Hi All!
Hope you are doing well!
I am using peripheral_uart example NCS v2.3.0,nrf52833DK, trying to enable the sleep mode. When I tested with the LED On/Off when button pressed example. It gave me 0.4562mA when wakeup and 0.017mA / 17uA when in sleep mode.
After that, I tested it with peripheral_uart example with some modifications
I added some features in the peripheral_uart example
- coded phy
- i2c for sensor communication
- timers
- SPI for nrf21540
When I tested with these extra features, I got 1.6mA in wakeup and sleep mode 0.954mA current. Should I have to disable the above features to go into sleep mode? Any guidelines please
My project main.c
/*
* Copyright (c) 2018 Nordic Semiconductor ASA
*
* SPDX-License-Identifier: LicenseRef-Nordic-5-Clause
*/
/** @file
* @brief Nordic UART Bridge Service (NUS) sample//i added // added from luis pc
*/
#include "uart_async_adapter.h"
//#include "nrf52.h"
#include <zephyr/types.h>
#include <zephyr/kernel.h>
#include <zephyr/drivers/uart.h>
#include <zephyr/usb/usb_device.h>
#include <zephyr/device.h>
#include <zephyr/devicetree.h>
#include <soc.h>
#include <zephyr/bluetooth/bluetooth.h>
#include <zephyr/bluetooth/uuid.h>
#include <zephyr/bluetooth/gatt.h>
#include <zephyr/bluetooth/hci_vs.h>
#include <zephyr/bluetooth/hci.h>
#include <bluetooth/services/nus.h>
#include <dk_buttons_and_leds.h>
#include <zephyr/settings/settings.h>
#include <stdio.h>
#include <zephyr/logging/log.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/drivers/spi.h>
#include<zephyr/devicetree.h>
#include <zephyr/sys/printk.h>
#include <zephyr/drivers/bluetooth/hci_driver.h>
//............................. code added .................................
#include <zephyr/drivers/i2c.h>
#include <stdio.h>
#include "Tlv493d.h"
#include "Loading_Events.h"
#include "Timers.h"
#define SPI_DEV_NAME "spi_3"
#define cs DT_ALIAS(led1)// 11 for nrf52833
#define pdn DT_ALIAS(led2)// 28 for nrf52833
#define SLEEP_TIME_MS 1000
#define I2C0_NODE DT_NODELABEL(mysensor) // line added
#define my_stack_size 512
#define priority 5
uint8_t mac_address[6];
char Tx_Pwr_Nrf21540;
static const struct i2c_dt_spec dev_i2c = I2C_DT_SPEC_GET(I2C0_NODE);
//struct k_timer my_timer; // timer struct defined
//struct k_work_q tlv493d_work_q;
extern float * Average_Values;
extern float AverageX,AverageY;
extern void mytimer_cb(struct k_timer *dummy);
extern void tlv493D_work_cb(struct k_work_q * work);
K_WORK_DEFINE(tlv493d_work,tlv493D_work_cb);
K_TIMER_DEFINE(my_timer,mytimer_cb,NULL);
//............................. code added .................................
#define LOG_MODULE_NAME peripheral_uart
LOG_MODULE_REGISTER(LOG_MODULE_NAME,LOG_LEVEL_DBG);
#define STACKSIZE CONFIG_BT_NUS_THREAD_STACK_SIZE
#define PRIORITY 7
#define DEVICE_NAME CONFIG_BT_DEVICE_NAME
#define DEVICE_NAME_LEN (sizeof(DEVICE_NAME) - 1)
#define RUN_STATUS_LED DK_LED1
#define RUN_LED_BLINK_INTERVAL 1000
#define CON_STATUS_LED DK_LED2
#define KEY_PASSKEY_ACCEPT DK_BTN1_MSK
#define KEY_PASSKEY_REJECT DK_BTN2_MSK
#define UART_BUF_SIZE CONFIG_BT_NUS_UART_BUFFER_SIZE
#define UART_WAIT_FOR_BUF_DELAY K_MSEC(50)
#define UART_WAIT_FOR_RX CONFIG_BT_NUS_UART_RX_WAIT_TIME
static struct k_work start_advertising_worker;
static struct bt_le_ext_adv *adv;
static K_SEM_DEFINE(ble_init_ok, 0, 1);
static struct bt_conn *current_conn;
static struct bt_conn *auth_conn;
static const struct device *uart = DEVICE_DT_GET(DT_CHOSEN(nordic_nus_uart));
static struct k_work_delayable uart_work;
struct uart_data_t {
void *fifo_reserved;
uint8_t data[UART_BUF_SIZE];
uint16_t len;
};
static K_FIFO_DEFINE(fifo_uart_tx_data);
static K_FIFO_DEFINE(fifo_uart_rx_data);
static const struct bt_data ad[] = {
//BT_DATA_BYTES(BT_DATA_FLAGS, (BT_LE_AD_GENERAL | BT_LE_AD_NO_BREDR)),
BT_DATA(BT_DATA_NAME_COMPLETE, DEVICE_NAME, DEVICE_NAME_LEN),
//BT_DATA(BT_DATA_NAME_COMPLETE, DEVICE_NAME, DEVICE_NAME_LEN),
BT_DATA_BYTES(BT_DATA_FLAGS, (BT_LE_AD_GENERAL | BT_LE_AD_NO_BREDR)),
//BT_DATA(BT_DATA_NAME_COMPLETE, DEVICE_NAME, DEVICE_NAME_LEN),
BT_DATA_BYTES(BT_DATA_UUID16_ALL, 0xaa, 0xfe),
//............................. code added .................................
BT_DATA_BYTES(BT_DATA_SVC_DATA16,
0xaa, 0xfe, /* Eddystone UUID */
0x00, /* Eddystone-UID frame type */
0x00, /* Calibrated Tx power at 0m */
0x00, 0x01, 0x22, 0x33, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 10-byte Namespace */
0x0a, 0x0b, 0x0c, 0x0d, 0xee, 0x0f) /* 6-byte Instance */
//............................. code added .................................
};
static const struct bt_data sd[] = {
//BT_DATA_BYTES(BT_DATA_UUID128_ALL, BT_UUID_NUS_VAL),
//BT_DATA(BT_DATA_NAME_COMPLETE, DEVICE_NAME, DEVICE_NAME_LEN)
};
#if CONFIG_BT_NUS_UART_ASYNC_ADAPTER
UART_ASYNC_ADAPTER_INST_DEFINE(async_adapter);
#else
static const struct device *const async_adapter;
#endif
//......................... code added NRF21540.................................
const struct device * spi_dev;
static struct spi_config spi_cfg = {
.operation = SPI_WORD_SET(8)
| SPI_OP_MODE_MASTER
| SPI_TRANSFER_MSB
// | SPI_MODE_CPOL
// | SPI_MODE_CPHA
,
.frequency = 4000000,
.slave = 0,
//.cs=NULL,
};
static const struct gpio_dt_spec cs_low = GPIO_DT_SPEC_GET(cs, gpios);
static const struct gpio_dt_spec pdn_high = GPIO_DT_SPEC_GET(pdn, gpios);
static struct spi_buf rx;
const struct spi_buf_set rx_bufs = {
.buffers = &rx,
.count = 1
};
static struct spi_buf tx;
const struct spi_buf_set tx_bufs = {
.buffers = &tx,
.count = 1
};
static void spi_init(void)
{
spi_dev = device_get_binding(SPI_DEV_NAME);
// code added
if (!spi_dev) {
printk("SPI device not found\n");
return;
}
}
void Nrf21540_Write_Register()
{
int err,ret;
static uint8_t tx_buffer[2] = {0xC0, 0x7D}; // 0x7D = 31 ,0x45 = 17 , 0x05 = 1 ,// write command to confreg0 (1100 0000 /0xC0) , 0x7D = Tx_En =1 , Mode =0 , Tx gain 11111
Tx_Pwr_Nrf21540= tx_buffer[1]>>3; //(1A) for tx gain set at the nrf21540,0x7D = 0111 1101 >>3 = 0xF
tx.buf = tx_buffer;
tx.len = sizeof(tx_buffer);
static uint8_t rx_buffer[2];
rx.buf = rx_buffer;
rx.len = sizeof(rx_buffer);
ret = gpio_pin_set_dt(&cs_low,0); // low
if (ret < 0) {
return;
}
//err = spi_transceive(spi_dev, &spi_cfg, &tx_bufs, &rx_bufs); //rx_bufs
err = spi_write(spi_dev,&spi_cfg,&tx_bufs);
if (err < 0) {
printf("SPI error: %d\n", err);
} else {
printf("write successfully : %d\n", err);
for (int i = 0; i <2; i++){
printf(" %x",rx_buffer[i]);
}
printf("\n");
}
ret = gpio_pin_set_dt(&cs_low,1); // high
if (ret < 0) {
return;
}
}
void Nrf21540_Read_Register()
{
int err,ret;
static uint8_t tx_buffer[2] = {0x80, 0x00}; // 0x80 for reading register confreg0 ,0x8 1000 0000 for reading
tx.buf = tx_buffer;
tx.len = sizeof(tx_buffer);
static uint8_t rx_buffer[2];
rx.buf = rx_buffer;
rx.len = sizeof(rx_buffer);
ret = gpio_pin_set_dt(&cs_low,0); // low
if (ret < 0) {
return;
}
err = spi_transceive(spi_dev, &spi_cfg, &tx_bufs, &rx_bufs); //rx_bufs
//err = spi_write(spi_dev,&spi_cfg,&tx_bufs);
//err = spi_read(spi_dev,&spi_cfg,&rx_bufs);
if (err < 0) {
printk("SPI error: %d\n", err);
} else if (err==0){
printf("Read successfully : %d\n", err);
for (int i = 0; i <2; i++){
printf(" %x",rx_buffer[i]);
}
printf("\n");
}
ret = gpio_pin_set_dt(&cs_low,1); // high
if (ret < 0) {
return;
}
}
//......................... code added NRF21540.................................
static void uart_cb(const struct device *dev, struct uart_event *evt, void *user_data)
{
ARG_UNUSED(dev);
static size_t aborted_len;
struct uart_data_t *buf;
static uint8_t *aborted_buf;
static bool disable_req;
switch (evt->type) {
case UART_TX_DONE:
LOG_DBG("UART_TX_DONE");
if ((evt->data.tx.len == 0) ||
(!evt->data.tx.buf)) {
return;
}
if (aborted_buf) {
buf = CONTAINER_OF(aborted_buf, struct uart_data_t,
data);
aborted_buf = NULL;
aborted_len = 0;
} else {
buf = CONTAINER_OF(evt->data.tx.buf, struct uart_data_t,
data);
}
k_free(buf);
buf = k_fifo_get(&fifo_uart_tx_data, K_NO_WAIT);
if (!buf) {
return;
}
if (uart_tx(uart, buf->data, buf->len, SYS_FOREVER_MS)) {
LOG_WRN("Failed to send data over UART");
}
break;
case UART_RX_RDY:
LOG_DBG("UART_RX_RDY");
buf = CONTAINER_OF(evt->data.rx.buf, struct uart_data_t, data);
buf->len += evt->data.rx.len;
if (disable_req) {
return;
}
if ((evt->data.rx.buf[buf->len - 1] == '\n') ||
(evt->data.rx.buf[buf->len - 1] == '\r')) {
disable_req = true;
uart_rx_disable(uart);
}
break;
case UART_RX_DISABLED:
LOG_DBG("UART_RX_DISABLED");
disable_req = false;
buf = k_malloc(sizeof(*buf));
if (buf) {
buf->len = 0;
} else {
LOG_WRN("Not able to allocate UART receive buffer");
k_work_reschedule(&uart_work, UART_WAIT_FOR_BUF_DELAY);
return;
}
uart_rx_enable(uart, buf->data, sizeof(buf->data),
UART_WAIT_FOR_RX);
break;
case UART_RX_BUF_REQUEST:
LOG_DBG("UART_RX_BUF_REQUEST");
buf = k_malloc(sizeof(*buf));
if (buf) {
buf->len = 0;
uart_rx_buf_rsp(uart, buf->data, sizeof(buf->data));
} else {
LOG_WRN("Not able to allocate UART receive buffer");
}
break;
case UART_RX_BUF_RELEASED:
LOG_DBG("UART_RX_BUF_RELEASED");
buf = CONTAINER_OF(evt->data.rx_buf.buf, struct uart_data_t,
data);
if (buf->len > 0) {
k_fifo_put(&fifo_uart_rx_data, buf);
} else {
k_free(buf);
}
break;
case UART_TX_ABORTED:
LOG_DBG("UART_TX_ABORTED");
if (!aborted_buf) {
aborted_buf = (uint8_t *)evt->data.tx.buf;
}
aborted_len += evt->data.tx.len;
buf = CONTAINER_OF(aborted_buf, struct uart_data_t,
data);
uart_tx(uart, &buf->data[aborted_len],
buf->len - aborted_len, SYS_FOREVER_MS);
break;
default:
break;
}
}
static void uart_work_handler(struct k_work *item)
{
struct uart_data_t *buf;
buf = k_malloc(sizeof(*buf));
if (buf) {
buf->len = 0;
} else {
LOG_WRN("Not able to allocate UART receive buffer");
k_work_reschedule(&uart_work, UART_WAIT_FOR_BUF_DELAY);
return;
}
uart_rx_enable(uart, buf->data, sizeof(buf->data), UART_WAIT_FOR_RX);
}
#ifdef CONFIG_UART_ASYNC_API
static bool uart_test_async_api(const struct device *dev)
{
const struct uart_driver_api *api =
(const struct uart_driver_api *)dev->api;
return (api->callback_set != NULL);
}
#endif
static int uart_init(void)
{
int err;
int pos;
struct uart_data_t *rx;
struct uart_data_t *tx;
if (!device_is_ready(uart)) {
return -ENODEV;
}
if (IS_ENABLED(CONFIG_USB_DEVICE_STACK)) {
err = usb_enable(NULL);
if (err) {
LOG_ERR("Failed to enable USB");
return err;
}
}
rx = k_malloc(sizeof(*rx));
if (rx) {
rx->len = 0;
} else {
return -ENOMEM;
}
k_work_init_delayable(&uart_work, uart_work_handler);
if (IS_ENABLED(CONFIG_BT_NUS_UART_ASYNC_ADAPTER) && !uart_test_async_api(uart)) {
/* Implement API adapter */
uart_async_adapter_init(async_adapter, uart);
uart = async_adapter;
}
err = uart_callback_set(uart, uart_cb, NULL);
if (err) {
LOG_ERR("Cannot initialize UART callback");
return err;
}
if (IS_ENABLED(CONFIG_UART_LINE_CTRL)) {
LOG_INF("Wait for DTR");
while (true) {
uint32_t dtr = 0;
uart_line_ctrl_get(uart, UART_LINE_CTRL_DTR, &dtr);
if (dtr) {
break;
}
/* Give CPU resources to low priority threads. */
k_sleep(K_MSEC(100));
}
LOG_INF("DTR set");
err = uart_line_ctrl_set(uart, UART_LINE_CTRL_DCD, 1);
if (err) {
LOG_WRN("Failed to set DCD, ret code %d", err);
}
err = uart_line_ctrl_set(uart, UART_LINE_CTRL_DSR, 1);
if (err) {
LOG_WRN("Failed to set DSR, ret code %d", err);
}
}
tx = k_malloc(sizeof(*tx));
if (tx) {
pos = snprintf(tx->data, sizeof(tx->data),
"Starting Nordic UART service example\r\n");
if ((pos < 0) || (pos >= sizeof(tx->data))) {
k_free(tx);
LOG_ERR("snprintf returned %d", pos);
return -ENOMEM;
}
tx->len = pos;
} else {
return -ENOMEM;
}
err = uart_tx(uart, tx->data, tx->len, SYS_FOREVER_MS);
if (err) {
LOG_ERR("Cannot display welcome message (err: %d)", err);
return err;
}
return uart_rx_enable(uart, rx->data, sizeof(rx->data), 50);
}
static void connected(struct bt_conn *conn, uint8_t err)
{
char addr[BT_ADDR_LE_STR_LEN];
if (err) {
LOG_ERR("Connection failed (err %u)", err);
return;
}
bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));
LOG_INF("Connected %s", addr);
current_conn = bt_conn_ref(conn);
dk_set_led_on(CON_STATUS_LED);
}
static void disconnected(struct bt_conn *conn, uint8_t reason)
{
char addr[BT_ADDR_LE_STR_LEN];
bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));
LOG_INF("Disconnected: %s (reason %u)", addr, reason);
if (auth_conn) {
bt_conn_unref(auth_conn);
auth_conn = NULL;
}
if (current_conn) {
bt_conn_unref(current_conn);
current_conn = NULL;
dk_set_led_off(CON_STATUS_LED);
}
// bt_ready();
}
#ifdef CONFIG_BT_NUS_SECURITY_ENABLED
static void security_changed(struct bt_conn *conn, bt_security_t level,
enum bt_security_err err)
{
char addr[BT_ADDR_LE_STR_LEN];
bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));
if (!err) {
LOG_INF("Security changed: %s level %u", addr,
level);
} else {
LOG_WRN("Security failed: %s level %u err %d", addr,
level, err);
}
}
#endif
BT_CONN_CB_DEFINE(conn_callbacks) = {
.connected = connected,
.disconnected = disconnected,
#ifdef CONFIG_BT_NUS_SECURITY_ENABLED
.security_changed = security_changed,
#endif
};
#if defined(CONFIG_BT_NUS_SECURITY_ENABLED)
static void auth_passkey_display(struct bt_conn *conn, unsigned int passkey)
{
char addr[BT_ADDR_LE_STR_LEN];
bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));
LOG_INF("Passkey for %s: %06u", addr, passkey);
}
static void auth_passkey_confirm(struct bt_conn *conn, unsigned int passkey)
{
char addr[BT_ADDR_LE_STR_LEN];
auth_conn = bt_conn_ref(conn);
bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));
LOG_INF("Passkey for %s: %06u", addr, passkey);
LOG_INF("Press Button 1 to confirm, Button 2 to reject.");
}
static void auth_cancel(struct bt_conn *conn)
{
char addr[BT_ADDR_LE_STR_LEN];
bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));
LOG_INF("Pairing cancelled: %s", addr);
}
static void pairing_complete(struct bt_conn *conn, bool bonded)
{
char addr[BT_ADDR_LE_STR_LEN];
bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));
LOG_INF("Pairing completed: %s, bonded: %d", addr,
bonded);
}
static void pairing_failed(struct bt_conn *conn, enum bt_security_err reason)
{
char addr[BT_ADDR_LE_STR_LEN];
bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));
LOG_INF("Pairing failed conn: %s, reason %d", addr,
reason);
}
static struct bt_conn_auth_cb conn_auth_callbacks = {
.passkey_display = auth_passkey_display,
.passkey_confirm = auth_passkey_confirm,
.cancel = auth_cancel,
};
static struct bt_conn_auth_info_cb conn_auth_info_callbacks = {
.pairing_complete = pairing_complete,
.pairing_failed = pairing_failed
};
#else
static struct bt_conn_auth_cb conn_auth_callbacks;
#endif
static void bt_receive_cb(struct bt_conn *conn, const uint8_t *const data,
uint16_t len)
{
int err;
char addr[BT_ADDR_LE_STR_LEN] = {0};
bt_addr_le_to_str(bt_conn_get_dst(conn), addr, ARRAY_SIZE(addr));
LOG_INF("Received data from: %s", addr);
for (uint16_t pos = 0; pos != len;) {
struct uart_data_t *tx = k_malloc(sizeof(*tx));
if (!tx) {
LOG_WRN("Not able to allocate UART send data buffer");
return;
}
/* Keep the last byte of TX buffer for potential LF char. */
size_t tx_data_size = sizeof(tx->data) - 1;
if ((len - pos) > tx_data_size) {
tx->len = tx_data_size;
} else {
tx->len = (len - pos);
}
memcpy(tx->data, &data[pos], tx->len);
pos += tx->len;
/* Append the LF character when the CR character triggered
* transmission from the peer.
*/
if ((pos == len) && (data[len - 1] == '\r')) {
tx->data[tx->len] = '\n';
tx->len++;
}
err = uart_tx(uart, tx->data, tx->len, SYS_FOREVER_MS);
if (err) {
k_fifo_put(&fifo_uart_tx_data, tx);
}
}
}
static struct bt_nus_cb nus_cb = {
.received = bt_receive_cb,
};
void error(void)
{
dk_set_leds_state(DK_ALL_LEDS_MSK, DK_NO_LEDS_MSK);
while (true) {
/* Spin for ever */
k_sleep(K_MSEC(1000));
}
}
#ifdef CONFIG_BT_NUS_SECURITY_ENABLED
static void num_comp_reply(bool accept)
{
if (accept) {
bt_conn_auth_passkey_confirm(auth_conn);
LOG_INF("Numeric Match, conn %p", (void *)auth_conn);
} else {
bt_conn_auth_cancel(auth_conn);
LOG_INF("Numeric Reject, conn %p", (void *)auth_conn);
}
bt_conn_unref(auth_conn);
auth_conn = NULL;
}
void button_changed(uint32_t button_state, uint32_t has_changed)
{
uint32_t buttons = button_state & has_changed;
if (auth_conn) {
if (buttons & KEY_PASSKEY_ACCEPT) {
num_comp_reply(true);
}
if (buttons & KEY_PASSKEY_REJECT) {
num_comp_reply(false);
}
}
}
#endif /* CONFIG_BT_NUS_SECURITY_ENABLED */
static void configure_gpio(void)
{
int err;
#ifdef CONFIG_BT_NUS_SECURITY_ENABLED
err = dk_buttons_init(button_changed);
if (err) {
LOG_ERR("Cannot init buttons (err: %d)", err);
}
#endif /* CONFIG_BT_NUS_SECURITY_ENABLED */
err = dk_leds_init();
if (err) {
LOG_ERR("Cannot init LEDs (err: %d)", err);
}
}
static void start_advertising_coded(struct k_work *item)
{
int err;
err = bt_le_ext_adv_start(adv, NULL);
if (err) {
printk("Failed to start advertising set (%d)\n", err);
return;
}
printk("Advertiser %p set started\n", adv);
}
//................................ code added ......................................
static int create_advertising_coded(void)
{
int err;
struct bt_le_adv_param param =
BT_LE_ADV_PARAM_INIT(BT_LE_ADV_OPT_CONNECTABLE |
BT_LE_ADV_OPT_EXT_ADV |
BT_LE_ADV_OPT_USE_TX_POWER |
BT_LE_ADV_OPT_CODED,
BT_GAP_ADV_FAST_INT_MIN_2,
BT_GAP_ADV_FAST_INT_MAX_2,
NULL);
err = bt_le_ext_adv_create(¶m, NULL, &adv);
if (err) {
printk("Failed to create advertiser set (%d)\n", err);
return err;
}
printk("Created adv: %p\n", adv);
err = bt_le_ext_adv_set_data(adv, ad, ARRAY_SIZE(ad), NULL, 0);
//err = bt_le_ext_adv_set_data(adv, ad, ARRAY_SIZE(ad),sd, ARRAY_SIZE(sd));
if (err) {
printk("Failed to set advertising data (%d)\n", err);
return err;
}
return 0;
}
//................................ code added ......................................
static void bt_ready(void)
{
int err = 0;
printk("Bluetooth initialized\n");
k_work_init(&start_advertising_worker, start_advertising_coded);
err = create_advertising_coded();
if (err) {
printk("Advertising failed to create (err %d)\n", err);
return;
}
k_work_submit(&start_advertising_worker);
}
//static const struct gpio_dt_spec pdn_high = GPIO_DT_SPEC_GET(pdn, gpios);
void main(void)
{
int blink_status = 0;
int err = 0;
int ret;
//................................ code added MAC Address Read ......................................
unsigned int device_addr_0 = NRF_FICR->DEVICEADDR[0];
unsigned int device_addr_1 = NRF_FICR->DEVICEADDR[1];
uint8_t* part_0 = (&device_addr_0);
uint8_t* part_1 = (&device_addr_1);
//................................ code added END .......................................................
configure_gpio();
#ifdef CONFIG_UART_ASYNC_API
err = uart_init();
if (err) {
error();
}
#endif
//..................................... code added .......................................................
spi_init();
if (!device_is_ready(cs_low.port)) {
return;
}
ret = gpio_pin_configure_dt(&cs_low, GPIO_OUTPUT_ACTIVE);
ret = gpio_pin_configure_dt(&pdn_high ,GPIO_OUTPUT_ACTIVE);
if (ret < 0) {
return;
}
ret = gpio_pin_set_dt(&pdn_high,1); // 0.28 nrf21540 always high
if (ret < 0) {
return;
}
else
printk("PDN high at start up ...\n");
//..................................... code added .......................................................
if (IS_ENABLED(CONFIG_BT_NUS_SECURITY_ENABLED)) {
err = bt_conn_auth_cb_register(&conn_auth_callbacks);
if (err) {
printk("Failed to register authorization callbacks.\n");
return;
}
err = bt_conn_auth_info_cb_register(&conn_auth_info_callbacks);
if (err) {
printk("Failed to register authorization info callbacks.\n");
return;
}
}
err = bt_enable(NULL);
if (err) {
error();
}
//................................ code added MAC Address Read ......................................
mac_address[0] = part_1[1];
mac_address[1] = part_1[0];
mac_address[2] = part_0[3];
mac_address[3] = part_0[2];
mac_address[4] = part_0[1];
mac_address[5] = part_0[0];
for(int l=0; l<6; l++){
printf(" %x :",mac_address[l]);
}
//................................ code added MAC Address Read ......................................
LOG_INF("Bluetooth initialized");
k_sem_give(&ble_init_ok);
if (IS_ENABLED(CONFIG_SETTINGS)) {
settings_load();
}
bt_ready();
err = bt_nus_init(&nus_cb);
if (err) {
LOG_ERR("Failed to initialize UART service (err: %d)", err);
return;
}
/*err = bt_le_adv_start(BT_LE_ADV_CONN, ad, ARRAY_SIZE(ad), sd,
ARRAY_SIZE(sd));
if (err) {
LOG_ERR("Advertising failed to start (err %d)", err);
printk("Advertising failed to start (err %d)", err);
return;
}
*/
//..................................... code added .......................................................
// read_device_serial_number();
Nrf21540_Write_Register();
k_msleep(100);
Nrf21540_Read_Register();
k_msleep(100);
//............................. code added .................................
if(!device_is_ready(dev_i2c.bus)){
printf("i2c_dev not ready\n");
return;
}
/* ret = i2c_reg_write_byte_dt(&dev_i2c,0x00,0x01); // added 7/12/2023
if(ret != 0){
printk("Failed to write/read I2C device address %x at Reg. %x \r\n", dev_i2c.addr,0x00);
}
*/
//................................ code added TIMER for LEC & LED ......................................
k_timer_start(&my_timer,K_SECONDS(5),K_SECONDS(1));
//.............................. code added TIMER for LEC & LED ......................................
/* Average_Values= Read_Sensor_Calc_Average();
AverageX= *(Average_Values);
AverageY= *(Average_Values+1);
Raw_Avg_Data_To_Angle(AverageX , AverageY);
*/
// k_msleep(SLEEP_TIME_MS);
//............................. code added .................................
//..................................... code added .......................................................
/* for (;;) {
// dk_set_led(led0, (++blink_status) % 2);
k_sleep(K_MSEC(RUN_LED_BLINK_INTERVAL));
}
*/
}
void ble_write_thread(void)
{
/* Don't go any further until BLE is initialized */
k_sem_take(&ble_init_ok, K_FOREVER);
for (;;) {
/* Wait indefinitely for data to be sent over bluetooth */
struct uart_data_t *buf = k_fifo_get(&fifo_uart_rx_data,
K_FOREVER);
//............................. code added .................................
for(int i=0; i<buf->len; i++)
printk("%c",buf->data[i]);
//............................. code added .................................
//LOG_INF("Data ready to send .....\n");
if (bt_nus_send(NULL, buf->data, buf->len)) {
LOG_WRN("Failed to send data over BLE connection");
}
// LOG_INF("Data Sent **********\n");
k_free(buf);
}
}
//............................. code added .................................
K_THREAD_DEFINE(ble_write_thread_id, STACKSIZE, ble_write_thread, NULL, NULL,
NULL, PRIORITY, 0, 0);
Prj.conf
# # Copyright (c) 2018 Nordic Semiconductor # # SPDX-License-Identifier: LicenseRef-Nordic-5-Clause # #CONFIG_GPIO=y CONFIG_SPI=y CONFIG_SPI_NRFX=y #CONFIG_PM_DEVICE=y # Enable the UART driver #CONFIG_UART_ASYNC_API=y #y #CONFIG_NRFX_UARTE0=y #y #CONFIG_SERIAL=y CONFIG_GPIO=y # Make sure printk is printing to the UART console #CONFIG_CONSOLE=y #y #CONFIG_UART_CONSOLE=y #y CONFIG_I2C=y CONFIG_NEWLIB_LIBC=y CONFIG_NEWLIB_LIBC_FLOAT_PRINTF=y CONFIG_CBPRINTF_FP_SUPPORT=y CONFIG_HEAP_MEM_POOL_SIZE=2048 CONFIG_BT=y CONFIG_BT_PERIPHERAL=y CONFIG_BT_DEVICE_NAME="Nordic_UART_Service" CONFIG_BT_DEVICE_APPEARANCE=833 CONFIG_BT_MAX_CONN=1 CONFIG_BT_MAX_PAIRED=1 CONFIG_BT_HCI_VS_EXT=y # Enable the NUS service CONFIG_BT_NUS=y # Enable bonding CONFIG_BT_SETTINGS=y CONFIG_FLASH=y CONFIG_FLASH_PAGE_LAYOUT=y CONFIG_FLASH_MAP=y CONFIG_NVS=y CONFIG_SETTINGS=y # Enable DK LED and Buttons library CONFIG_DK_LIBRARY=y # This example requires more workqueue stack CONFIG_SYSTEM_WORKQUEUE_STACK_SIZE=2048 # Config logger CONFIG_LOG=n #y #CONFIG_USE_SEGGER_RTT=y #CONFIG_LOG_BACKEND_RTT=y #y #CONFIG_LOG_BACKEND_UART=y CONFIG_ASSERT=y # i added these 3 lines from child image of coded phy uart pheripheral CONFIG_BT_EXT_ADV=y CONFIG_BT_CTLR_ADV_EXT=y CONFIG_BT_CTLR_PHY_CODED=y #CONFIG_BT_USER_PHY_UPDATE=y #CONFIG_BT_LL_SW_SPLIT=y #CONFIG_BT_CTLR=y #CONFIG_BT_HCI=y #CONFIG_BT=y #CONFIG_BT_CTLR_ADVANCED_FEATURES=y #CONFIG_BT_CTLR_CONN_RSSI=y #CONFIG_BT_CTLR_TX_PWR_DYNAMIC_CONTROL=y CONFIG_BT_CTLR_TX_PWR_0=y #CONFIG_MY_CUSTOM_TX_PWR_LEVEL=8 #CONFIG_BT_USER_DATA_LEN_UPDATE=y #CONFIG_BT_AUTO_DATA_LEN_UPDATE=y #CONFIG_BT_L2CAP_TX_MTU=247 #CONFIG_BT_BUF_ACL_TX_SIZE=251 #CONFIG_BT_BUF_ACL_RX_SIZE=251 #CONFIG_BT_CTLR_DATA_LENGTH_MAX=251 #CONFIG_BT_CTLR_TX_PWR_MINUS_20=y #CONFIG_BT_CTLR_TX_PWR_MINUS_4=y #CONFIG_BT_CTLR_TX_PWR_ANTENNA=20 #CONFIG_MPSL=y #CONFIG_MPSL_FEM=y #CONFIG_MPSL_FEM_NRF21540_GPIO_SPI=y #CONFIG_MPSL_FEM_NRF21540_RX_GAIN_DB=0 #CONFIG_MPSL_FEM_NRF21540_TX_GAIN_DB=20
def_conf
# SPDX-License-Identifier: Apache-2.0 CONFIG_SOC_SERIES_NRF52X=y CONFIG_SOC_NRF52833_QIAA=y CONFIG_BOARD_NRF52833DK_NRF52833=y # Enable MPU CONFIG_ARM_MPU=y # Enable hardware stack protection CONFIG_HW_STACK_PROTECTION=y # Enable RTT CONFIG_USE_SEGGER_RTT=n # enable GPIO CONFIG_GPIO=y # enable uart driver CONFIG_SERIAL=n # enable console CONFIG_CONSOLE=n CONFIG_UART_CONSOLE=n # additional board options CONFIG_GPIO_AS_PINRESET=y CONFIG_PINCTRL=y
Thanks & Regards,