)
    {
        return NRF_LOG_CONST_SECTION_VARS_COUNT;
    }
    
    static ret_code_t module_idx_get(uint32_t * p_idx, bool ordered_idx)
    {
        if (ordered_idx)
        {
            uint32_t module_cnt = nrf_log_module_cnt_get();
            uint32_t i;
            for (i = 0; i < module_cnt; i++)
            {
                nrf_log_module_dynamic_data_t * p_module_data = NRF_LOG_DYNAMIC_SECTION_VARS_GET(i);
                if (p_module_data->order_idx == *p_idx)
                {
                    *p_idx = i;
                    return NRF_SUCCESS;
                }
            }
            return NRF_ERROR_NOT_FOUND;
        }
        else
        {
            return NRF_SUCCESS;
        }
    }
    const char * nrf_log_module_name_get(uint32_t module_id, bool ordered_idx)
    {
        if (module_idx_get(&module_id, ordered_idx) == NRF_SUCCESS)
        {
            nrf_log_module_const_data_t * p_module_data = NRF_LOG_CONST_SECTION_VARS_GET(module_id);
            return p_module_data->p_module_name;
        }
        else
        {
            return NULL;
        }
    }
    
    uint8_t nrf_log_color_id_get(uint32_t module_id, nrf_log_severity_t severity)
    {
        nrf_log_module_const_data_t * p_module_data = NRF_LOG_CONST_SECTION_VARS_GET(module_id);
        uint8_t color_id;
        switch (severity)
        {
        case NRF_LOG_SEVERITY_ERROR:
            color_id = NRF_LOG_ERROR_COLOR;
            break;
        case NRF_LOG_SEVERITY_WARNING:
            color_id = NRF_LOG_WARNING_COLOR;
            break;
        case NRF_LOG_SEVERITY_INFO:
            color_id = p_module_data->info_color_id;
            break;
        case NRF_LOG_SEVERITY_DEBUG:
            color_id = p_module_data->debug_color_id;
            break;
        default:
            color_id = 0;
            break;
        }
        return color_id;
    }
    
    static uint16_t higher_lvl_get(uint32_t lvls)
    {
        uint16_t top_lvl = 0;
        uint16_t tmp_lvl;
        uint32_t i;
    
        //Find highest level enabled by backends
        for (i = 0; i < (32/NRF_LOG_LEVEL_BITS); i+=NRF_LOG_LEVEL_BITS)
        {
            tmp_lvl = (uint16_t)BF_GET(lvls,NRF_LOG_LEVEL_BITS, i);
            if (tmp_lvl > top_lvl)
            {
                top_lvl = tmp_lvl;
            }
        }
        return top_lvl;
    }
    
    void nrf_log_module_filter_set(uint32_t backend_id, uint32_t module_id, nrf_log_severity_t severity)
    {
        if (NRF_LOG_FILTERS_ENABLED)
        {
            nrf_log_module_dynamic_data_t * p_module_data = NRF_LOG_DYNAMIC_SECTION_VARS_GET(module_id);
            nrf_log_module_filter_data_t *  p_filter      = NRF_LOG_FILTER_SECTION_VARS_GET(module_id);
    
            p_filter->filter_lvls &= ~BF_MASK(NRF_LOG_LEVEL_BITS, (NRF_LOG_LEVEL_BITS * backend_id));
            p_filter->filter_lvls |= BF_VAL(severity, NRF_LOG_LEVEL_BITS, (NRF_LOG_LEVEL_BITS * backend_id));
    
            p_module_data->filter = higher_lvl_get(p_filter->filter_lvls);
        }
    }
    
    static nrf_log_severity_t nrf_log_module_init_filter_get(uint32_t module_id)
    {
        nrf_log_module_const_data_t * p_module_data =
                                            NRF_LOG_CONST_SECTION_VARS_GET(module_id);
        return NRF_LOG_FILTERS_ENABLED ? p_module_data->initial_lvl : p_module_data->compiled_lvl;
    }
    
    nrf_log_severity_t nrf_log_module_filter_get(uint32_t backend_id,
                                                 uint32_t module_id,
                                                 bool ordered_idx,
                                                 bool dynamic)
    {
        nrf_log_severity_t severity = NRF_LOG_SEVERITY_NONE;
        if (NRF_LOG_FILTERS_ENABLED && dynamic)
        {
            if (module_idx_get(&module_id, ordered_idx) == NRF_SUCCESS)
            {
                nrf_log_module_filter_data_t * p_filter = NRF_LOG_FILTER_SECTION_VARS_GET(module_id);
                severity = (nrf_log_severity_t)BF_GET(p_filter->filter_lvls,
                                                      NRF_LOG_LEVEL_BITS,
                                                      (backend_id*NRF_LOG_LEVEL_BITS));
            }
        }
        else if (!dynamic)
        {
            if (module_idx_get(&module_id, ordered_idx) == NRF_SUCCESS)
            {
                nrf_log_module_const_data_t * p_module_data =
                                                    NRF_LOG_CONST_SECTION_VARS_GET(module_id);
                severity = (nrf_log_severity_t)p_module_data->compiled_lvl;
            }
        }
        return severity;
    }
    /**
     * Function examines current header and omits packets which are in progress.
     */
    static bool invalid_packets_omit(nrf_log_header_t const * p_header, uint32_t * p_rd_idx)
    {
        bool ret = false;
        if (p_header->base.generic.in_progress == 1)
        {
            switch (p_header->base.generic.type)
            {
            case HEADER_TYPE_STD:
                *p_rd_idx += (HEADER_SIZE + p_header->base.std.nargs);
                break;
            case HEADER_TYPE_HEXDUMP:
                *p_rd_idx += (HEADER_SIZE + p_header->base.hexdump.len);
                break;
            default:
                break;
            }
            ret = true;
        }
        return ret;
    }
    /**
     * @brief Skips the oldest, not processed logs to make space for new logs.
     * @details This function moves forward read index to prepare space for new logs.
     */
    
    static uint32_t log_skip(void)
    {
        uint16_t dropped = 0;
    
        (void)nrf_atomic_flag_set(&m_log_data.log_skipped);
        (void)nrf_atomic_flag_set(&m_log_data.log_skipping);
    
        uint32_t           rd_idx = m_log_data.rd_idx;
        uint32_t           mask   = m_log_data.mask;
        nrf_log_header_t * p_header = (nrf_log_header_t *)&m_log_data.buffer[rd_idx & mask];
        nrf_log_header_t   header;
    
        // Skip packets that may be invalid (interrupted while being in progress)
        do {
            if (invalid_packets_omit(p_header, &rd_idx))
            {
                //something was omitted. Point to new header and try again.
                p_header = (nrf_log_header_t *)&m_log_data.buffer[rd_idx & mask];
            }
            else
            {
                break;
            }
        } while (true);
    
        uint32_t i;
        for (i = 0; i < HEADER_SIZE; i++)
        {
            ((uint32_t*)&header)[i] = m_log_data.buffer[rd_idx++ & mask];
        }
    
        switch (header.base.generic.type)
        {
            case HEADER_TYPE_HEXDUMP:
                dropped = header.dropped;
                rd_idx += CEIL_DIV(header.base.hexdump.len, sizeof(uint32_t));
                break;
            case HEADER_TYPE_STD:
                dropped = header.dropped;
                rd_idx += header.base.std.nargs;
                break;
            default:
                ASSERT(false);
                break;
        }
    
        uint32_t log_skipping_tmp = nrf_atomic_flag_clear_fetch(&m_log_data.log_skipping);
        //update read index only if log_skip was not interrupted by another log skip
        if (log_skipping_tmp)
        {
            m_log_data.rd_idx = rd_idx;
        }
    
        return (uint32_t)dropped;
    }
    
    /**
     * @brief Function for getting number of dropped logs. Dropped counter is reset after reading.
     *
     * @return Number of dropped logs saturated to 16 bits.
     */
    static inline uint32_t dropped_sat16_get(void)
    {
        uint32_t dropped = nrf_atomic_u32_fetch_store(&m_log_data.log_dropped_cnt, 0);
        return __USAT(dropped, 16); //Saturate to 16 bits
    }
    
    
    static inline void std_header_set(uint32_t severity_mid,
                                          char const * const p_str,
                                          uint32_t nargs,
                                          uint32_t wr_idx,
                                          uint32_t mask)
    {
    
    
        //Prepare header - in reverse order to ensure that packet type is validated (set to STD as last action)
        uint32_t module_id = severity_mid >> NRF_LOG_MODULE_ID_POS;
        uint32_t dropped   = dropped_sat16_get();
        ASSERT(module_id < nrf_log_module_cnt_get());
        m_log_data.buffer[(wr_idx + 1) & mask] = module_id | (dropped << 16);
    
        if (NRF_LOG_USES_TIMESTAMP)
        {
            m_log_data.buffer[(wr_idx + 2) & mask] = m_log_data.timestamp_func();
        }
    
        nrf_log_header_t * p_header    = (nrf_log_header_t *)&m_log_data.buffer[wr_idx & mask];
        p_header->base.std.severity    = severity_mid & NRF_LOG_LEVEL_MASK;
        p_header->base.std.nargs       = nargs;
        p_header->base.std.addr        = ((uint32_t)(p_str) & STD_ADDR_MASK);
        p_header->base.std.type        = HEADER_TYPE_STD;
        p_header->base.std.in_progress = 0;
    }
    
    #if NRF_LOG_DEFERRED
    /**
     * When using RTOS, application can overide this function so that it could unblock 
     * the task that is responsible for flushing the logs.
     */
    __WEAK void log_pending_hook( void )
    {
    }
    #endif
    
    /**
     * @brief Allocates chunk in a buffer for one entry and injects overflow if
     * there is no room for requested entry.
     *
     * @param content_len   Number of 32bit arguments. In case of allocating for hex dump it
     *                      is the size of the buffer in 32bit words (ceiled).
     * @param p_wr_idx      Pointer to write index.
     *
     * @return True if successful allocation, false otherwise.
     *
     */
    static inline bool buf_prealloc(uint32_t content_len, uint32_t * p_wr_idx, bool std)
    {
        uint32_t req_len = content_len + HEADER_SIZE;
        bool     ret            = true;
        CRITICAL_REGION_ENTER();
        *p_wr_idx = m_log_data.wr_idx;
        uint32_t available_words = (m_log_data.mask + 1) - (m_log_data.wr_idx - m_log_data.rd_idx);
        while (req_len > available_words)
        {
            UNUSED_RETURN_VALUE(nrf_atomic_u32_add(&m_log_data.log_dropped_cnt, 1));
            if (NRF_LOG_ALLOW_OVERFLOW)
            {
                uint32_t dropped_in_skip = log_skip();
                UNUSED_RETURN_VALUE(nrf_atomic_u32_add(&m_log_data.log_dropped_cnt, dropped_in_skip));
                available_words = (m_log_data.mask + 1) - (m_log_data.wr_idx - m_log_data.rd_idx);
            }
            else
            {
                ret = false;
                break;
            }
        }
    
        if (ret)
        {
            nrf_log_main_header_t invalid_header;
            invalid_header.raw = 0;
    
            if (std)
            {
                invalid_header.std.type        = HEADER_TYPE_STD;
                invalid_header.std.in_progress = 1;
                invalid_header.std.nargs       = content_len;
            }
            else
            {
                invalid_header.hexdump.type = HEADER_TYPE_HEXDUMP;
                invalid_header.hexdump.in_progress = 1;
                invalid_header.hexdump.len = content_len;
            }
    
            nrf_log_main_header_t * p_header =
                       (nrf_log_main_header_t *)&m_log_data.buffer[m_log_data.wr_idx & m_log_data.mask];
    
            p_header->raw = invalid_header.raw;
    
            m_log_data.wr_idx += req_len;
        }
    
        CRITICAL_REGION_EXIT();
    
    #if (NRF_LOG_DEFERRED == 1)
        log_pending_hook();
    #endif
    
        return ret;
    }
    
    char const * nrf_log_push(char * const p_str)
    {
        if ((m_log_data.autoflush) || (p_str == NULL))
        {
            return p_str;
        }
    
        size_t ssize = strlen(p_str) + 1; // + 1 for null termination
        uint8_t * p_dst;
        // Allocate space in the ring buffer. It may be smaller than the requested string in case of buffer wrapping or when the ring buffer size is too small.
        // Once the string is copied into the buffer, the space is immediately freed. The string is kept in the buffer but can be overwritten.
        // It is done that way because there is no other place where space could be freed since string processing happens in
        // the logger backends, often by modules which are generic and not aware of internals of the logger.
        if (nrf_ringbuf_alloc(&m_log_push_ringbuf, &p_dst, &ssize, true) == NRF_SUCCESS)
        {
            ret_code_t err;
    
            memcpy(p_dst, p_str, ssize);
    
            //Terminate in case string was partial.
            p_dst[ssize - 1] = '\0';
    
            err = nrf_ringbuf_put(&m_log_push_ringbuf, ssize);
            ASSERT(err == NRF_SUCCESS);
    
            //Immediately free the space where string was put.
            err = nrf_ringbuf_free(&m_log_push_ringbuf, ssize);
            ASSERT(err == NRF_SUCCESS);
    
            return (char const *)p_dst;
        }
        else
        {
            return NULL;
        }
    }
    
    static inline void std_n(uint32_t           severity_mid,
                             char const * const p_str,
                             uint32_t const *   args,
                             uint32_t           nargs)
    {
        uint32_t mask   = m_log_data.mask;
        uint32_t wr_idx;
    
        if (buf_prealloc(nargs, &wr_idx, true))
        {
            // Proceed only if buffer was successfully preallocated.
    
            uint32_t data_idx = wr_idx + HEADER_SIZE;
            uint32_t i;
            for (i = 0; i < nargs; i++)
            {
                m_log_data.buffer[data_idx++ & mask] =args[i];
            }
            std_header_set(severity_mid, p_str, nargs, wr_idx, mask);
        }
        if (m_log_data.autoflush)
        {
    #if NRF_LOG_NON_DEFFERED_CRITICAL_REGION_ENABLED
            CRITICAL_REGION_ENTER();
    #endif // NRF_LOG_NON_DEFFERED_CRITICAL_REGION_ENABLED
    
            NRF_LOG_FLUSH();
    
    #if NRF_LOG_NON_DEFFERED_CRITICAL_REGION_ENABLED
            CRITICAL_REGION_EXIT();
    #endif // NRF_LOG_NON_DEFFERED_CRITICAL_REGION_ENABLED
        }
    
    }
    
    void nrf_log_frontend_std_0(uint32_t severity_mid, char const * const p_str)
    {
        std_n(severity_mid, p_str, NULL, 0);
    }
    
    
    void nrf_log_frontend_std_1(uint32_t            severity_mid,
                                char const * const p_str,
                                uint32_t           val0)
    {
        uint32_t args[] = {val0};
        std_n(severity_mid, p_str, args,  ARRAY_SIZE(args));
    }
    
    
    void nrf_log_frontend_std_2(uint32_t           severity_mid,
                                char const * const p_str,
                                uint32_t           val0,
                                uint32_t           val1)
    {
        uint32_t args[] = {val0, val1};
        std_n(severity_mid, p_str, args,  ARRAY_SIZE(args));
    }
    
    
    void nrf_log_frontend_std_3(uint32_t           severity_mid,
                                char const * const p_str,
                                uint32_t           val0,
                                uint32_t           val1,
                                uint32_t           val2)
    {
        uint32_t args[] = {val0, val1, val2};
        std_n(severity_mid, p_str, args,  ARRAY_SIZE(args));
    }
    
    
    void nrf_log_frontend_std_4(uint32_t           severity_mid,
                                char const * const p_str,
                                uint32_t           val0,
                                uint32_t           val1,
                                uint32_t           val2,
                                uint32_t           val3)
    {
        uint32_t args[] = {val0, val1, val2, val3};
        std_n(severity_mid, p_str, args,  ARRAY_SIZE(args));
    }
    
    
    void nrf_log_frontend_std_5(uint32_t           severity_mid,
                                char const * const p_str,
                                uint32_t           val0,
                                uint32_t           val1,
                                uint32_t           val2,
                                uint32_t           val3,
                                uint32_t           val4)
    {
        uint32_t args[] = {val0, val1, val2, val3, val4};
        std_n(severity_mid, p_str, args,  ARRAY_SIZE(args));
    }
    
    
    void nrf_log_frontend_std_6(uint32_t           severity_mid,
                                char const * const p_str,
                                uint32_t           val0,
                                uint32_t           val1,
                                uint32_t           val2,
                                uint32_t           val3,
                                uint32_t           val4,
                                uint32_t           val5)
    {
        uint32_t args[] = {val0, val1, val2, val3, val4, val5};
        std_n(severity_mid, p_str, args,  ARRAY_SIZE(args));
    }
    
    
    void nrf_log_frontend_hexdump(uint32_t           severity_mid,
                                  const void * const p_data,
                                  uint16_t           length)
    {
        uint32_t mask   = m_log_data.mask;
    
        uint32_t wr_idx;
        if (buf_prealloc(CEIL_DIV(length, sizeof(uint32_t)), &wr_idx, false))
        {
            uint32_t header_wr_idx = wr_idx;
            wr_idx += HEADER_SIZE;
    
            uint32_t space0 = sizeof(uint32_t) * (m_log_data.mask + 1 - (wr_idx & mask));
            if (length <= space0)
            {
                memcpy(&m_log_data.buffer[wr_idx & mask], p_data, length);
            }
            else
            {
                memcpy(&m_log_data.buffer[wr_idx & mask], p_data, space0);
                memcpy(&m_log_data.buffer[0], &((uint8_t *)p_data)[space0], length - space0);
            }
    
            //Prepare header - in reverse order to ensure that packet type is validated (set to HEXDUMP as last action)
            if (NRF_LOG_USES_TIMESTAMP)
            {
               m_log_data.buffer[(header_wr_idx + 2) & mask] = m_log_data.timestamp_func();
            }
    
            uint32_t module_id = severity_mid >> NRF_LOG_MODULE_ID_POS;
            uint32_t dropped   = dropped_sat16_get();
            m_log_data.buffer[(header_wr_idx + 1) & mask] = module_id | (dropped << 16);
            //Header prepare
            nrf_log_header_t * p_header = (nrf_log_header_t *)&m_log_data.buffer[header_wr_idx & mask];
            p_header->base.hexdump.severity    = severity_mid & NRF_LOG_LEVEL_MASK;
            p_header->base.hexdump.offset      = 0;
            p_header->base.hexdump.len         = length;
            p_header->base.hexdump.type        = HEADER_TYPE_HEXDUMP;
            p_header->base.hexdump.in_progress = 0;
    
    
    
        }
    
        if (m_log_data.autoflush)
        {
    #if NRF_LOG_NON_DEFFERED_CRITICAL_REGION_ENABLED
            CRITICAL_REGION_ENTER();
    #endif // NRF_LOG_NON_DEFFERED_CRITICAL_REGION_ENABLED
    
            NRF_LOG_FLUSH();
    
    #if NRF_LOG_NON_DEFFERED_CRITICAL_REGION_ENABLED
            CRITICAL_REGION_EXIT();
    #endif // NRF_LOG_NON_DEFFERED_CRITICAL_REGION_ENABLED
        }
    }
    
    
    bool buffer_is_empty(void)
    {
        return (m_log_data.rd_idx == m_log_data.wr_idx);
    }
    
    bool nrf_log_frontend_dequeue(void)
    {
    
        if (buffer_is_empty())
        {
            return false;
        }
        m_log_data.log_skipped      = 0;
        //It has to be ensured that reading rd_idx occurs after skipped flag is cleared.
        __DSB();
        uint32_t           rd_idx   = m_log_data.rd_idx;
        uint32_t           mask     = m_log_data.mask;
        nrf_log_header_t * p_header = (nrf_log_header_t *)&m_log_data.buffer[rd_idx & mask];
        nrf_log_header_t   header;
        nrf_memobj_t *     p_msg_buf = NULL;
        size_t             memobj_offset = 0;
        uint32_t           severity = 0;
    
        // Skip any in progress packets.
        do {
            if (invalid_packets_omit(p_header, &rd_idx) && (m_log_data.log_skipped == 0))
            {
                //Check if end of data is not reached.
                if (rd_idx >= m_log_data.wr_idx)
                {
                    m_log_data.rd_idx     = m_log_data.wr_idx;
                    return false;
                }
                //something was omitted. Point to new header and try again.
                p_header = (nrf_log_header_t *)&m_log_data.buffer[rd_idx & mask];
            }
            else
            {
                break;
            }
        } while (true);
    
        uint32_t i;
        for (i = 0; i < HEADER_SIZE; i++)
        {
            ((uint32_t*)&header)[i] = m_log_data.buffer[rd_idx++ & mask];
        }
    
        if (header.base.generic.type == HEADER_TYPE_HEXDUMP)
        {
            uint32_t orig_data_len  = header.base.hexdump.len;
            uint32_t data_len       = MIN(header.base.hexdump.len, NRF_LOG_MAX_HEXDUMP); //limit the data
            header.base.hexdump.len = data_len;
            uint32_t msg_buf_size8  = sizeof(uint32_t)*HEADER_SIZE + data_len;
            severity = header.base.hexdump.severity;
            p_msg_buf = nrf_memobj_alloc(&log_mempool, msg_buf_size8);
    
            if (p_msg_buf)
            {
                nrf_memobj_get(p_msg_buf);
                nrf_memobj_write(p_msg_buf, &header, HEADER_SIZE*sizeof(uint32_t), memobj_offset);
                memobj_offset += HEADER_SIZE*sizeof(uint32_t);
    
                uint32_t space0 = sizeof(uint32_t) * (mask + 1 - (rd_idx & mask));
                if (data_len > space0)
                        {
                    uint8_t * ptr0 = space0 ?
                                     (uint8_t *)&m_log_data.buffer[rd_idx & mask] :
                                     (uint8_t *)&m_log_data.buffer[0];
                    uint8_t   len0 = space0 ? space0 : data_len;
                    uint8_t * ptr1 = space0 ?
                                     (uint8_t *)&m_log_data.buffer[0] : NULL;
                    uint8_t len1 = space0 ? data_len - space0 : 0;
    
                    nrf_memobj_write(p_msg_buf, ptr0, len0, memobj_offset);
                    memobj_offset += len0;
                    if (ptr1)
                    {
                        nrf_memobj_write(p_msg_buf, ptr1, len1, memobj_offset);
                    }
                }
                else
                {
                    uint8_t * p_data = (uint8_t *)&m_log_data.buffer[rd_idx & mask];
                    nrf_memobj_write(p_msg_buf, p_data, data_len, memobj_offset);
                }
                rd_idx += CEIL_DIV(orig_data_len, 4);
            }
        }
        else if (header.base.generic.type == HEADER_TYPE_STD) // standard entry
        {
            header.base.std.nargs = MIN(header.base.std.nargs, NRF_LOG_MAX_NUM_OF_ARGS);
            uint32_t msg_buf_size32 = HEADER_SIZE + header.base.std.nargs;
            severity = header.base.std.severity;
    
            p_msg_buf = nrf_memobj_alloc(&log_mempool, msg_buf_size32*sizeof(uint32_t));
    
            if (p_msg_buf)
            {
                nrf_memobj_get(p_msg_buf);
                nrf_memobj_write(p_msg_buf, &header, HEADER_SIZE*sizeof(uint32_t), memobj_offset);
                memobj_offset += HEADER_SIZE*sizeof(uint32_t);
    
                for (i = 0; i < header.base.std.nargs; i++)
                {
                    nrf_memobj_write(p_msg_buf, &m_log_data.buffer[rd_idx++ & mask],
                                     sizeof(uint32_t), memobj_offset);
                    memobj_offset += sizeof(uint32_t);
                }
            }
        }
        else
        {
            //Do nothing. In case of log overflow buffer can contain corrupted data.
        }
    
        if (p_msg_buf)
        {
            nrf_log_backend_t const * p_backend = m_log_data.p_backend_head;
            if (NRF_LOG_ALLOW_OVERFLOW && m_log_data.log_skipped)
            {
                // Check if any log was skipped during log processing. Do not forward log if skipping 
                // occured because data may be invalid.
                nrf_memobj_put(p_msg_buf);
            }
            else
            {
                while (p_backend)
                {
                    bool entry_accepted = false;
                    if (nrf_log_backend_is_enabled(p_backend) == true)
                    {
                        if (NRF_LOG_FILTERS_ENABLED)
                        {
                            uint8_t backend_id = nrf_log_backend_id_get(p_backend);
                            nrf_log_module_filter_data_t * p_module_filter =
                                                     NRF_LOG_FILTER_SECTION_VARS_GET(header.module_id);
                            uint32_t backend_lvl = BF_GET(p_module_filter->filter_lvls,
                                                          NRF_LOG_LEVEL_BITS,
                                                          (backend_id*NRF_LOG_LEVEL_BITS));
    
                            //Degrade INFO_RAW level to INFO.
                            severity = (severity == NRF_LOG_SEVERITY_INFO_RAW) ?
                                                                     NRF_LOG_SEVERITY_INFO : severity;
                            if (backend_lvl >= severity)
                            {
                                entry_accepted = true;
                            }
                        }
                        else
                        {
                            (void)severity;
                            entry_accepted = true;
                        }
                    }
                    if (entry_accepted)
                    {
                        nrf_log_backend_put(p_backend, p_msg_buf);
                    }
                    p_backend = p_backend->p_cb->p_next;
                }
    
                nrf_memobj_put(p_msg_buf);
    
                if (NRF_LOG_ALLOW_OVERFLOW)
                {
                    // Read index can be moved forward only if dequeueing process was not interrupt by
                    // skipping procedure. If NRF_LOG_ALLOW_OVERFLOW is set then in case of buffer gets full
                    // and new logger entry occurs, oldest entry is removed. In that case read index is
                    // changed and updating it here would corrupt the internal circular buffer.
                    CRITICAL_REGION_ENTER();
                    if (m_log_data.log_skipped == 0)
                    {
                        m_log_data.rd_idx = rd_idx;
                    }
                    CRITICAL_REGION_EXIT();
                }
                else
                {
                    m_log_data.rd_idx = rd_idx;
                }
            }
        }
        else
        {
            //Could not allocate memobj - backends are not freeing them on time.
            nrf_log_backend_t const * p_backend = m_log_data.p_backend_head;
            //Flush all backends
            while (p_backend)
            {
                nrf_log_backend_flush(p_backend);
                p_backend = p_backend->p_cb->p_next;
            }
            NRF_LOG_WARNING("Backends flushed");
        }
    
        return buffer_is_empty() ? false : true;
    }
    
    static int32_t backend_id_assign(void)
    {
        int32_t candidate_id;
        nrf_log_backend_t const * p_backend;
        bool id_available;
        for (candidate_id = 0; candidate_id < NRF_LOG_MAX_BACKENDS; candidate_id++)
        {
            p_backend = m_log_data.p_backend_head;
            id_available = true;
            while (p_backend)
            {
                if (nrf_log_backend_id_get(p_backend) == candidate_id)
                {
                    id_available = false;
                    break;
                }
                p_backend = p_backend->p_cb->p_next;
            }
            if (id_available)
            {
                return candidate_id;
            }
        }
        return -1;
    }
    
    int32_t nrf_log_backend_add(nrf_log_backend_t const * p_backend, nrf_log_severity_t severity)
    {
        int32_t id = backend_id_assign();
        if (id == -1)
        {
            return id;
        }
    
        nrf_log_backend_id_set(p_backend, id);
        //add to list
        if (m_log_data.p_backend_head == NULL)
        {
           m_log_data.p_backend_head   = p_backend;
           p_backend->p_cb->p_next = NULL;
        }
        else
        {
            p_backend->p_cb->p_next = m_log_data.p_backend_head->p_cb->p_next;
            m_log_data.p_backend_head->p_cb->p_next = p_backend;
        }
    
        if (NRF_LOG_FILTERS_ENABLED)
        {
            uint32_t i;
            for (i = 0; i < nrf_log_module_cnt_get(); i++)
            {
                nrf_log_severity_t buildin_lvl = nrf_log_module_init_filter_get(i);
                nrf_log_severity_t actual_severity = MIN(buildin_lvl, severity);
                nrf_log_module_filter_set(nrf_log_backend_id_get(p_backend), i, actual_severity);
            }
        }
    
        return id;
    }
    
    void nrf_log_backend_remove(nrf_log_backend_t const * p_backend)
    {
        nrf_log_backend_t const * p_curr = m_log_data.p_backend_head;
        nrf_log_backend_t const * p_prev = NULL;
        while (p_curr != p_backend)
        {
            p_prev = p_curr;
            p_curr = p_curr->p_cb->p_next;
        }
    
        if (p_prev)
        {
            p_prev->p_cb->p_next = p_backend->p_cb->p_next;
        }
        else
        {
            m_log_data.p_backend_head = NULL;
        }
    
        p_backend->p_cb->id = NRF_LOG_BACKEND_INVALID_ID;
    }
    
    void nrf_log_panic(void)
    {
        nrf_log_backend_t const * p_backend = m_log_data.p_backend_head;
        m_log_data.autoflush = true;
        while (p_backend)
        {
            nrf_log_backend_enable(p_backend);
            nrf_log_backend_panic_set(p_backend);
            p_backend = p_backend->p_cb->p_next;
        }
    }
    
    #if NRF_MODULE_ENABLED(LOG_CONFIG_LOAD_STORE)
    #include "fds.h"
    #define LOG_CONFIG_FILE_ID   0x106E
    #define LOG_CONFIG_RECORD_ID 0x3427
    
    ret_code_t nrf_log_config_store(void)
    {
        fds_record_desc_t desc = {0};
        fds_find_token_t  token = {0};
        fds_record_t      record = {
                .file_id = LOG_CONFIG_FILE_ID,
                .key     = LOG_CONFIG_RECORD_ID,
                .data = {
                        .p_data       = NRF_LOG_FILTER_SECTION_VARS_GET(0),
                        .length_words = NRF_SECTION_LENGTH(log_filter_data)/sizeof(uint32_t)
                }
        };
        ret_code_t ret = fds_record_find(LOG_CONFIG_FILE_ID, LOG_CONFIG_RECORD_ID, &desc, &token);
        if (ret == NRF_SUCCESS)
        {
            ret = fds_record_update(&desc, &record);
            NRF_LOG_INFO("Logger configuration file updated with result:%d", ret);
        }
        else if (ret == FDS_ERR_NOT_FOUND)
        {
            ret = fds_record_write(&desc, &record);
            NRF_LOG_INFO("Logger configuration file written with result:%d", ret);
        }
        else
        {
            ret = NRF_ERROR_INTERNAL;
        }
        return ret;
    }
    
    ret_code_t nrf_log_config_load(void)
    {
        fds_record_desc_t desc = {0};
        fds_find_token_t  token = {0};
    
        ret_code_t ret = fds_record_find(LOG_CONFIG_FILE_ID, LOG_CONFIG_RECORD_ID, &desc, &token);
        if (ret == NRF_SUCCESS)
        {
            fds_flash_record_t record = {0};
            ret = fds_record_open(&desc, &record);
            if (ret == NRF_SUCCESS)
            {
                void * p_dest = (void *)NRF_LOG_FILTER_SECTION_VARS_GET(0);
                uint32_t length   = NRF_SECTION_LENGTH(log_filter_data);
                memcpy(p_dest, record.p_data, length);
                ret = fds_record_close(&desc);
            }
        }
        else if (ret == FDS_ERR_NOT_FOUND)
        {
            NRF_LOG_WARNING("Logger configuration file not found.");
            ret = NRF_ERROR_NOT_FOUND;
        }
        else
        {
            ret = NRF_ERROR_INTERNAL;
        }
    
        return ret;
    }
    #endif //LOG_CONFIG_LOAD_STORE_ENABLED
    
    #if NRF_LOG_CLI_CMDS && NRF_CLI_ENABLED
    #include "nrf_cli.h"
    
    typedef void (*nrf_log_cli_backend_cmd_t)(nrf_cli_t const *         p_cli,
                                              nrf_log_backend_t const * p_backend,
                                              size_t                    argc,
                                              char * *                  argv);
    
    static const char * m_severity_lvls[] = {
            "none",
            "error",
            "warning",
            "info",
            "debug",
    };
    
    static const char * m_severity_lvls_sorted[] = {
            "debug",
            "error",
            "info",
            "none",
            "warning",
    };
    
    /**
     * @brief Function for finding backend instance with given name.
     *
     * @param p_name Name of the backend instance.
     *
     * @return Pointer to the instance or NULL.
     *
     */
    static nrf_log_backend_t const * backend_find(char const * p_name)
    {
        size_t num_of_backends;
        nrf_log_backend_t const * p_backend;
    
        num_of_backends = NRF_SECTION_ITEM_COUNT(NRF_LOG_BACKEND_SECTION_NAME, nrf_log_backend_t);
        for (size_t i = 0; i < num_of_backends; i++)
        {
            p_backend = NRF_SECTION_ITEM_GET(NRF_LOG_BACKEND_SECTION_NAME, nrf_log_backend_t, i);
            if (strcmp(p_name, p_backend->p_name) == 0)
            {
                return p_backend;
            }
        }
        return NULL;
    }
    
    /**
     * @brief Function for executing command on given backend.
     */
    static void nrf_cli_backend_cmd_execute(nrf_cli_t const *         p_cli,
                                            size_t                    argc,
                                            char * *                  argv,
                                            nrf_log_cli_backend_cmd_t func)
    {
        //Based on the structure of backend commands, name of the backend can be found at -1 (log backend <name> command).
        char const * p_backend_name = argv[-1];
    
        nrf_log_backend_t const * p_backend = backend_find(p_backend_name);
    
        if (p_backend)
        {
            func(p_cli, p_backend, argc, argv);
        }
        else
        {
            nrf_cli_fprintf(p_cli, NRF_CLI_ERROR, "Invalid backend: %s\r\n", p_backend_name);
        }
    }
    
    
    static void log_status(nrf_cli_t const *         p_cli,
                           nrf_log_backend_t const * p_backend,
                           size_t                    argc,
                           char * *                  argv)
    {
        UNUSED_PARAMETER(argc);
        UNUSED_PARAMETER(argv);
    
        uint32_t modules_cnt = nrf_log_module_cnt_get();
        uint32_t i;
    
    
        if (!nrf_log_backend_is_enabled(p_backend))
        {
            nrf_cli_fprintf(p_cli, NRF_CLI_ERROR, "Logs are halted!\r\n");
        }
        nrf_cli_fprintf(p_cli, NRF_CLI_NORMAL, "%-40s | current | built-in \r\n", "module_name");
        nrf_cli_fprintf(p_cli, NRF_CLI_NORMAL, "----------------------------------------------------------\r\n");
        for (i = 0; i < modules_cnt; i++)
        {
            uint32_t backend_id = p_backend->p_cb->id;
            nrf_log_severity_t module_dynamic_lvl =
                                  nrf_log_module_filter_get(backend_id, i, true, true);
            nrf_log_severity_t module_compiled_lvl =
                                  nrf_log_module_filter_get(backend_id, i, true, false);
            nrf_log_severity_t actual_compiled_lvl =
                                  MIN(module_compiled_lvl, (nrf_log_severity_t)NRF_LOG_DEFAULT_LEVEL);
    
            nrf_cli_fprintf(p_cli, NRF_CLI_NORMAL, "%-40s | %-7s | %s%s\r\n",
                                      nrf_log_module_name_get(i, true),
                                      m_severity_lvls[module_dynamic_lvl],
                                      m_severity_lvls[actual_compiled_lvl],
                                      actual_compiled_lvl < module_compiled_lvl ? "*" : "");
        }
    }
    
    
    static void log_self_status(nrf_cli_t const * p_cli, size_t argc, char **argv)
    {
        log_status(p_cli, p_cli->p_log_backend, argc, argv);
    }
    
    
    static void log_backend_status(nrf_cli_t const * p_cli, size_t argc, char **argv)
    {
        nrf_cli_backend_cmd_execute(p_cli, argc, argv, log_status);
    }
    
    
    static bool module_id_get(const char * p_name, uint32_t * p_id)
    {
        uint32_t modules_cnt = nrf_log_module_cnt_get();
        const char * p_tmp_name;
        uint32_t j;
        for (j = 0; j < modules_cnt; j++)
        {
            p_tmp_name = nrf_log_module_name_get(j, false);
            if (strncmp(p_tmp_name, p_name, 32) == 0)
            {
                *p_id = j;
                break;
            }
        }
        return (j != modules_cnt);
    }
    
    
    static bool module_id_filter_set(uint32_t backend_id,
                                     uint32_t module_id,
                                     nrf_log_severity_t lvl)
    {
        nrf_log_severity_t buildin_lvl = nrf_log_module_filter_get(backend_id, module_id, false, false);
        if (lvl > buildin_lvl)
        {
            return false;
        }
        else
        {
            nrf_log_module_filter_set(backend_id, module_id, lvl);
            return true;
        }
    }
    
    
    static void log_ctrl(nrf_cli_t const *         p_cli,
                         nrf_log_backend_t const * p_backend,
                         size_t                    argc,
                         char * *                  argv)
    {
        nrf_log_severity_t lvl;
        uint32_t first_m_name_idx;
        uint32_t i;
        bool     all_modules = false;
        uint32_t backend_id = p_backend->p_cb->id;
    
        if (argc >  0)
        {
            if (strncmp(argv[0], "enable", 7) == 0)
            {
                if (argc == 1)
                {
                    nrf_cli_fprintf(p_cli, NRF_CLI_ERROR, "Bad parameter count.\r\n");
                    return;
                }
    
                if (argc == 2)
                {
                    all_modules = true;
                }
    
                for (i = 0; i < ARRAY_SIZE(m_severity_lvls); i++)
                {
                    if (strncmp(argv[1], m_severity_lvls[i], 10) == 0)
                    {
                        break;
                    }
                }
    
                if (i == ARRAY_SIZE(m_severity_lvls))
                {
                    nrf_cli_fprintf(p_cli, NRF_CLI_ERROR, "Unknown severity level: %s\r\n", argv[1]);
                    return;
                }
    
                lvl = (nrf_log_severity_t)i;
                first_m_name_idx = 2;
    
            }
            else if (strncmp(argv[0], "disable", 8) == 0)
            {
                if (argc == 1)
                {
                    all_modules = true;
                }
                lvl = NRF_LOG_SEVERITY_NONE;
                first_m_name_idx = 1;
            }
            else
            {
                nrf_cli_fprintf(p_cli, NRF_CLI_ERROR, "Unknown option: %s\r\n", argv[0]);
                return;
            }
    
            if (all_modules)
            {
                for (i = 0; i < nrf_log_module_cnt_get(); i++)
                {
                    if (module_id_filter_set(backend_id, i, lvl) == false)
                    {
                        nrf_cli_fprintf(p_cli, NRF_CLI_ERROR,
                                        "Level unavailable for module: %s\r\n",
                                        nrf_log_module_name_get(i, false));
                    }
                }
            }
            else
            {
                for (i = first_m_name_idx; i < argc; i++)
                {
                    uint32_t module_id = 0;
                    if (module_id_get(argv[i], &module_id) == false)
                    {
                        nrf_cli_fprintf(p_cli, NRF_CLI_ERROR, "Unknown module:%s\r\n", argv[i]);
                    }
                    else if (module_id_filter_set(backend_id, module_id, lvl) == false)
                    {
                        nrf_cli_fprintf(p_cli, NRF_CLI_ERROR,
                                        "Level unavailable for module: %s\r\n",
                                        nrf_log_module_name_get(module_id, false));
                    }
                    else
                    {
                        /* empty */
                    }
                }
            }
        }
    }
    
    
    static void log_self_ctrl(nrf_cli_t const * p_cli, size_t argc, char **argv)
    {
        log_ctrl(p_cli, p_cli->p_log_backend, argc, argv);
    }
    
    
    static void log_backend_ctrl(nrf_cli_t const * p_cli, size_t argc, char **argv)
    {
        nrf_cli_backend_cmd_execute(p_cli, argc, argv, log_ctrl);
    }
    
    static void module_name_get(size_t idx, nrf_cli_static_entry_t * p_static);
    
    NRF_CLI_CREATE_DYNAMIC_CMD(m_module_name, module_name_get);
    
    static void module_name_get(size_t idx, nrf_cli_static_entry_t * p_static)
    {
        p_static->handler = NULL;
        p_static->p_help  = NULL;
        p_static->p_subcmd = &m_module_name;
        p_static->p_syntax = nrf_log_module_name_get(idx, true);
    }
    
    
    static void severity_lvl_get(size_t idx, nrf_cli_static_entry_t * p_static)
    {
        p_static->handler = NULL;
        p_static->p_help  = NULL;
        p_static->p_subcmd = &m_module_name;
        p_static->p_syntax = (idx < ARRAY_SIZE(m_severity_lvls_sorted)) ?
                                                        m_severity_lvls_sorted[idx] : NULL;
    }
    
    NRF_CLI_CREATE_DYNAMIC_CMD(m_severity_lvl, severity_lvl_get);
    
    
    static void log_halt(nrf_cli_t const *         p_cli,
                         nrf_log_backend_t const * p_backend,
                         size_t                    argc,
                         char * *                  argv)
    {
        UNUSED_PARAMETER(argc);
        UNUSED_PARAMETER(argv);
    
        nrf_log_backend_disable(p_backend);
    }
    
    
    static void log_backend_halt(nrf_cli_t const * p_cli, size_t argc, char **argv)
    {
        nrf_cli_backend_cmd_execute(p_cli, argc, argv, log_halt);
    }
    
    
    static void log_self_halt(nrf_cli_t const * p_cli, size_t argc, char **argv)
    {
        log_halt(p_cli, p_cli->p_log_backend, argc, argv);
    }
    
    
    static void log_go(nrf_cli_t const *         p_cli,
                       nrf_log_backend_t const * p_backend,
                       size_t                    argc,
                       char * *                  argv)
    {
        UNUSED_PARAMETER(argc);
        UNUSED_PARAMETER(argv);
    
        nrf_log_backend_enable(p_backend);
    }
    
    
    static void log_backend_go(nrf_cli_t const * p_cli, size_t argc, char **argv)
    {
        nrf_cli_backend_cmd_execute(p_cli, argc, argv, log_go);
    }
    
    
    static void log_self_go(nrf_cli_t const * p_cli, size_t argc, char **argv)
    {
        log_go(p_cli, p_cli->p_log_backend, argc, argv);
    }
    
    
    static void log_cmd_backends_list(nrf_cli_t const * p_cli, size_t argc, char **argv)
    {
        if (nrf_cli_help_requested(p_cli))
        {
            nrf_cli_help_print(p_cli, NULL, 0);
            return;
        }
        size_t num_of_backends;
    
        num_of_backends = NRF_SECTION_ITEM_COUNT(NRF_LOG_BACKEND_SECTION_NAME, nrf_log_backend_t);
        for (size_t i = 0; i < num_of_backends; i++)
        {
            nrf_log_backend_t const * p_backend =
                               NRF_SECTION_ITEM_GET(NRF_LOG_BACKEND_SECTION_NAME, nrf_log_backend_t, i);
    
            if (p_backend->p_cb->id == NRF_LOG_BACKEND_INVALID_ID)
            {
                nrf_cli_fprintf(p_cli, NRF_CLI_NORMAL,
                                "%s\r\n"
                                "\t- Status: deactivated\r\n\r\n",
                                p_backend->p_name);
            }
            else
            {
                nrf_cli_fprintf(p_cli, NRF_CLI_NORMAL,
                                "%s\r\n"
                                "\t- Status: %s\r\n"
                                "\t- ID: %d\r\n\r\n",
                                p_backend->p_name,
                                p_backend->p_cb->enabled ? "enabled" : "disabled",
                                p_backend->p_cb->id);
            }
        }
    }
    
    
    NRF_CLI_CREATE_STATIC_SUBCMD_SET(m_sub_log_backend)
    {
        NRF_CLI_CMD(disable, &m_module_name,
            "'log disable <module_0> .. <module_n>' disables logs in specified "
            "modules (all if no modules specified).",
            log_backend_ctrl),
        NRF_CLI_CMD(enable, &m_severity_lvl,
            "'log enable <level> <module_0> ...  <module_n>' enables logs up to given level in "
            "specified modules (all if no modules specified).",
            log_backend_ctrl),
        NRF_CLI_CMD(go, NULL, "Resume logging", log_backend_go),
        NRF_CLI_CMD(halt, NULL, "Halt logging", log_backend_halt),
        NRF_CLI_CMD(status, NULL, "Logger status", log_backend_status),
        NRF_CLI_SUBCMD_SET_END
    };
    
    static void backend_name_get(size_t idx, nrf_cli_static_entry_t * p_static)
    {
        p_static->handler = NULL;
        p_static->p_help  = NULL;
        p_static->p_subcmd = &m_sub_log_backend;
        p_static->p_syntax  = NULL;
    
        nrf_log_backend_t const * p_backend;
        size_t                    active_idx = 0;
        uint32_t                  i;
    
        for (i = 0; i < NRF_SECTION_ITEM_COUNT(NRF_LOG_BACKEND_SECTION_NAME, nrf_log_backend_t); i++)
        {
            p_backend = NRF_SECTION_ITEM_GET(NRF_LOG_BACKEND_SECTION_NAME, nrf_log_backend_t, i);
            if (p_backend->p_cb->id != NRF_LOG_BACKEND_INVALID_ID)
            {
                if (idx == active_idx)
                {
                    p_static->p_syntax = p_backend->p_name;
                    break;
                }
                else
                {
                    active_idx++;
                }
            }
        }
    }
    
    NRF_CLI_CREATE_DYNAMIC_CMD(m_backend_name_dynamic, backend_name_get);
    
    static void log_config_load_cmd(nrf_cli_t const * p_cli, size_t argc, char **argv)
    {
        UNUSED_PARAMETER(argc);
        UNUSED_PARAMETER(argv);
    
        if (nrf_cli_help_requested(p_cli))
        {
            nrf_cli_help_print(p_cli, NULL, 0);
            return;
        }
    
    #if LOG_CONFIG_LOAD_STORE_ENABLED
        if (nrf_log_config_load() == NRF_SUCCESS)
        {
            nrf_cli_fprintf(p_cli, NRF_CLI_NORMAL, "Configuration loaded.\r\n");
        }
        else
        {
            nrf_cli_fprintf(p_cli, NRF_CLI_ERROR, "Failed to load the configuration.\r\n");
        }
    #else
        nrf_cli_fprintf(p_cli, NRF_CLI_ERROR, "Not supported.\r\n");
    #endif
    }
    
    static void log_config_store_cmd(nrf_cli_t const * p_cli, size_t argc, char **argv)
    {
        UNUSED_PARAMETER(argc);
        UNUSED_PARAMETER(argv);
    
        if (nrf_cli_help_requested(p_cli))
        {
            nrf_cli_help_print(p_cli, NULL, 0);
            return;
        }
    
    #if LOG_CONFIG_LOAD_STORE_ENABLED
        if (nrf_log_config_store() == NRF_SUCCESS)
        {
            nrf_cli_fprintf(p_cli, NRF_CLI_NORMAL, "Configuration stored.\r\n");
        }
        else
        {
            nrf_cli_fprintf(p_cli, NRF_CLI_ERROR, "Failed to store the configuration.\r\n");
        }
    #else
        nrf_cli_fprintf(p_cli, NRF_CLI_ERROR, "Not supported.\r\n");
    #endif
    }
    
    NRF_CLI_CREATE_STATIC_SUBCMD_SET(m_sub_log_config)
    {
        NRF_CLI_CMD(load, NULL, "Load configuration stored in non-volatile memory.", log_config_load_cmd),
        NRF_CLI_CMD(store, NULL, "Store current configuration in non-volatile memory.", log_config_store_cmd),
        NRF_CLI_SUBCMD_SET_END
    };
    
    NRF_CLI_CREATE_STATIC_SUBCMD_SET(m_sub_log_stat)
    {
        NRF_CLI_CMD(backend, &m_backend_name_dynamic, "Logger backends commands.", NULL),
        NRF_CLI_CMD(config, &m_sub_log_config, "Manage logger configuration", NULL),
        NRF_CLI_CMD(disable, &m_module_name,
            "'log disable <module_0> .. <module_n>' disables logs in specified "
            "modules (all if no modules specified).",
            log_self_ctrl),
        NRF_CLI_CMD(enable, &m_severity_lvl,
            "'log enable <level> <module_0> ...  <module_n>' enables logs up to given level in "
            "specified modules (all if no modules specified).",
            log_self_ctrl),
        NRF_CLI_CMD(go, NULL, "Resume logging", log_self_go),
        NRF_CLI_CMD(halt, NULL, "Halt logging", log_self_halt),
        NRF_CLI_CMD(list_backends, NULL, "Lists logger backends.", log_cmd_backends_list),
        NRF_CLI_CMD(status, NULL, "Logger status", log_self_status),
        NRF_CLI_SUBCMD_SET_END
    };
    
    static void log_cmd(nrf_cli_t const * p_cli, size_t argc, char **argv)
    {
        if ((argc == 1) || nrf_cli_help_requested(p_cli))
        {
            nrf_cli_help_print(p_cli, NULL, 0);
            return;
        }
    
        nrf_cli_fprintf(p_cli, NRF_CLI_ERROR, "%s:%s%s\r\n", argv[0], " unknown parameter: ", argv[1]);
    }
    
    NRF_CLI_CMD_REGISTER(log, &m_sub_log_stat, "Commands for controlling logger", log_cmd);
    
    #endif //NRF_LOG_CLI_CMDS
    
    #endif // NRF_MODULE_ENABLED(NRF_LOG)
    

    You need to replace nrf_log_frontend.c in your project with the one i attached.

    I have modified the app that it sends all the received bytes to TX when it receives '\r'. 

    I am quite confident that I will fix the corrupt TX problem on Monday. Just letting you know the status so that you do not loose hope. We are pretty close to fixing this..

Related