This post is older than 2 years and might not be relevant anymore
More Info: Consider searching for newer posts

Reduce power consumption on nRF51822

Hi all,

I am using the nRF51822 and attach you can find the

/* Copyright (c) 2014 Nordic Semiconductor. All Rights Reserved.
 *
 * The information contained herein is property of Nordic Semiconductor ASA.
 * Terms and conditions of usage are described in detail in NORDIC
 * SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT.
 *
 * Licensees are granted free, non-transferable use of the information. NO
 * WARRANTY of ANY KIND is provided. This heading must NOT be removed from
 * the file.
 *
 */

/** 
 * ble_app_uart example with interrupt driven ADC functionality
 */

#include <stdint.h>
#include <string.h>
#include "nordic_common.h"
#include "nrf.h"
#include "ble_hci.h"
#include "ble_advdata.h"
#include "ble_advertising.h"
#include "ble_conn_params.h"
#include "softdevice_handler.h"
#include "app_timer.h"
#include "app_button.h"
#include "ble_nus.h"
#include "app_uart.h"
#include "app_util_platform.h"
#include "bsp.h"
#include "bsp_btn_ble.h"
#include "nrf_drv_adc.h"
#include "nrf_drv_ppi.h"
#include "nrf_drv_timer.h"

#define IS_SRVC_CHANGED_CHARACT_PRESENT 0                                           /**< Include the service_changed characteristic. If not enabled, the server's database cannot be changed for the lifetime of the device. */

#if (NRF_SD_BLE_API_VERSION == 3)
#define NRF_BLE_MAX_MTU_SIZE            GATT_MTU_SIZE_DEFAULT                       /**< MTU size used in the softdevice enabling and to reply to a BLE_GATTS_EVT_EXCHANGE_MTU_REQUEST event. */
#endif

#define APP_FEATURE_NOT_SUPPORTED       BLE_GATT_STATUS_ATTERR_APP_BEGIN + 2        /**< Reply when unsupported features are requested. */

#define CENTRAL_LINK_COUNT              0                                           /**< Number of central links used by the application. When changing this number remember to adjust the RAM settings*/
#define PERIPHERAL_LINK_COUNT           1                                           /**< Number of peripheral links used by the application. When changing this number remember to adjust the RAM settings*/

#define DEVICE_NAME                     "Step_Charge"                               /**< Name of device. Will be included in the advertising data. */
#define NUS_SERVICE_UUID_TYPE           BLE_UUID_TYPE_VENDOR_BEGIN                  /**< UUID type for the Nordic UART Service (vendor specific). */

#define APP_ADV_INTERVAL                64                                          /**< The advertising interval (in units of 0.625 ms. This value corresponds to 40 ms). */
#define APP_ADV_TIMEOUT_IN_SECONDS      180                                         /**< The advertising timeout (in units of seconds). */

#define APP_TIMER_PRESCALER             0                                           /**< Value of the RTC1 PRESCALER register. */
#define APP_TIMER_OP_QUEUE_SIZE         4                                           /**< Size of timer operation queues. */

#define MIN_CONN_INTERVAL               MSEC_TO_UNITS(20, UNIT_1_25_MS)             /**< Minimum acceptable connection interval (20 ms), Connection interval uses 1.25 ms units. */
#define MAX_CONN_INTERVAL               MSEC_TO_UNITS(75, UNIT_1_25_MS)             /**< Maximum acceptable connection interval (75 ms), Connection interval uses 1.25 ms units. */
#define SLAVE_LATENCY                   0                                           /**< Slave latency. */
#define CONN_SUP_TIMEOUT                MSEC_TO_UNITS(4000, UNIT_10_MS)             /**< Connection supervisory timeout (4 seconds), Supervision Timeout uses 10 ms units. */
#define FIRST_CONN_PARAMS_UPDATE_DELAY  APP_TIMER_TICKS(5000, APP_TIMER_PRESCALER)  /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */
#define NEXT_CONN_PARAMS_UPDATE_DELAY   APP_TIMER_TICKS(30000, APP_TIMER_PRESCALER) /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */
#define MAX_CONN_PARAMS_UPDATE_COUNT    3                                           /**< Number of attempts before giving up the connection parameter negotiation. */

#define DEAD_BEEF                       0xDEADBEEF                                  /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */

#define UART_TX_BUF_SIZE                512                                         /**< UART TX buffer size. */
#define UART_RX_BUF_SIZE                64                                          /**< UART RX buffer size. */
/*#define ADC_BUFFER_SIZE 6                                                           //Size of buffer for ADC samples. Buffer size should be multiple of number of adc channels located.*/
#define ADC_BUFFER_SIZE 8                                                           //Size of buffer for ADC samples. Buffer size should be multiple of number of adc channels located.
#define ADC_SAMPLE_RATE     		    1000                                        //ADC sampling frequencyng frequency in ms

static nrf_adc_value_t                  adc_buffer[ADC_BUFFER_SIZE];                /**< ADC buffer. */
static nrf_ppi_channel_t                m_ppi_channel;
static const nrf_drv_timer_t            m_timer = NRF_DRV_TIMER_INSTANCE(2);
static uint8_t                          adc_event_counter = 0;
static uint32_t                         number_of_adc_channels;

static ble_nus_t                        m_nus;                                      /**< Structure to identify the Nordic UART Service. */
static uint16_t                         m_conn_handle = BLE_CONN_HANDLE_INVALID;    /**< Handle of the current connection. */

static ble_uuid_t                       m_adv_uuids[] = {{BLE_UUID_NUS_SERVICE, NUS_SERVICE_UUID_TYPE}};  /**< Universally unique service identifier. */


/**@brief Function for assert macro callback.
 *
 * @details This function will be called in case of an assert in the SoftDevice.
 *
 * @warning This handler is an example only and does not fit a final product. You need to analyse
 *          how your product is supposed to react in case of Assert.
 * @warning On assert from the SoftDevice, the system can only recover on reset.
 *
 * @param[in] line_num    Line number of the failing ASSERT call.
 * @param[in] p_file_name File name of the failing ASSERT call.
 */
void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name)
{
    app_error_handler(DEAD_BEEF, line_num, p_file_name);
}


/**@brief Function for the GAP initialization.
 *
 * @details This function will set up all the necessary GAP (Generic Access Profile) parameters of
 *          the device. It also sets the permissions and appearance.
 */
static void gap_params_init(void)
{
    uint32_t                err_code;
    ble_gap_conn_params_t   gap_conn_params;
    ble_gap_conn_sec_mode_t sec_mode;

    BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode);

    err_code = sd_ble_gap_device_name_set(&sec_mode,
                                          (const uint8_t *) DEVICE_NAME,
                                          strlen(DEVICE_NAME));
    APP_ERROR_CHECK(err_code);

    memset(&gap_conn_params, 0, sizeof(gap_conn_params));

    gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL;
    gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL;
    gap_conn_params.slave_latency     = SLAVE_LATENCY;
    gap_conn_params.conn_sup_timeout  = CONN_SUP_TIMEOUT;

    err_code = sd_ble_gap_ppcp_set(&gap_conn_params);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling the data from the Nordic UART Service.
 *
 * @details This function will process the data received from the Nordic UART BLE Service and send
 *          it to the UART module.
 *
 * @param[in] p_nus    Nordic UART Service structure.
 * @param[in] p_data   Data to be send to UART module.
 * @param[in] length   Length of the data.
 */
/**@snippet [Handling the data received over BLE] */


static void nus_data_handler(ble_nus_t * p_nus, uint8_t * p_data, uint16_t length)
{
    for (uint32_t i = 0; i < length; i++)
    {
        while (app_uart_put(p_data[i]) != NRF_SUCCESS);
    }
    while (app_uart_put('\r') != NRF_SUCCESS);
    while (app_uart_put('\n') != NRF_SUCCESS);
}

/**@snippet [Handling the data received over BLE] */


/**@brief Function for initializing services that will be used by the application.
 */
static void services_init(void)
{
    uint32_t       err_code;
    ble_nus_init_t nus_init;

    memset(&nus_init, 0, sizeof(nus_init));

    nus_init.data_handler = nus_data_handler;

    err_code = ble_nus_init(&m_nus, &nus_init);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling an event from the Connection Parameters Module.
 *
 * @details This function will be called for all events in the Connection Parameters Module
 *          which are passed to the application.
 *
 * @note All this function does is to disconnect. This could have been done by simply setting
 *       the disconnect_on_fail config parameter, but instead we use the event handler
 *       mechanism to demonstrate its use.
 *
 * @param[in] p_evt  Event received from the Connection Parameters Module.
 */
static void on_conn_params_evt(ble_conn_params_evt_t * p_evt)
{
    uint32_t err_code;

    if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED)
    {
        err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE);
        APP_ERROR_CHECK(err_code);
    }
}


/**@brief Function for handling errors from the Connection Parameters module.
 *
 * @param[in] nrf_error  Error code containing information about what went wrong.
 */
static void conn_params_error_handler(uint32_t nrf_error)
{
    APP_ERROR_HANDLER(nrf_error);
}


/**@brief Function for initializing the Connection Parameters module.
 */
static void conn_params_init(void)
{
    uint32_t               err_code;
    ble_conn_params_init_t cp_init;

    memset(&cp_init, 0, sizeof(cp_init));

    cp_init.p_conn_params                  = NULL;
    cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY;
    cp_init.next_conn_params_update_delay  = NEXT_CONN_PARAMS_UPDATE_DELAY;
    cp_init.max_conn_params_update_count   = MAX_CONN_PARAMS_UPDATE_COUNT;
    cp_init.start_on_notify_cccd_handle    = BLE_GATT_HANDLE_INVALID;
    cp_init.disconnect_on_fail             = false;
    cp_init.evt_handler                    = on_conn_params_evt;
    cp_init.error_handler                  = conn_params_error_handler;

    err_code = ble_conn_params_init(&cp_init);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for putting the chip into sleep mode.
 *
 * @note This function will not return.
 */
static void sleep_mode_enter(void)
{
    uint32_t err_code = bsp_indication_set(BSP_INDICATE_IDLE);
    APP_ERROR_CHECK(err_code);

    // Prepare wakeup buttons.
    err_code = bsp_btn_ble_sleep_mode_prepare();
    APP_ERROR_CHECK(err_code);

    // Go to system-off mode (this function will not return; wakeup will cause a reset).
    err_code = sd_power_system_off();
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling advertising events.
 *
 * @details This function will be called for advertising events which are passed to the application.
 *
 * @param[in] ble_adv_evt  Advertising event.
 */
static void on_adv_evt(ble_adv_evt_t ble_adv_evt)
{
    uint32_t err_code;

    switch (ble_adv_evt)
    {
        case BLE_ADV_EVT_FAST:
            err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING);
            APP_ERROR_CHECK(err_code);
            break;
        case BLE_ADV_EVT_IDLE:
            sleep_mode_enter();
            break;
        default:
            break;
    }
}


/**@brief Function for the application's SoftDevice event handler.
 *
 * @param[in] p_ble_evt SoftDevice event.
 */
static void on_ble_evt(ble_evt_t * p_ble_evt)
{
    uint32_t err_code;

    switch (p_ble_evt->header.evt_id)
    {
        case BLE_GAP_EVT_CONNECTED:
            err_code = bsp_indication_set(BSP_INDICATE_CONNECTED);
            APP_ERROR_CHECK(err_code);
            m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle;
            break; // BLE_GAP_EVT_CONNECTED

        case BLE_GAP_EVT_DISCONNECTED:
            err_code = bsp_indication_set(BSP_INDICATE_IDLE);
            APP_ERROR_CHECK(err_code);
            m_conn_handle = BLE_CONN_HANDLE_INVALID;
            break; // BLE_GAP_EVT_DISCONNECTED

        case BLE_GAP_EVT_SEC_PARAMS_REQUEST:
            // Pairing not supported
            err_code = sd_ble_gap_sec_params_reply(m_conn_handle, BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL);
            APP_ERROR_CHECK(err_code);
            break; // BLE_GAP_EVT_SEC_PARAMS_REQUEST

        case BLE_GATTS_EVT_SYS_ATTR_MISSING:
            // No system attributes have been stored.
            err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0, 0);
            APP_ERROR_CHECK(err_code);
            break; // BLE_GATTS_EVT_SYS_ATTR_MISSING

        case BLE_GATTC_EVT_TIMEOUT:
            // Disconnect on GATT Client timeout event.
            err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle,
                                             BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
            APP_ERROR_CHECK(err_code);
            break; // BLE_GATTC_EVT_TIMEOUT

        case BLE_GATTS_EVT_TIMEOUT:
            // Disconnect on GATT Server timeout event.
            err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle,
                                             BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
            APP_ERROR_CHECK(err_code);
            break; // BLE_GATTS_EVT_TIMEOUT

        case BLE_EVT_USER_MEM_REQUEST:
            err_code = sd_ble_user_mem_reply(p_ble_evt->evt.gattc_evt.conn_handle, NULL);
            APP_ERROR_CHECK(err_code);
            break; // BLE_EVT_USER_MEM_REQUEST

        case BLE_GATTS_EVT_RW_AUTHORIZE_REQUEST:
        {
            ble_gatts_evt_rw_authorize_request_t  req;
            ble_gatts_rw_authorize_reply_params_t auth_reply;

            req = p_ble_evt->evt.gatts_evt.params.authorize_request;

            if (req.type != BLE_GATTS_AUTHORIZE_TYPE_INVALID)
            {
                if ((req.request.write.op == BLE_GATTS_OP_PREP_WRITE_REQ)     ||
                    (req.request.write.op == BLE_GATTS_OP_EXEC_WRITE_REQ_NOW) ||
                    (req.request.write.op == BLE_GATTS_OP_EXEC_WRITE_REQ_CANCEL))
                {
                    if (req.type == BLE_GATTS_AUTHORIZE_TYPE_WRITE)
                    {
                        auth_reply.type = BLE_GATTS_AUTHORIZE_TYPE_WRITE;
                    }
                    else
                    {
                        auth_reply.type = BLE_GATTS_AUTHORIZE_TYPE_READ;
                    }
                    auth_reply.params.write.gatt_status = APP_FEATURE_NOT_SUPPORTED;
                    err_code = sd_ble_gatts_rw_authorize_reply(p_ble_evt->evt.gatts_evt.conn_handle,
                                                               &auth_reply);
                    APP_ERROR_CHECK(err_code);
                }
            }
        } break; // BLE_GATTS_EVT_RW_AUTHORIZE_REQUEST

#if (NRF_SD_BLE_API_VERSION == 3)
        case BLE_GATTS_EVT_EXCHANGE_MTU_REQUEST:
            err_code = sd_ble_gatts_exchange_mtu_reply(p_ble_evt->evt.gatts_evt.conn_handle,
                                                       NRF_BLE_MAX_MTU_SIZE);
            APP_ERROR_CHECK(err_code);
            break; // BLE_GATTS_EVT_EXCHANGE_MTU_REQUEST
#endif

        default:
            // No implementation needed.
            break;
    }
}


/**@brief Function for dispatching a SoftDevice event to all modules with a SoftDevice
 *        event handler.
 *
 * @details This function is called from the SoftDevice event interrupt handler after a
 *          SoftDevice event has been received.
 *
 * @param[in] p_ble_evt  SoftDevice event.
 */
static void ble_evt_dispatch(ble_evt_t * p_ble_evt)
{
    ble_conn_params_on_ble_evt(p_ble_evt);
    ble_nus_on_ble_evt(&m_nus, p_ble_evt);
    on_ble_evt(p_ble_evt);
    ble_advertising_on_ble_evt(p_ble_evt);
    bsp_btn_ble_on_ble_evt(p_ble_evt);

}


/**@brief Function for the SoftDevice initialization.
 *
 * @details This function initializes the SoftDevice and the BLE event interrupt.
 */
static void ble_stack_init(void)
{
    uint32_t err_code;

    nrf_clock_lf_cfg_t clock_lf_cfg = NRF_CLOCK_LFCLKSRC;

    // Initialize SoftDevice.
    SOFTDEVICE_HANDLER_INIT(&clock_lf_cfg, NULL);

    ble_enable_params_t ble_enable_params;
    err_code = softdevice_enable_get_default_config(CENTRAL_LINK_COUNT,
                                                    PERIPHERAL_LINK_COUNT,
                                                    &ble_enable_params);
    APP_ERROR_CHECK(err_code);

    //Check the ram settings against the used number of links
    CHECK_RAM_START_ADDR(CENTRAL_LINK_COUNT,PERIPHERAL_LINK_COUNT);

    // Enable BLE stack.
#if (NRF_SD_BLE_API_VERSION == 3)
    ble_enable_params.gatt_enable_params.att_mtu = NRF_BLE_MAX_MTU_SIZE;
#endif
    err_code = softdevice_enable(&ble_enable_params);
    APP_ERROR_CHECK(err_code);

    // Subscribe for BLE events.
    err_code = softdevice_ble_evt_handler_set(ble_evt_dispatch);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling events from the BSP module.
 *
 * @param[in]   event   Event generated by button press.
 */
void bsp_event_handler(bsp_event_t event)
{
    uint32_t err_code;
    switch (event)
    {
        case BSP_EVENT_SLEEP:
            sleep_mode_enter();
            break;

        case BSP_EVENT_DISCONNECT:
            err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
            if (err_code != NRF_ERROR_INVALID_STATE)
            {
                APP_ERROR_CHECK(err_code);
            }
            break;

        case BSP_EVENT_WHITELIST_OFF:
            if (m_conn_handle == BLE_CONN_HANDLE_INVALID)
            {
                err_code = ble_advertising_restart_without_whitelist();
                if (err_code != NRF_ERROR_INVALID_STATE)
                {
                    APP_ERROR_CHECK(err_code);
                }
            }
            break;

        default:
            break;
    }
}


/**@brief   Function for handling app_uart events.
 *
 * @details This function will receive a single character from the app_uart module and append it to
 *          a string. The string will be be sent over BLE when the last character received was a
 *          'new line' i.e '\r\n' (hex 0x0D) or if the string has reached a length of
 *          @ref NUS_MAX_DATA_LENGTH.
 */
/**@snippet [Handling the data received over UART] */

void uart_event_handle(app_uart_evt_t * p_event)
{
    static uint8_t data_array[BLE_NUS_MAX_DATA_LEN];
    static uint8_t index = 0;
    uint32_t       err_code;

    switch (p_event->evt_type)
    {
        case APP_UART_DATA_READY:
            UNUSED_VARIABLE(app_uart_get(&data_array[index]));
            index++;

            if ((data_array[index - 1] == '\n') || (index >= (BLE_NUS_MAX_DATA_LEN)))
            {
                err_code = ble_nus_string_send(&m_nus, data_array, index);
                if (err_code != NRF_ERROR_INVALID_STATE)
                {
                    APP_ERROR_CHECK(err_code);
                }

                index = 0;
            }
            break;

        case APP_UART_COMMUNICATION_ERROR:
            APP_ERROR_HANDLER(p_event->data.error_communication);
            break;

        case APP_UART_FIFO_ERROR:
            APP_ERROR_HANDLER(p_event->data.error_code);
            break;

        default:
            break;
    }
}

/**@snippet [Handling the data received over UART] */


/**@brief  Function for initializing the UART module.
 */
/**@snippet [UART Initialization] */

static void uart_init(void)
{
    uint32_t                     err_code;
    const app_uart_comm_params_t comm_params =
    {
        RX_PIN_NUMBER,
        TX_PIN_NUMBER,
        RTS_PIN_NUMBER,
        CTS_PIN_NUMBER,
        APP_UART_FLOW_CONTROL_DISABLED,
        false,
        UART_BAUDRATE_BAUDRATE_Baud115200
    };

    APP_UART_FIFO_INIT( &comm_params,
                       UART_RX_BUF_SIZE,
                       UART_TX_BUF_SIZE,
                       uart_event_handle,
                       APP_IRQ_PRIORITY_LOWEST,
                       err_code);
    APP_ERROR_CHECK(err_code);
}

/**@snippet [UART Initialization] */


/**@brief Function for initializing the Advertising functionality.
 */
static void advertising_init(void)
{
    uint32_t               err_code;
    ble_advdata_t          advdata;
    ble_advdata_t          scanrsp;
    ble_adv_modes_config_t options;

    // Build advertising data struct to pass into @ref ble_advertising_init.
    memset(&advdata, 0, sizeof(advdata));
    advdata.name_type          = BLE_ADVDATA_FULL_NAME;
    advdata.include_appearance = false;
    advdata.flags              = BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE;

    memset(&scanrsp, 0, sizeof(scanrsp));
    scanrsp.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]);
    scanrsp.uuids_complete.p_uuids  = m_adv_uuids;

    memset(&options, 0, sizeof(options));
    options.ble_adv_fast_enabled  = true;
    options.ble_adv_fast_interval = APP_ADV_INTERVAL;
    options.ble_adv_fast_timeout  = APP_ADV_TIMEOUT_IN_SECONDS;

    err_code = ble_advertising_init(&advdata, &scanrsp, &options, on_adv_evt, NULL);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for initializing buttons and leds.
 *
 * @param[out] p_erase_bonds  Will be true if the clear bonding button was pressed to wake the application up.
 */


static void buttons_leds_init(bool * p_erase_bonds)
{
    bsp_event_t startup_event;

    uint32_t err_code = bsp_init(BSP_INIT_LED | BSP_INIT_BUTTONS,
                                 APP_TIMER_TICKS(100, APP_TIMER_PRESCALER),
                                 bsp_event_handler);
    APP_ERROR_CHECK(err_code);

    err_code = bsp_btn_ble_init(NULL, &startup_event);
    APP_ERROR_CHECK(err_code);

    *p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA);
}


/**@brief Function for placing the application in low power state while waiting for events.
 */
static void power_manage(void)
{
    uint32_t err_code = sd_app_evt_wait();
    APP_ERROR_CHECK(err_code);
}

/**
 * @brief ADC interrupt handler.
 * Prints ADC results on hardware UART and over BLE via the NUS service.
 */
static void adc_event_handler(nrf_drv_adc_evt_t const * p_event)
{
    uint8_t adc_result[ADC_BUFFER_SIZE*2];
		
	
    if (p_event->type == NRF_DRV_ADC_EVT_DONE)
    {
			
        adc_event_counter++;
        printf("  adc event counter: %d\r\n", adc_event_counter);
        for (uint32_t i = 0; i < p_event->data.done.size; i++)
        {
            printf("ADC value channel %d: %d\r\n", (int)(i % number_of_adc_channels), p_event->data.done.p_buffer[i]);
            adc_result[(i*2)] = p_event->data.done.p_buffer[i] >> 8;
            adc_result[(i*2)+1] = p_event->data.done.p_buffer[i];
        }
			
        /*if(ADC_BUFFER_SIZE <= 10)*/
				if(ADC_BUFFER_SIZE <= 10)
        {
						/*ble_nus_string_send(&m_nus, &adc_result[0], ADC_BUFFER_SIZE*2);*/
						
            ble_nus_string_send(&m_nus, &adc_result[0], ADC_BUFFER_SIZE*2);
					  
        }	
        APP_ERROR_CHECK(nrf_drv_adc_buffer_convert(adc_buffer,ADC_BUFFER_SIZE));
        LEDS_INVERT(BSP_LED_3_MASK);
    }
}

/**
 * @brief TIMER interrupt handler.
 */
void timer_handler(nrf_timer_event_t event_type, void* p_context)
{
}

void adc_sampling_event_enable(void)
{
    ret_code_t err_code = nrf_drv_ppi_channel_enable(m_ppi_channel);
    APP_ERROR_CHECK(err_code);
}

/**
 * @brief ADC initialization.
 */
static void adc_config(void)
{
    ret_code_t ret_code;
	
    //Initialize ADC
    nrf_drv_adc_config_t config = NRF_DRV_ADC_DEFAULT_CONFIG;
    ret_code = nrf_drv_adc_init(&config, adc_event_handler);
    APP_ERROR_CHECK(ret_code);
	
    //Configure and enable ADC channel 0
    static nrf_drv_adc_channel_t m_channel_0_config = NRF_DRV_ADC_DEFAULT_CHANNEL(NRF_ADC_CONFIG_INPUT_0); 
    m_channel_0_config.config.config.input = NRF_ADC_CONFIG_SCALING_INPUT_FULL_SCALE;
    nrf_drv_adc_channel_enable(&m_channel_0_config);
	
    //Configure and enable ADC channel 1
    static nrf_drv_adc_channel_t m_channel_1_config = NRF_DRV_ADC_DEFAULT_CHANNEL(NRF_ADC_CONFIG_INPUT_1); 
    m_channel_1_config.config.config.input = NRF_ADC_CONFIG_SCALING_INPUT_FULL_SCALE;
    nrf_drv_adc_channel_enable(&m_channel_1_config);
	
    //Configure and enable ADC channel 2
    static nrf_drv_adc_channel_t m_channel_2_config = NRF_DRV_ADC_DEFAULT_CHANNEL(NRF_ADC_CONFIG_INPUT_2);	
    m_channel_2_config.config.config.input = NRF_ADC_CONFIG_SCALING_INPUT_FULL_SCALE;
    nrf_drv_adc_channel_enable(&m_channel_2_config);
		
		//Configure and enable ADC channel 3
    static nrf_drv_adc_channel_t m_channel_3_config = NRF_DRV_ADC_DEFAULT_CHANNEL(NRF_ADC_CONFIG_INPUT_3);	
    m_channel_3_config.config.config.input = NRF_ADC_CONFIG_SCALING_INPUT_FULL_SCALE;
    nrf_drv_adc_channel_enable(&m_channel_3_config);
		
		//Configure and enable ADC channel 4
    static nrf_drv_adc_channel_t m_channel_4_config = NRF_DRV_ADC_DEFAULT_CHANNEL(NRF_ADC_CONFIG_INPUT_4);	
    m_channel_4_config.config.config.input = NRF_ADC_CONFIG_SCALING_INPUT_FULL_SCALE;
    nrf_drv_adc_channel_enable(&m_channel_4_config);
		
		//Configure and enable ADC channel 5
    static nrf_drv_adc_channel_t m_channel_5_config = NRF_DRV_ADC_DEFAULT_CHANNEL(NRF_ADC_CONFIG_INPUT_5);	
    m_channel_5_config.config.config.input = NRF_ADC_CONFIG_SCALING_INPUT_FULL_SCALE;
    nrf_drv_adc_channel_enable(&m_channel_5_config);
		
		//Configure and enable ADC channel 6
    static nrf_drv_adc_channel_t m_channel_6_config = NRF_DRV_ADC_DEFAULT_CHANNEL(NRF_ADC_CONFIG_INPUT_6);	
    m_channel_6_config.config.config.input = NRF_ADC_CONFIG_SCALING_INPUT_FULL_SCALE;
    nrf_drv_adc_channel_enable(&m_channel_6_config);
		
		//Configure and enable ADC channel 7
    static nrf_drv_adc_channel_t m_channel_7_config = NRF_DRV_ADC_DEFAULT_CHANNEL(NRF_ADC_CONFIG_INPUT_7);	
    m_channel_7_config.config.config.input = NRF_ADC_CONFIG_SCALING_INPUT_FULL_SCALE;
    nrf_drv_adc_channel_enable(&m_channel_7_config);
	
    number_of_adc_channels = 8;    //Set equal to the number of configured ADC channels, for the sake of UART output.
}

/**
 * @brief Setup sampling events.
 */
void adc_sampling_event_init(void)
{
    ret_code_t err_code;
    err_code = nrf_drv_ppi_init();
    APP_ERROR_CHECK(err_code);

    nrf_drv_timer_config_t timer_cfg = NRF_DRV_TIMER_DEFAULT_CONFIG;
    err_code = nrf_drv_timer_init(&m_timer, &timer_cfg, timer_handler);
    APP_ERROR_CHECK(err_code);

    /* setup m_timer for compare event */
    uint32_t time_ticks = nrf_drv_timer_ms_to_ticks(&m_timer, ADC_SAMPLE_RATE);
    nrf_drv_timer_extended_compare(&m_timer, NRF_TIMER_CC_CHANNEL0, time_ticks, NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK, true);
    nrf_drv_timer_enable(&m_timer);

    uint32_t timer_compare_event_addr = nrf_drv_timer_compare_event_address_get(&m_timer, NRF_TIMER_CC_CHANNEL0);
    uint32_t adc_sample_event_addr = nrf_drv_adc_start_task_get();

    /* setup ppi channel so that timer compare event is triggering sample task in SAADC */
    err_code = nrf_drv_ppi_channel_alloc(&m_ppi_channel);
    APP_ERROR_CHECK(err_code);
    
    err_code = nrf_drv_ppi_channel_assign(m_ppi_channel, timer_compare_event_addr, adc_sample_event_addr);  //NRF_ADC->TASKS_START);
    APP_ERROR_CHECK(err_code);
}

/**@brief Application main function.
 */
int main(void)
{
    uint32_t err_code;
    bool erase_bonds;

    // Initialize.
    APP_TIMER_INIT(APP_TIMER_PRESCALER, APP_TIMER_OP_QUEUE_SIZE, false);
    uart_init();

    buttons_leds_init(&erase_bonds);
    ble_stack_init();
    gap_params_init();
    services_init();
    advertising_init();
    conn_params_init();

    adc_sampling_event_init();
    adc_config();
    APP_ERROR_CHECK(nrf_drv_adc_buffer_convert(adc_buffer,ADC_BUFFER_SIZE));
    adc_sampling_event_enable();
	
    printf("\r\nUART Start - with ADC !\r\n");
    err_code = ble_advertising_start(BLE_ADV_MODE_FAST);
    APP_ERROR_CHECK(err_code);

    // Enter main loop.
    for (;;)
    {
        power_manage();
    }
}


/**
 * @}
 */
. .

I have noted that the current consumption is too hight for my scope (about 1.7mA). My idea is to 'reduce' the code with only acquisition of 6 ADC and trasmission it via Bluetooth. I know there is the possibility to siwitch off the UART but I don't know what is the section to make it. An other possibility to reduce the current consumption is to imprve the adbvertising internval. So is it possible to improve the SLAVE_LATENCy from 0 to 4?

Are there other point useful for my scope? My scope is acquisiton the 6 ADC channel and trasmittion data via bluetooth.

Thanks a lot and best regards

Angelo

  • Attach you can foind the ".c"

    /**
     * Copyright (c) 2014 - 2017, Nordic Semiconductor ASA
     * 
     * All rights reserved.
     * 
     * Redistribution and use in source and binary forms, with or without modification,
     * are permitted provided that the following conditions are met:
     * 
     * 1. Redistributions of source code must retain the above copyright notice, this
     *    list of conditions and the following disclaimer.
     * 
     * 2. Redistributions in binary form, except as embedded into a Nordic
     *    Semiconductor ASA integrated circuit in a product or a software update for
     *    such product, must reproduce the above copyright notice, this list of
     *    conditions and the following disclaimer in the documentation and/or other
     *    materials provided with the distribution.
     * 
     * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
     *    contributors may be used to endorse or promote products derived from this
     *    software without specific prior written permission.
     * 
     * 4. This software, with or without modification, must only be used with a
     *    Nordic Semiconductor ASA integrated circuit.
     * 
     * 5. Any software provided in binary form under this license must not be reverse
     *    engineered, decompiled, modified and/or disassembled.
     * 
     * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
     * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
     * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
     * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
     * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     * 
     */
    
    #include "sdk_common.h"
    #if NRF_MODULE_ENABLED(RTC)
    #define ENABLED_RTC_COUNT (RTC0_ENABLED+RTC1_ENABLED+RTC2_ENABLED)
    #if ENABLED_RTC_COUNT
    
    #include "nrf_drv_rtc.h"
    #include "nrf_rtc.h"
    #include "nrf_assert.h"
    #include "app_util_platform.h"
    
    #define NRF_LOG_MODULE_NAME "RTC"
    
    #if RTC_CONFIG_LOG_ENABLED
    #define NRF_LOG_LEVEL       RTC_CONFIG_LOG_LEVEL
    #define NRF_LOG_INFO_COLOR  RTC_CONFIG_INFO_COLOR
    #define NRF_LOG_DEBUG_COLOR RTC_CONFIG_DEBUG_COLOR
    #define EVT_TO_STR(event)   (event == NRF_RTC_EVENT_TICK ? "NRF_RTC_EVENT_TICK" :               \
                                (event == NRF_RTC_EVENT_OVERFLOW ? "NRF_RTC_EVENT_OVERFLOW" :       \
                                (event == NRF_RTC_EVENT_COMPARE_0 ? "NRF_RTC_EVENT_COMPARE_0" :     \
                                (event == NRF_RTC_EVENT_COMPARE_1 ? "NRF_RTC_EVENT_COMPARE_1" :     \
                                (event == NRF_RTC_EVENT_COMPARE_2 ? "NRF_RTC_EVENT_COMPARE_2" :     \
                                (event == NRF_RTC_EVENT_COMPARE_3 ? "NRF_RTC_EVENT_COMPARE_3" : "UNKNOWN EVENT")
    #else //RTC_CONFIG_LOG_ENABLED
    #define EVT_TO_STR(event)   ""
    #define NRF_LOG_LEVEL       0
    #endif //RTC_CONFIG_LOG_ENABLED
    #include "nrf_log.h"
    #include "nrf_log_ctrl.h"
    
    /**@brief RTC driver instance control block structure. */
    typedef struct
    {
        nrf_drv_state_t state;        /**< Instance state. */
        bool            reliable;     /**< Reliable mode flag. */
        uint8_t         tick_latency; /**< Maximum length of interrupt handler in ticks (max 7.7 ms). */
    } nrf_drv_rtc_cb_t;
    
    // User callbacks local storage.
    static nrf_drv_rtc_handler_t m_handlers[ENABLED_RTC_COUNT];
    static nrf_drv_rtc_cb_t      m_cb[ENABLED_RTC_COUNT];
    
    ret_code_t nrf_drv_rtc_init(nrf_drv_rtc_t const * const p_instance,
                                nrf_drv_rtc_config_t const * p_config,
                                nrf_drv_rtc_handler_t handler)
    {
        ASSERT(p_config);
    
        ret_code_t err_code;
    
        if (handler)
        {
            m_handlers[p_instance->instance_id] = handler;
        }
        else
        {
            err_code = NRF_ERROR_INVALID_PARAM;
            NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)ERR_TO_STR(err_code));
            return err_code;
        }
    
        if (m_cb[p_instance->instance_id].state != NRF_DRV_STATE_UNINITIALIZED)
        {
            err_code = NRF_ERROR_INVALID_STATE;
            NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)ERR_TO_STR(err_code));
            return err_code;
        }
    
        nrf_drv_common_irq_enable(p_instance->irq, p_config->interrupt_priority);
        nrf_rtc_prescaler_set(p_instance->p_reg, p_config->prescaler);
        m_cb[p_instance->instance_id].reliable     = p_config->reliable;
        m_cb[p_instance->instance_id].tick_latency = p_config->tick_latency;
        m_cb[p_instance->instance_id].state        = NRF_DRV_STATE_INITIALIZED;
    
        err_code = NRF_SUCCESS;
        NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)ERR_TO_STR(err_code));
        return err_code;
    }
    
    void nrf_drv_rtc_uninit(nrf_drv_rtc_t const * const p_instance)
    {
        uint32_t mask = NRF_RTC_INT_TICK_MASK     |
                        NRF_RTC_INT_OVERFLOW_MASK |
                        NRF_RTC_INT_COMPARE0_MASK |
                        NRF_RTC_INT_COMPARE1_MASK |
                        NRF_RTC_INT_COMPARE2_MASK |
                        NRF_RTC_INT_COMPARE3_MASK;
        ASSERT(m_cb[p_instance->instance_id].state != NRF_DRV_STATE_UNINITIALIZED);
    
        nrf_drv_common_irq_disable(p_instance->irq);
    
        nrf_rtc_task_trigger(p_instance->p_reg, NRF_RTC_TASK_STOP);
        nrf_rtc_event_disable(p_instance->p_reg, mask);
        nrf_rtc_int_disable(p_instance->p_reg, mask);
    
        m_cb[p_instance->instance_id].state = NRF_DRV_STATE_UNINITIALIZED;
        NRF_LOG_INFO("Uninitialized.\r\n");
    }
    
    void nrf_drv_rtc_enable(nrf_drv_rtc_t const * const p_instance)
    {
        ASSERT(m_cb[p_instance->instance_id].state == NRF_DRV_STATE_INITIALIZED);
    
        nrf_rtc_task_trigger(p_instance->p_reg, NRF_RTC_TASK_START);
        m_cb[p_instance->instance_id].state = NRF_DRV_STATE_POWERED_ON;
        NRF_LOG_INFO("Enabled.\r\n");
    }
    
    void nrf_drv_rtc_disable(nrf_drv_rtc_t const * const p_instance)
    {
        ASSERT(m_cb[p_instance->instance_id].state != NRF_DRV_STATE_UNINITIALIZED);
    
        nrf_rtc_task_trigger(p_instance->p_reg, NRF_RTC_TASK_STOP);
        m_cb[p_instance->instance_id].state = NRF_DRV_STATE_INITIALIZED;
        NRF_LOG_INFO("Disabled.\r\n");
    }
    
    ret_code_t nrf_drv_rtc_cc_disable(nrf_drv_rtc_t const * const p_instance, uint32_t channel)
    {
        ASSERT(m_cb[p_instance->instance_id].state != NRF_DRV_STATE_UNINITIALIZED);
        ASSERT(channel<p_instance->cc_channel_count);
    
        ret_code_t err_code;
        uint32_t int_mask = RTC_CHANNEL_INT_MASK(channel);
        nrf_rtc_event_t event    = RTC_CHANNEL_EVENT_ADDR(channel);
    
        nrf_rtc_event_disable(p_instance->p_reg,int_mask);
        if (nrf_rtc_int_is_enabled(p_instance->p_reg,int_mask))
        {
            nrf_rtc_int_disable(p_instance->p_reg,int_mask);
            if (nrf_rtc_event_pending(p_instance->p_reg,event))
            {
                nrf_rtc_event_clear(p_instance->p_reg,event);
                err_code = NRF_ERROR_TIMEOUT;
                NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)ERR_TO_STR(err_code));
                return err_code;
            }
        }
        NRF_LOG_INFO("RTC id: %d, channel disabled: %d.\r\n", p_instance->instance_id, channel);
        err_code = NRF_SUCCESS;
        NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)ERR_TO_STR(err_code));
        return err_code;
    }
    
    ret_code_t nrf_drv_rtc_cc_set(nrf_drv_rtc_t const * const p_instance,
                                  uint32_t channel,
                                  uint32_t val,
                                  bool enable_irq)
    {
        ASSERT(m_cb[p_instance->instance_id].state != NRF_DRV_STATE_UNINITIALIZED);
        ASSERT(channel<p_instance->cc_channel_count);
    
        ret_code_t err_code;
        uint32_t int_mask = RTC_CHANNEL_INT_MASK(channel);
        nrf_rtc_event_t event    = RTC_CHANNEL_EVENT_ADDR(channel);
    
        nrf_rtc_event_disable(p_instance->p_reg, int_mask);
        nrf_rtc_int_disable(p_instance->p_reg, int_mask);
    
        val = RTC_WRAP(val);
        if (m_cb[p_instance->instance_id].reliable)
        {
            nrf_rtc_cc_set(p_instance->p_reg,channel,val);
            uint32_t cnt = nrf_rtc_counter_get(p_instance->p_reg);
            int32_t diff = cnt - val;
            if (cnt < val)
            {
                diff += RTC_COUNTER_COUNTER_Msk;
            }
            if (diff < m_cb[p_instance->instance_id].tick_latency)
            {
                err_code = NRF_ERROR_TIMEOUT;
                NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)ERR_TO_STR(err_code));
                return err_code;
            }
        }
        else
        {
            nrf_rtc_cc_set(p_instance->p_reg,channel,val);
        }
    
        if (enable_irq)
        {
            nrf_rtc_event_clear(p_instance->p_reg,event);
            nrf_rtc_int_enable(p_instance->p_reg, int_mask);
        }
        nrf_rtc_event_enable(p_instance->p_reg,int_mask);
    
        NRF_LOG_INFO("RTC id: %d, channel enabled: %d, compare value: %d.\r\n", p_instance->instance_id, channel, val);
        err_code = NRF_SUCCESS;
        NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)ERR_TO_STR(err_code));
        return err_code;
    }
    
    void nrf_drv_rtc_tick_enable(nrf_drv_rtc_t const * const p_instance, bool enable_irq)
    {
        nrf_rtc_event_t event = NRF_RTC_EVENT_TICK;
        uint32_t mask = NRF_RTC_INT_TICK_MASK;
    
        nrf_rtc_event_clear(p_instance->p_reg, event);
        nrf_rtc_event_enable(p_instance->p_reg, mask);
        if (enable_irq)
        {
            nrf_rtc_int_enable(p_instance->p_reg, mask);
        }
        NRF_LOG_INFO("Tick events enabled.\r\n");
    }
    
    void nrf_drv_rtc_tick_disable(nrf_drv_rtc_t const * const p_instance)
    {
        uint32_t mask = NRF_RTC_INT_TICK_MASK;
    
        nrf_rtc_event_disable(p_instance->p_reg, mask);
        nrf_rtc_int_disable(p_instance->p_reg, mask);
        NRF_LOG_INFO("Tick events disabled.\r\n");
    }
    
    void nrf_drv_rtc_overflow_enable(nrf_drv_rtc_t const * const p_instance, bool enable_irq)
    {
        nrf_rtc_event_t event = NRF_RTC_EVENT_OVERFLOW;
        uint32_t mask = NRF_RTC_INT_OVERFLOW_MASK;
    
        nrf_rtc_event_clear(p_instance->p_reg, event);
        nrf_rtc_event_enable(p_instance->p_reg, mask);
        if (enable_irq)
        {
            nrf_rtc_int_enable(p_instance->p_reg, mask);
        }
    }
    void nrf_drv_rtc_overflow_disable(nrf_drv_rtc_t const * const p_instance)
    {
        uint32_t mask = NRF_RTC_INT_OVERFLOW_MASK;
        nrf_rtc_event_disable(p_instance->p_reg, mask);
        nrf_rtc_int_disable(p_instance->p_reg, mask);
    }
    
    uint32_t nrf_drv_rtc_max_ticks_get(nrf_drv_rtc_t const * const p_instance)
    {
        uint32_t ticks;
        if (m_cb[p_instance->instance_id].reliable)
        {
            ticks = RTC_COUNTER_COUNTER_Msk - m_cb[p_instance->instance_id].tick_latency;
        }
        else
        {
            ticks = RTC_COUNTER_COUNTER_Msk;
        }
        return ticks;
    }
    
    /**@brief Generic function for handling RTC interrupt
     *
     * @param[in]  p_reg         Pointer to instance register structure.
     * @param[in]  instance_id   Index of instance.
     */
    __STATIC_INLINE void nrf_drv_rtc_int_handler(NRF_RTC_Type * p_reg,
                                                 uint32_t instance_id,
                                                 uint32_t channel_count)
    {
        uint32_t i;
        uint32_t int_mask = (uint32_t)NRF_RTC_INT_COMPARE0_MASK;
        nrf_rtc_event_t event = NRF_RTC_EVENT_COMPARE_0;
    
        for (i = 0; i < channel_count; i++)
        {
            if (nrf_rtc_int_is_enabled(p_reg,int_mask) && nrf_rtc_event_pending(p_reg,event))
            {
                nrf_rtc_event_disable(p_reg,int_mask);
                nrf_rtc_int_disable(p_reg,int_mask);
                nrf_rtc_event_clear(p_reg,event);
                NRF_LOG_DEBUG("Event: %s, instance id: %d.\r\n",
                             (uint32_t)EVT_TO_STR(event), (uint32_t)instance_id);
                m_handlers[instance_id]((nrf_drv_rtc_int_type_t)i);
            }
            int_mask <<= 1;
            event    = (nrf_rtc_event_t)((uint32_t)event + sizeof(uint32_t));
        }
        event = NRF_RTC_EVENT_TICK;
        if (nrf_rtc_int_is_enabled(p_reg,NRF_RTC_INT_TICK_MASK) &&
            nrf_rtc_event_pending(p_reg, event))
        {
            nrf_rtc_event_clear(p_reg, event);
            NRF_LOG_DEBUG("Event: %s, instance id: %d.\r\n", (uint32_t)EVT_TO_STR(event), instance_id);
            m_handlers[instance_id](NRF_DRV_RTC_INT_TICK);
        }
    
        event = NRF_RTC_EVENT_OVERFLOW;
        if (nrf_rtc_int_is_enabled(p_reg,NRF_RTC_INT_OVERFLOW_MASK) &&
            nrf_rtc_event_pending(p_reg, event))
        {
            nrf_rtc_event_clear(p_reg,event);
            NRF_LOG_DEBUG("Event: %s, instance id: %d.\r\n", (uint32_t)EVT_TO_STR(event), instance_id);
            m_handlers[instance_id](NRF_DRV_RTC_INT_OVERFLOW);
        }
    }
    
    #if NRF_MODULE_ENABLED(RTC0)
    void RTC0_IRQHandler(void)
    {
        nrf_drv_rtc_int_handler(NRF_RTC0,RTC0_INSTANCE_INDEX, NRF_RTC_CC_CHANNEL_COUNT(0));
    }
    #endif
    
    #if NRF_MODULE_ENABLED(RTC1)
    void RTC1_IRQHandler(void)
    {
        nrf_drv_rtc_int_handler(NRF_RTC1,RTC1_INSTANCE_INDEX, NRF_RTC_CC_CHANNEL_COUNT(1));
    }
    #endif
    
    #if NRF_MODULE_ENABLED(RTC2)
    void RTC2_IRQHandler(void)
    {
        nrf_drv_rtc_int_handler(NRF_RTC2,RTC2_INSTANCE_INDEX, NRF_RTC_CC_CHANNEL_COUNT(2));
    }
    #endif
    #endif //ENABLED_RTC_COUNT
    #endif //NRF_MODULE_ENABLED(RTC)
    

  • Yes, correct! Add those sources to your project and build them. Note that you should edit the nrf_drv_config.h first, to enable the RTC module (otherwise the part #if NRF_MODULE_ENABLED(RTC1) won't compile).

Related