Sensor Client Sample + Peripheral UART Sample: how to pass sensor data from sensor client as input for peripheral UART

Trying to achieve the following system:


Managed to merge the Mesh Sensor Observer Sample code with the Peripheral UART code.
This is the main.c file:

/*
 * Copyright (c) 2020 Nordic Semiconductor ASA
 *
 * SPDX-License-Identifier: LicenseRef-Nordic-5-Clause
 */

/** @file
 *  @brief Nordic mesh sensor observer sample
 */
#include <zephyr/bluetooth/bluetooth.h>
#include <bluetooth/mesh/models.h>
#include <bluetooth/mesh/dk_prov.h>
#include <dk_buttons_and_leds.h>
#include "model_handler.h"
#include "uart_async_adapter.h"
#include <zephyr/types.h>
#include <zephyr/kernel.h>
#include <zephyr/drivers/uart.h>
#include <zephyr/usb/usb_device.h>
#include <zephyr/device.h>
#include <zephyr/devicetree.h>
#include <soc.h>
#include <zephyr/bluetooth/uuid.h>
#include <zephyr/bluetooth/gatt.h>
#include <zephyr/bluetooth/hci.h>
#include <bluetooth/services/nus.h>
#include <zephyr/settings/settings.h>
#include <stdio.h>
#include <zephyr/logging/log.h>

#define LOG_MODULE_NAME peripheral_uart
LOG_MODULE_REGISTER(LOG_MODULE_NAME);

#define STACKSIZE CONFIG_BT_NUS_THREAD_STACK_SIZE
#define PRIORITY 7

#define DEVICE_NAME CONFIG_BT_DEVICE_NAME
#define DEVICE_NAME_LEN	(sizeof(DEVICE_NAME) - 1)

#define RUN_STATUS_LED DK_LED1
#define RUN_LED_BLINK_INTERVAL 1000

#define CON_STATUS_LED DK_LED2

#define KEY_PASSKEY_ACCEPT DK_BTN1_MSK
#define KEY_PASSKEY_REJECT DK_BTN2_MSK

#define UART_BUF_SIZE CONFIG_BT_NUS_UART_BUFFER_SIZE
#define UART_WAIT_FOR_BUF_DELAY K_MSEC(50)
#define UART_WAIT_FOR_RX CONFIG_BT_NUS_UART_RX_WAIT_TIME

static K_SEM_DEFINE(ble_init_ok, 0, 1);

static struct bt_conn *current_conn;
static struct bt_conn *auth_conn;

static const struct device *uart = DEVICE_DT_GET(DT_CHOSEN(nordic_nus_uart));
static struct k_work_delayable uart_work;

struct uart_data_t {
	void *fifo_reserved;
	uint8_t data[UART_BUF_SIZE];
	uint16_t len;
};

static K_FIFO_DEFINE(fifo_uart_tx_data);
static K_FIFO_DEFINE(fifo_uart_rx_data);

static const struct bt_data ad[] = {
	BT_DATA_BYTES(BT_DATA_FLAGS, (BT_LE_AD_GENERAL | BT_LE_AD_NO_BREDR)),
	BT_DATA(BT_DATA_NAME_COMPLETE, DEVICE_NAME, DEVICE_NAME_LEN),
};

static const struct bt_data sd[] = {
	BT_DATA_BYTES(BT_DATA_UUID128_ALL, BT_UUID_NUS_VAL),
};

#if CONFIG_BT_NUS_UART_ASYNC_ADAPTER
UART_ASYNC_ADAPTER_INST_DEFINE(async_adapter);
#else
static const struct device *const async_adapter;
#endif

static void uart_cb(const struct device *dev, struct uart_event *evt, void *user_data)
{
	ARG_UNUSED(dev);

	static size_t aborted_len;
	struct uart_data_t *buf;
	static uint8_t *aborted_buf;
	static bool disable_req;

	switch (evt->type) {
	case UART_TX_DONE:
		LOG_DBG("UART_TX_DONE");
		if ((evt->data.tx.len == 0) ||
		    (!evt->data.tx.buf)) {
			return;
		}

		if (aborted_buf) {
			buf = CONTAINER_OF(aborted_buf, struct uart_data_t,
					   data);
			aborted_buf = NULL;
			aborted_len = 0;
		} else {
			buf = CONTAINER_OF(evt->data.tx.buf, struct uart_data_t,
					   data);
		}

		k_free(buf);

		buf = k_fifo_get(&fifo_uart_tx_data, K_NO_WAIT);
		if (!buf) {
			return;
		}

		if (uart_tx(uart, buf->data, buf->len, SYS_FOREVER_MS)) {
			LOG_WRN("Failed to send data over UART");
		}

		break;

	case UART_RX_RDY:
		LOG_DBG("UART_RX_RDY");
		buf = CONTAINER_OF(evt->data.rx.buf, struct uart_data_t, data);
		buf->len += evt->data.rx.len;

		if (disable_req) {
			return;
		}

		if ((evt->data.rx.buf[buf->len - 1] == '\n') ||
		    (evt->data.rx.buf[buf->len - 1] == '\r')) {
			disable_req = true;
			uart_rx_disable(uart);
		}

		break;

	case UART_RX_DISABLED:
		LOG_DBG("UART_RX_DISABLED");
		disable_req = false;

		buf = k_malloc(sizeof(*buf));
		if (buf) {
			buf->len = 0;
		} else {
			LOG_WRN("Not able to allocate UART receive buffer");
			k_work_reschedule(&uart_work, UART_WAIT_FOR_BUF_DELAY);
			return;
		}

		uart_rx_enable(uart, buf->data, sizeof(buf->data),
			       UART_WAIT_FOR_RX);

		break;

	case UART_RX_BUF_REQUEST:
		LOG_DBG("UART_RX_BUF_REQUEST");
		buf = k_malloc(sizeof(*buf));
		if (buf) {
			buf->len = 0;
			uart_rx_buf_rsp(uart, buf->data, sizeof(buf->data));
		} else {
			LOG_WRN("Not able to allocate UART receive buffer");
		}

		break;

	case UART_RX_BUF_RELEASED:
		LOG_DBG("UART_RX_BUF_RELEASED");
		buf = CONTAINER_OF(evt->data.rx_buf.buf, struct uart_data_t,
				   data);

		if (buf->len > 0) {
			k_fifo_put(&fifo_uart_rx_data, buf);
		} else {
			k_free(buf);
		}

		break;

	case UART_TX_ABORTED:
		LOG_DBG("UART_TX_ABORTED");
		if (!aborted_buf) {
			aborted_buf = (uint8_t *)evt->data.tx.buf;
		}

		aborted_len += evt->data.tx.len;
		buf = CONTAINER_OF(aborted_buf, struct uart_data_t,
				   data);

		uart_tx(uart, &buf->data[aborted_len],
			buf->len - aborted_len, SYS_FOREVER_MS);

		break;

	default:
		break;
	}
}

static void uart_work_handler(struct k_work *item)
{
	struct uart_data_t *buf;

	buf = k_malloc(sizeof(*buf));
	if (buf) {
		buf->len = 0;
	} else {
		LOG_WRN("Not able to allocate UART receive buffer");
		k_work_reschedule(&uart_work, UART_WAIT_FOR_BUF_DELAY);
		return;
	}

	uart_rx_enable(uart, buf->data, sizeof(buf->data), UART_WAIT_FOR_RX);
}

static bool uart_test_async_api(const struct device *dev)
{
	const struct uart_driver_api *api =
			(const struct uart_driver_api *)dev->api;

	return (api->callback_set != NULL);
}

static int uart_init(void)
{
	int err;
	int pos;
	struct uart_data_t *rx;
	struct uart_data_t *tx;

	if (!device_is_ready(uart)) {
		return -ENODEV;
	}

	if (IS_ENABLED(CONFIG_USB_DEVICE_STACK)) {
		err = usb_enable(NULL);
		if (err && (err != -EALREADY)) {
			LOG_ERR("Failed to enable USB");
			return err;
		}
	}

	rx = k_malloc(sizeof(*rx));
	if (rx) {
		rx->len = 0;
	} else {
		return -ENOMEM;
	}

	k_work_init_delayable(&uart_work, uart_work_handler);


	if (IS_ENABLED(CONFIG_BT_NUS_UART_ASYNC_ADAPTER) && !uart_test_async_api(uart)) {
		/* Implement API adapter */
		uart_async_adapter_init(async_adapter, uart);
		uart = async_adapter;
	}

	err = uart_callback_set(uart, uart_cb, NULL);
	if (err) {
		k_free(rx);
		LOG_ERR("Cannot initialize UART callback");
		return err;
	}

	if (IS_ENABLED(CONFIG_UART_LINE_CTRL)) {
		LOG_INF("Wait for DTR");
		while (true) {
			uint32_t dtr = 0;

			uart_line_ctrl_get(uart, UART_LINE_CTRL_DTR, &dtr);
			if (dtr) {
				break;
			}
			/* Give CPU resources to low priority threads. */
			k_sleep(K_MSEC(100));
		}
		LOG_INF("DTR set");
		err = uart_line_ctrl_set(uart, UART_LINE_CTRL_DCD, 1);
		if (err) {
			LOG_WRN("Failed to set DCD, ret code %d", err);
		}
		err = uart_line_ctrl_set(uart, UART_LINE_CTRL_DSR, 1);
		if (err) {
			LOG_WRN("Failed to set DSR, ret code %d", err);
		}
	}

	tx = k_malloc(sizeof(*tx));

	if (tx) {
		pos = snprintf(tx->data, sizeof(tx->data),
			       "Starting Nordic UART service example\r\n");

		if ((pos < 0) || (pos >= sizeof(tx->data))) {
			k_free(rx);
			k_free(tx);
			LOG_ERR("snprintf returned %d", pos);
			return -ENOMEM;
		}

		tx->len = pos;
	} else {
		k_free(rx);
		return -ENOMEM;
	}

	err = uart_tx(uart, tx->data, tx->len, SYS_FOREVER_MS);
	if (err) {
		k_free(rx);
		k_free(tx);
		LOG_ERR("Cannot display welcome message (err: %d)", err);
		return err;
	}

	err = uart_rx_enable(uart, rx->data, sizeof(rx->data), 50);
	if (err) {
		LOG_ERR("Cannot enable uart reception (err: %d)", err);
		/* Free the rx buffer only because the tx buffer will be handled in the callback */
		k_free(rx);
	}

	return err;
}

static void connected(struct bt_conn *conn, uint8_t err)
{
	char addr[BT_ADDR_LE_STR_LEN];

	if (err) {
		LOG_ERR("Connection failed (err %u)", err);
		return;
	}

	bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));
	LOG_INF("Connected %s", addr);

	current_conn = bt_conn_ref(conn);

	dk_set_led_on(CON_STATUS_LED);
}

static void disconnected(struct bt_conn *conn, uint8_t reason)
{
	char addr[BT_ADDR_LE_STR_LEN];

	bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));

	LOG_INF("Disconnected: %s (reason %u)", addr, reason);

	if (auth_conn) {
		bt_conn_unref(auth_conn);
		auth_conn = NULL;
	}

	if (current_conn) {
		bt_conn_unref(current_conn);
		current_conn = NULL;
		dk_set_led_off(CON_STATUS_LED);
	}
}

#ifdef CONFIG_BT_NUS_SECURITY_ENABLED
static void security_changed(struct bt_conn *conn, bt_security_t level,
			     enum bt_security_err err)
{
	char addr[BT_ADDR_LE_STR_LEN];

	bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));

	if (!err) {
		LOG_INF("Security changed: %s level %u", addr, level);
	} else {
		LOG_WRN("Security failed: %s level %u err %d", addr,
			level, err);
	}
}
#endif

BT_CONN_CB_DEFINE(conn_callbacks) = {
	.connected    = connected,
	.disconnected = disconnected,
#ifdef CONFIG_BT_NUS_SECURITY_ENABLED
	.security_changed = security_changed,
#endif
};

#if defined(CONFIG_BT_NUS_SECURITY_ENABLED)
static void auth_passkey_display(struct bt_conn *conn, unsigned int passkey)
{
	char addr[BT_ADDR_LE_STR_LEN];

	bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));

	LOG_INF("Passkey for %s: %06u", addr, passkey);
}

static void auth_passkey_confirm(struct bt_conn *conn, unsigned int passkey)
{
	char addr[BT_ADDR_LE_STR_LEN];

	auth_conn = bt_conn_ref(conn);

	bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));

	LOG_INF("Passkey for %s: %06u", addr, passkey);
	LOG_INF("Press Button 1 to confirm, Button 2 to reject.");
}


static void auth_cancel(struct bt_conn *conn)
{
	char addr[BT_ADDR_LE_STR_LEN];

	bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));

	LOG_INF("Pairing cancelled: %s", addr);
}


static void pairing_complete(struct bt_conn *conn, bool bonded)
{
	char addr[BT_ADDR_LE_STR_LEN];

	bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));

	LOG_INF("Pairing completed: %s, bonded: %d", addr, bonded);
}


static void pairing_failed(struct bt_conn *conn, enum bt_security_err reason)
{
	char addr[BT_ADDR_LE_STR_LEN];

	bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));

	LOG_INF("Pairing failed conn: %s, reason %d", addr, reason);
}


static struct bt_conn_auth_cb conn_auth_callbacks = {
	.passkey_display = auth_passkey_display,
	.passkey_confirm = auth_passkey_confirm,
	.cancel = auth_cancel,
};

static struct bt_conn_auth_info_cb conn_auth_info_callbacks = {
	.pairing_complete = pairing_complete,
	.pairing_failed = pairing_failed
};
#else
static struct bt_conn_auth_cb conn_auth_callbacks;
static struct bt_conn_auth_info_cb conn_auth_info_callbacks;
#endif

static void bt_receive_cb(struct bt_conn *conn, const uint8_t *const data,
			  uint16_t len)
{
	int err;
	char addr[BT_ADDR_LE_STR_LEN] = {0};

	bt_addr_le_to_str(bt_conn_get_dst(conn), addr, ARRAY_SIZE(addr));

	LOG_INF("Received data from: %s", addr);

	for (uint16_t pos = 0; pos != len;) {
		struct uart_data_t *tx = k_malloc(sizeof(*tx));

		if (!tx) {
			LOG_WRN("Not able to allocate UART send data buffer");
			return;
		}

		/* Keep the last byte of TX buffer for potential LF char. */
		size_t tx_data_size = sizeof(tx->data) - 1;

		if ((len - pos) > tx_data_size) {
			tx->len = tx_data_size;
		} else {
			tx->len = (len - pos);
		}

		memcpy(tx->data, &data[pos], tx->len);

		pos += tx->len;

		/* Append the LF character when the CR character triggered
		 * transmission from the peer.
		 */
		if ((pos == len) && (data[len - 1] == '\r')) {
			tx->data[tx->len] = '\n';
			tx->len++;
		}

		err = uart_tx(uart, tx->data, tx->len, SYS_FOREVER_MS);
		if (err) {
			k_fifo_put(&fifo_uart_tx_data, tx);
		}
	}
}

static struct bt_nus_cb nus_cb = {
	.received = bt_receive_cb,
};

void error(void)
{
	dk_set_leds_state(DK_ALL_LEDS_MSK, DK_NO_LEDS_MSK);

	while (true) {
		/* Spin for ever */
		k_sleep(K_MSEC(1000));
	}
}

#ifdef CONFIG_BT_NUS_SECURITY_ENABLED
static void num_comp_reply(bool accept)
{
	if (accept) {
		bt_conn_auth_passkey_confirm(auth_conn);
		LOG_INF("Numeric Match, conn %p", (void *)auth_conn);
	} else {
		bt_conn_auth_cancel(auth_conn);
		LOG_INF("Numeric Reject, conn %p", (void *)auth_conn);
	}

	bt_conn_unref(auth_conn);
	auth_conn = NULL;
}

void button_changed(uint32_t button_state, uint32_t has_changed)
{
	uint32_t buttons = button_state & has_changed;

	if (auth_conn) {
		if (buttons & KEY_PASSKEY_ACCEPT) {
			num_comp_reply(true);
		}

		if (buttons & KEY_PASSKEY_REJECT) {
			num_comp_reply(false);
		}
	}
}
#endif /* CONFIG_BT_NUS_SECURITY_ENABLED */

static void configure_gpio(void)
{
	int err;

#ifdef CONFIG_BT_NUS_SECURITY_ENABLED
	err = dk_buttons_init(button_changed);
	if (err) {
		LOG_ERR("Cannot init buttons (err: %d)", err);
	}
#endif /* CONFIG_BT_NUS_SECURITY_ENABLED */

	err = dk_leds_init();
	if (err) {
		LOG_ERR("Cannot init LEDs (err: %d)", err);
	}
}

static void bt_ready(int err1)
{
	if (err1) {
		printk("Bluetooth init failed (err1 %d)\n", err1);
		return;
	}

	printk("Bluetooth initialized\n");

	dk_leds_init();
	dk_buttons_init(NULL);

	err1 = bt_mesh_init(bt_mesh_dk_prov_init(), model_handler_init());
	if (err1) {
		printk("Initializing mesh failed (err1 %d)\n", err1);
		return;
	}

	if (IS_ENABLED(CONFIG_SETTINGS)) {
		settings_load();
	}

	/* This will be a no-op if settings_load() loaded provisioning info */
	bt_mesh_prov_enable(BT_MESH_PROV_ADV | BT_MESH_PROV_GATT);

	printk("Mesh initialized\n");
}

void main(void)
{
	int err1;

	printk("Initializing...\n");

	err1 = bt_enable(bt_ready);
	if (err1) {
		printk("Bluetooth init failed (err1 %d)\n", err1);
	}

	int blink_status = 0;
	int err = 0;

	configure_gpio();

	err = uart_init();
	if (err) {
		error();
	}

	if (IS_ENABLED(CONFIG_BT_NUS_SECURITY_ENABLED)) {
		err = bt_conn_auth_cb_register(&conn_auth_callbacks);
		if (err) {
			printk("Failed to register authorization callbacks.\n");
			return 0;
		}

		err = bt_conn_auth_info_cb_register(&conn_auth_info_callbacks);
		if (err) {
			printk("Failed to register authorization info callbacks.\n");
			return 0;
		}
	}

	err = bt_enable(NULL);
	if (err) {
		error();
	}

	LOG_INF("Bluetooth initialized");

	k_sem_give(&ble_init_ok);

	if (IS_ENABLED(CONFIG_SETTINGS)) {
		settings_load();
	}

	err = bt_nus_init(&nus_cb);
	if (err) {
		LOG_ERR("Failed to initialize UART service (err: %d)", err);
		return 0;
	}

	err = bt_le_adv_start(BT_LE_ADV_CONN, ad, ARRAY_SIZE(ad), sd,
			      ARRAY_SIZE(sd));
	if (err) {
		LOG_ERR("Advertising failed to start (err %d)", err);
		return 0;
	}

	for (;;) {
		dk_set_led(RUN_STATUS_LED, (++blink_status) % 2);
		k_sleep(K_MSEC(RUN_LED_BLINK_INTERVAL));
	}
}


void ble_write_thread(void)
{
	/* Don't go any further until BLE is initialized */
	k_sem_take(&ble_init_ok, K_FOREVER);

	for (;;) {
		/* Wait indefinitely for data to be sent over bluetooth */
		struct uart_data_t *buf = k_fifo_get(&fifo_uart_rx_data,
						     K_FOREVER);

		if (bt_nus_send(NULL, buf->data, buf->len)) {
			LOG_WRN("Failed to send data over BLE connection");
		}

		k_free(buf);
	}
}

K_THREAD_DEFINE(ble_write_thread_id, STACKSIZE, ble_write_thread, NULL, NULL,
		NULL, PRIORITY, 0, 0);


But i am unsure of how to modify the script in order to pass the sensor observer data as an input for peripheral UART.
From a quick google search, im guessing it should be by modifying the prog.conf file below?
#
# Copyright (c) 2020 Nordic Semiconductor ASA
#
# SPDX-License-Identifier: LicenseRef-Nordic-5-Clause
#
CONFIG_NCS_SAMPLES_DEFAULTS=y

# Deffered logging helps improve LPN power consumption
# when friendship is established.
CONFIG_LOG_MODE_DEFERRED=y

# Enable the UART driver
CONFIG_UART_ASYNC_API=y
CONFIG_NRFX_UARTE0=y
CONFIG_SERIAL=y

CONFIG_GPIO=y

# Make sure printk is printing to the UART console
CONFIG_CONSOLE=y
CONFIG_UART_CONSOLE=y

CONFIG_HEAP_MEM_POOL_SIZE=2048

# General configuration
CONFIG_MAIN_STACK_SIZE=4096
CONFIG_SYSTEM_WORKQUEUE_STACK_SIZE=6144
CONFIG_FLASH=y
CONFIG_FLASH_MAP=y
CONFIG_NVS=y
CONFIG_SETTINGS=y
CONFIG_HWINFO=y
CONFIG_DK_LIBRARY=y
CONFIG_PM_SINGLE_IMAGE=y
CONFIG_PM_PARTITION_SIZE_SETTINGS_STORAGE=0x8000
CONFIG_SOC_FLASH_NRF_PARTIAL_ERASE=y

# Bluetooth configuration
CONFIG_BT=y
CONFIG_BT_COMPANY_ID=0x0059
CONFIG_BT_DEVICE_NAME="Mesh Sensor Observer Nordic_UART_Service"
CONFIG_BT_L2CAP_TX_MTU=69
CONFIG_BT_L2CAP_TX_BUF_COUNT=32
CONFIG_BT_OBSERVER=y
CONFIG_BT_PERIPHERAL=y
CONFIG_BT_SETTINGS=y
CONFIG_BT_RX_STACK_SIZE=2300
CONFIG_BT_DEVICE_APPEARANCE=833
CONFIG_BT_MAX_CONN=1
CONFIG_BT_MAX_PAIRED=1

# Disable unused Bluetooth features
CONFIG_BT_CTLR_DUP_FILTER_LEN=0
CONFIG_BT_CTLR_LE_ENC=n
CONFIG_BT_DATA_LEN_UPDATE=n
CONFIG_BT_PHY_UPDATE=n
CONFIG_BT_CTLR_CHAN_SEL_2=n
CONFIG_BT_CTLR_MIN_USED_CHAN=n
CONFIG_BT_CTLR_PRIVACY=n

# Bluetooth mesh configuration
CONFIG_BT_MESH=y
CONFIG_BT_MESH_RELAY=y
CONFIG_BT_MESH_FRIEND=y
CONFIG_BT_MESH_ADV_BUF_COUNT=64
CONFIG_BT_MESH_TX_SEG_MAX=24
CONFIG_BT_MESH_RX_SEG_MAX=16
CONFIG_BT_MESH_PB_GATT=y
CONFIG_BT_MESH_GATT_PROXY=y
CONFIG_BT_MESH_PROXY_USE_DEVICE_NAME=y
CONFIG_BT_MESH_DK_PROV=y

# Bluetooth mesh models
CONFIG_BT_MESH_SENSOR_CLI=y

# Enable the NUS service
CONFIG_BT_NUS=y

# Enable bonding
CONFIG_FLASH=y
CONFIG_FLASH_PAGE_LAYOUT=y
CONFIG_FLASH_MAP=y
CONFIG_NVS=y
CONFIG_SETTINGS=y

# Enable DK LED and Buttons library
CONFIG_DK_LIBRARY=y

# Config logger
CONFIG_LOG=y
CONFIG_USE_SEGGER_RTT=y
CONFIG_LOG_BACKEND_RTT=y
CONFIG_LOG_BACKEND_UART=n
CONFIG_LOG_PRINTK=n

CONFIG_ASSERT=y


Please guide me on how i would proceed to modify the prog.conf file?

  • Hi,

    I do not think proj.conf changes are needed here, but rather changes to the source code.

    Since you use the terminology "UART Peripheral" and "UART Central", I assume that you want to use the Nordic UART Service (NUS) for sending the sensor data as a data stream over BLE between two nRF52840 devices, after the first device receives sensor messages over Bluetooth mesh. The case you linked to is about logging over UART (that is, it is about logging to a serial console, which is different from sending some data over BLE NUS.)

    The Bluetooth: Peripheral UART sample bridges UART communication over a serial UART connection to the Nordic UART Service (NUS) Bluetooth service. You should adapt the sample code such that you send data over NUS (bt_nus_send()) whenever you get mesh messages. Your current implementation seems to still have the old serial UART to NUS functionality, but I do not see where you have connected incoming mesh messages to outbound NUS.

    Regards,
    Terje

  • Hi Terje, I am really new to embedded systems. would it be right for me to say that i need to pass the data from the bt mesh sensor to the fifo uart receiver data ? would adding this line to my main.c file's main function be sufficient ? 

    bt_mesh_sensor_ch_str=fifo_uart_rx_data;
  • 	void write_to_queue(char bt_mesh_sensor_ch_str) {
    		// Create a data item to store in the queue
    		int* data_item = k_malloc(sizeof(int data=atoi(bt_mesh_sensor_ch_str)));
    		if (data_item == NULL) {
    			printf("Failed to allocate memory for data item\n");
    			return;
    		}
    		*data_item = data;
    
    		// Write the data item to the queue
    		k_fifo_put(&fifo_uart_tx_data, data_item);
    	}
Related