Hi
I am using HCI Power Control sample to dynamically control TX power. I found that the TX side's connection RSSI and RX side's are diferent, at some point it even has 20 db difference! Which one is the correct one?
My TX code:
/* main.c - Application main entry point */ /* * Copyright (c) 2019 Andrei Stoica * * SPDX-License-Identifier: Apache-2.0 */ #include <zephyr/types.h> #include <stddef.h> #include <zephyr/sys/printk.h> #include <zephyr/sys/util.h> #include <zephyr/sys/byteorder.h> #include <zephyr/bluetooth/bluetooth.h> #include <zephyr/bluetooth/hci.h> #include <zephyr/bluetooth/hci_vs.h> #include <zephyr/bluetooth/conn.h> #include <zephyr/bluetooth/uuid.h> #include <zephyr/bluetooth/gatt.h> //#include <zephyr/bluetooth/services/hrs.h> #include <bluetooth/services/nus.h> static struct bt_conn *default_conn; static uint16_t default_conn_handle; #define DEVICE_NAME CONFIG_BT_DEVICE_NAME #define DEVICE_NAME_LEN (sizeof(DEVICE_NAME) - 1) /* 虚拟命令字符串 */ static const char cmd_str[] = "123456789"; /* Advertising 数据 */ static const struct bt_data ad[] = { BT_DATA_BYTES(BT_DATA_FLAGS, (BT_LE_AD_GENERAL | BT_LE_AD_NO_BREDR)), BT_DATA(BT_DATA_NAME_COMPLETE, DEVICE_NAME, DEVICE_NAME_LEN), }; static const struct bt_data sd[] = { BT_DATA_BYTES(BT_DATA_UUID128_ALL, BT_UUID_NUS_VAL), }; #define DEVICE_BEACON_TXPOWER_NUM 8 static struct k_thread pwr_thread_data; static K_THREAD_STACK_DEFINE(pwr_thread_stack, 512); static const int8_t txpower[DEVICE_BEACON_TXPOWER_NUM] = {4, 0, -3, -8, -15, -18, -23, -30}; static const struct bt_le_adv_param *param = BT_LE_ADV_PARAM(BT_LE_ADV_OPT_CONNECTABLE | BT_LE_ADV_OPT_ONE_TIME, 0x0020, 0x0020, NULL); /* NUS 收到数据回调 */ static void bt_receive_cb(struct bt_conn *conn, const uint8_t *const data, uint16_t len) { printk("NUS Received: %.*s\n", len, data); } /* NUS 回调结构 */ static struct bt_nus_cb nus_cb = { .received = bt_receive_cb, }; /* 定时发送函数 */ static void nus_notify(void) { if (default_conn) { int err = bt_nus_send(default_conn, cmd_str, sizeof(cmd_str) - 1); if (err == -ENOMEM) { printk("Failed to send NUS data: Out of memory (err %d)\n", err); } else if (err) { printk("Failed to send NUS data (err %d)\n", err); } else { printk("NUS Sent: %s\n", cmd_str); } } else { printk("No active connection, skipping send\n"); } } static void read_conn_rssi(uint16_t handle, int8_t *rssi) { struct net_buf *buf, *rsp = NULL; struct bt_hci_cp_read_rssi *cp; struct bt_hci_rp_read_rssi *rp; int err; buf = bt_hci_cmd_create(BT_HCI_OP_READ_RSSI, sizeof(*cp)); if (!buf) { printk("Unable to allocate command buffer\n"); return; } cp = net_buf_add(buf, sizeof(*cp)); cp->handle = sys_cpu_to_le16(handle); err = bt_hci_cmd_send_sync(BT_HCI_OP_READ_RSSI, buf, &rsp); if (err) { printk("Read RSSI err: %d\n", err); return; } rp = (void *)rsp->data; *rssi = rp->rssi; net_buf_unref(rsp); } static void set_tx_power(uint8_t handle_type, uint16_t handle, int8_t tx_pwr_lvl) { struct bt_hci_cp_vs_write_tx_power_level *cp; struct bt_hci_rp_vs_write_tx_power_level *rp; struct net_buf *buf, *rsp = NULL; int err; buf = bt_hci_cmd_create(BT_HCI_OP_VS_WRITE_TX_POWER_LEVEL, sizeof(*cp)); if (!buf) { printk("Unable to allocate command buffer\n"); return; } cp = net_buf_add(buf, sizeof(*cp)); cp->handle = sys_cpu_to_le16(handle); cp->handle_type = handle_type; cp->tx_power_level = tx_pwr_lvl; err = bt_hci_cmd_send_sync(BT_HCI_OP_VS_WRITE_TX_POWER_LEVEL, buf, &rsp); if (err) { printk("Set Tx power err: %d\n", err); return; } rp = (void *)rsp->data; printk("Actual Tx Power: %d\n", rp->selected_tx_power); net_buf_unref(rsp); } static void get_tx_power(uint8_t handle_type, uint16_t handle, int8_t *tx_pwr_lvl) { struct bt_hci_cp_vs_read_tx_power_level *cp; struct bt_hci_rp_vs_read_tx_power_level *rp; struct net_buf *buf, *rsp = NULL; int err; *tx_pwr_lvl = 0xFF; buf = bt_hci_cmd_create(BT_HCI_OP_VS_READ_TX_POWER_LEVEL, sizeof(*cp)); if (!buf) { printk("Unable to allocate command buffer\n"); return; } cp = net_buf_add(buf, sizeof(*cp)); cp->handle = sys_cpu_to_le16(handle); cp->handle_type = handle_type; err = bt_hci_cmd_send_sync(BT_HCI_OP_VS_READ_TX_POWER_LEVEL, buf, &rsp); if (err) { printk("Read Tx power err: %d\n", err); return; } rp = (void *)rsp->data; *tx_pwr_lvl = rp->tx_power_level; net_buf_unref(rsp); } static void connected(struct bt_conn *conn, uint8_t err) { char addr[BT_ADDR_LE_STR_LEN]; int8_t txp; int ret; if (err) { printk("Connection failed, err 0x%02x %s\n", err, bt_hci_err_to_str(err)); } else { default_conn = bt_conn_ref(conn); ret = bt_hci_get_conn_handle(default_conn, &default_conn_handle); if (ret) { printk("No connection handle (err %d)\n", ret); } else { /* Send first at the default selected power */ bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr)); printk("Connected via connection (%d) at %s\n", default_conn_handle, addr); get_tx_power(BT_HCI_VS_LL_HANDLE_TYPE_CONN, default_conn_handle, &txp); printk("Connection (%d) - Initial Tx Power = %d\n", default_conn_handle, txp); set_tx_power(BT_HCI_VS_LL_HANDLE_TYPE_CONN, default_conn_handle, BT_HCI_VS_LL_TX_POWER_LEVEL_NO_PREF); get_tx_power(BT_HCI_VS_LL_HANDLE_TYPE_CONN, default_conn_handle, &txp); printk("Connection (%d) - Tx Power = %d\n", default_conn_handle, txp); } } } static void disconnected(struct bt_conn *conn, uint8_t reason) { printk("Disconnected, reason 0x%02x %s\n", reason, bt_hci_err_to_str(reason)); if (default_conn) { bt_conn_unref(default_conn); default_conn = NULL; } } BT_CONN_CB_DEFINE(conn_callbacks) = { .connected = connected, .disconnected = disconnected, }; static void bt_ready(int err) { if (err) { printk("Bluetooth init failed (err %d)\n", err); return; } printk("Bluetooth initialized\n"); /* Start advertising */ err = bt_le_adv_start(param, ad, ARRAY_SIZE(ad), sd, ARRAY_SIZE(sd)); if (err) { printk("Advertising failed to start (err %d)\n", err); return; } printk("Dynamic Tx power Beacon started\n"); } void modulate_tx_power(void *p1, void *p2, void *p3) { int8_t txp_get = 0; uint8_t idx = 0; while (1) { if (!default_conn) { printk("Set Tx power level to %d\n", txpower[idx]); set_tx_power(BT_HCI_VS_LL_HANDLE_TYPE_ADV, 0, txpower[idx]); k_sleep(K_SECONDS(5)); printk("Get Tx power level -> "); get_tx_power(BT_HCI_VS_LL_HANDLE_TYPE_ADV, 0, &txp_get); printk("TXP = %d\n", txp_get); idx = (idx+1) % DEVICE_BEACON_TXPOWER_NUM; } else { int8_t rssi = 0xFF; int8_t txp_adaptive; idx = 0; read_conn_rssi(default_conn_handle, &rssi); printk("Connected (%d) - RSSI = %d\n", default_conn_handle, rssi); if (rssi > -70) { txp_adaptive = -20; } else if (rssi > -90) { txp_adaptive = -12; } else { txp_adaptive = -4; } printk("Adaptive Tx power selected = %d\n", txp_adaptive); set_tx_power(BT_HCI_VS_LL_HANDLE_TYPE_CONN, default_conn_handle, txp_adaptive); get_tx_power(BT_HCI_VS_LL_HANDLE_TYPE_CONN, default_conn_handle, &txp_get); printk("Connection (%d) TXP = %d\n", default_conn_handle, txp_get); k_sleep(K_SECONDS(1)); } } } int main(void) { int8_t txp_get = 0xFF; int err; default_conn = NULL; printk("Starting Dynamic Tx Power Beacon Demo\n"); /* Initialize the Bluetooth Subsystem */ err = bt_enable(bt_ready); if (err) { printk("Bluetooth init failed (err %d)\n", err); } err = bt_nus_init(&nus_cb); if (err) { printk("Failed to initialize NUS (err %d)\n", err); return err; } printk("Get Tx power level ->"); get_tx_power(BT_HCI_VS_LL_HANDLE_TYPE_ADV, 0, &txp_get); printk("-> default TXP = %d\n", txp_get); /* Wait for 5 seconds to give a chance users/testers * to check that default Tx power is indeed the one * selected in Kconfig. */ k_sleep(K_SECONDS(5)); k_thread_create(&pwr_thread_data, pwr_thread_stack, K_THREAD_STACK_SIZEOF(pwr_thread_stack), modulate_tx_power, NULL, NULL, NULL, K_PRIO_COOP(10), 0, K_NO_WAIT); k_thread_name_set(&pwr_thread_data, "DYN TX"); while (1) { // hrs_notify(); nus_notify(); k_sleep(K_SECONDS(1)); } return 0; }
My RX code:
/* * Copyright (c) 2018 Nordic Semiconductor ASA * * SPDX-License-Identifier: LicenseRef-Nordic-5-Clause */ /** @file * @brief Nordic UART Service Client sample */ #include <errno.h> #include <zephyr/kernel.h> #include <zephyr/device.h> #include <zephyr/devicetree.h> #include <zephyr/sys/byteorder.h> #include <zephyr/sys/printk.h> #include <zephyr/bluetooth/bluetooth.h> #include <zephyr/bluetooth/hci.h> #include <zephyr/bluetooth/conn.h> #include <zephyr/bluetooth/uuid.h> #include <zephyr/bluetooth/gatt.h> #include <bluetooth/services/nus.h> #include <bluetooth/services/nus_client.h> #include <bluetooth/gatt_dm.h> #include <bluetooth/scan.h> #include <zephyr/settings/settings.h> #include <zephyr/drivers/uart.h> #include <zephyr/logging/log.h> #include <zephyr/bluetooth/hci.h> #define LOG_MODULE_NAME central_uart LOG_MODULE_REGISTER(LOG_MODULE_NAME); /* UART payload buffer element size. */ #define UART_BUF_SIZE 45 #define KEY_PASSKEY_ACCEPT DK_BTN1_MSK #define KEY_PASSKEY_REJECT DK_BTN2_MSK #define NUS_WRITE_TIMEOUT K_MSEC(150) #define UART_WAIT_FOR_BUF_DELAY K_MSEC(50) #define UART_RX_TIMEOUT 50000 /* Wait for RX complete event time in microseconds. */ static const struct device *uart = DEVICE_DT_GET(DT_CHOSEN(nordic_nus_uart)); static struct k_work_delayable uart_work; K_SEM_DEFINE(nus_write_sem, 0, 1); struct uart_data_t { void *fifo_reserved; uint8_t data[UART_BUF_SIZE]; uint16_t len; }; static K_FIFO_DEFINE(fifo_uart_tx_data); static K_FIFO_DEFINE(fifo_uart_rx_data); static struct bt_conn *default_conn; static struct bt_nus_client nus_client; static char last_received_data[UART_BUF_SIZE] = {0}; static uint16_t last_received_data_len = 0; static struct k_work_delayable rssi_work; // static void rssi_work_handler(struct k_work *work) // { // struct bt_conn_info info; // struct net_buf *buf = NULL, *rsp = NULL; // struct bt_hci_cp_read_rssi *cp; // struct bt_hci_rp_read_rssi *rp; // int err; // if (default_conn) { // struct bt_conn_info info; // int err; // // 获取当前连接信息 // err = bt_conn_get_info(default_conn, &info); // if (err) { // LOG_ERR("Failed to get connection info (err %d)", err); // return; // } // // 创建HCI命令缓冲区以读取RSSI // struct net_buf *buf = bt_hci_cmd_create(BT_HCI_OP_READ_RSSI, sizeof(uint16_t)); // if (!buf) { // LOG_ERR("Failed to create HCI command buffer"); // return; // } // // 填充HCI命令 // struct bt_hci_cp_read_rssi *cp = net_buf_add(buf, sizeof(*cp)); // cp->handle = sys_cpu_to_le16(info.id); // // 发送命令并解析响应 // struct net_buf *rsp; // err = bt_hci_cmd_send_sync(BT_HCI_OP_READ_RSSI, buf, &rsp); // if (err) { // LOG_ERR("Failed to read RSSI (err %d)", err); // return; // } // struct bt_hci_rp_read_rssi *rp = (void *)rsp->data; // LOG_INF("RSSI: %d dBm", rp->rssi); // LOG_INF("Data received: %.*s", last_received_data_len, last_received_data); // net_buf_unref(rsp); // } // // 调度下一次任务 // k_work_reschedule(&rssi_work, K_SECONDS(1)); // 每秒读取一次RSSI // } static void rssi_work_handler(struct k_work *work) { struct bt_conn_info info; struct net_buf *buf = NULL, *rsp = NULL; struct bt_hci_cp_read_rssi *cp; struct bt_hci_rp_read_rssi *rp; int err; if (!default_conn) { LOG_ERR("No default connection available"); goto schedule; } /* 获取当前连接信息 */ err = bt_conn_get_info(default_conn, &info); if (err) { LOG_ERR("Failed to get connection info (err %d)", err); goto schedule; } /* 创建 HCI 命令缓冲区以读取 RSSI */ buf = bt_hci_cmd_create(BT_HCI_OP_READ_RSSI, sizeof(*cp)); if (!buf) { LOG_ERR("Unable to allocate HCI command buffer"); goto schedule; } /* 填充 HCI 命令数据(使用连接标识 info.id 作为句柄) */ cp = net_buf_add(buf, sizeof(*cp)); cp->handle = sys_cpu_to_le16(info.id); /* 发送 HCI 命令并等待同步响应 */ err = bt_hci_cmd_send_sync(BT_HCI_OP_READ_RSSI, buf, &rsp); if (err) { LOG_ERR("Read RSSI error: %d", err); goto schedule; } /* 解析并打印 RSSI 数据 */ rp = (void *)rsp->data; LOG_INF("RSSI: %d dBm", rp->rssi); LOG_INF("Data received: %.*s", last_received_data_len, last_received_data); net_buf_unref(rsp); schedule: /* 调度下一次任务:每秒读取一次 RSSI */ k_work_reschedule(&rssi_work, K_SECONDS(1)); } static void ble_data_sent(struct bt_nus_client *nus, uint8_t err, const uint8_t *const data, uint16_t len) { ARG_UNUSED(nus); ARG_UNUSED(data); ARG_UNUSED(len); k_sem_give(&nus_write_sem); if (err) { LOG_WRN("ATT error code: 0x%02X", err); } } // static uint8_t ble_data_received(struct bt_nus_client *nus, // const uint8_t *data, uint16_t len) // { // ARG_UNUSED(nus); // int err; // for (uint16_t pos = 0; pos != len;) { // struct uart_data_t *tx = k_malloc(sizeof(*tx)); // if (!tx) { // LOG_WRN("Not able to allocate UART send data buffer"); // return BT_GATT_ITER_CONTINUE; // } // /* Keep the last byte of TX buffer for potential LF char. */ // size_t tx_data_size = sizeof(tx->data) - 1; // if ((len - pos) > tx_data_size) { // tx->len = tx_data_size; // } else { // tx->len = (len - pos); // } // memcpy(tx->data, &data[pos], tx->len); // pos += tx->len; // /* Append the LF character when the CR character triggered // * transmission from the peer. // */ // if ((pos == len) && (data[len - 1] == '\r')) { // tx->data[tx->len] = '\n'; // tx->len++; // } // err = uart_tx(uart, tx->data, tx->len, SYS_FOREVER_MS); // if (err) { // k_fifo_put(&fifo_uart_tx_data, tx); // } // } // return BT_GATT_ITER_CONTINUE; // } static uint8_t ble_data_received(struct bt_nus_client *nus, const uint8_t *data, uint16_t len) { ARG_UNUSED(nus); // 保存接收到的数据 memset(last_received_data, 0, sizeof(last_received_data)); last_received_data_len = len < UART_BUF_SIZE ? len : UART_BUF_SIZE - 1; memcpy(last_received_data, data, last_received_data_len); //LOG_INF("Data received: %.*s", last_received_data_len, last_received_data); return BT_GATT_ITER_CONTINUE; } static void uart_cb(const struct device *dev, struct uart_event *evt, void *user_data) { ARG_UNUSED(dev); static size_t aborted_len; struct uart_data_t *buf; static uint8_t *aborted_buf; static bool disable_req; switch (evt->type) { case UART_TX_DONE: LOG_DBG("UART_TX_DONE"); if ((evt->data.tx.len == 0) || (!evt->data.tx.buf)) { return; } if (aborted_buf) { buf = CONTAINER_OF(aborted_buf, struct uart_data_t, data[0]); aborted_buf = NULL; aborted_len = 0; } else { buf = CONTAINER_OF(evt->data.tx.buf, struct uart_data_t, data[0]); } k_free(buf); buf = k_fifo_get(&fifo_uart_tx_data, K_NO_WAIT); if (!buf) { return; } if (uart_tx(uart, buf->data, buf->len, SYS_FOREVER_MS)) { LOG_WRN("Failed to send data over UART"); } break; case UART_RX_RDY: LOG_DBG("UART_RX_RDY"); buf = CONTAINER_OF(evt->data.rx.buf, struct uart_data_t, data[0]); buf->len += evt->data.rx.len; if (disable_req) { return; } if ((evt->data.rx.buf[buf->len - 1] == '\n') || (evt->data.rx.buf[buf->len - 1] == '\r')) { disable_req = true; uart_rx_disable(uart); } break; case UART_RX_DISABLED: LOG_DBG("UART_RX_DISABLED"); disable_req = false; buf = k_malloc(sizeof(*buf)); if (buf) { buf->len = 0; } else { LOG_WRN("Not able to allocate UART receive buffer"); k_work_reschedule(&uart_work, UART_WAIT_FOR_BUF_DELAY); return; } uart_rx_enable(uart, buf->data, sizeof(buf->data), UART_RX_TIMEOUT); break; case UART_RX_BUF_REQUEST: LOG_DBG("UART_RX_BUF_REQUEST"); buf = k_malloc(sizeof(*buf)); if (buf) { buf->len = 0; uart_rx_buf_rsp(uart, buf->data, sizeof(buf->data)); } else { LOG_WRN("Not able to allocate UART receive buffer"); } break; case UART_RX_BUF_RELEASED: LOG_DBG("UART_RX_BUF_RELEASED"); buf = CONTAINER_OF(evt->data.rx_buf.buf, struct uart_data_t, data[0]); if (buf->len > 0) { k_fifo_put(&fifo_uart_rx_data, buf); } else { k_free(buf); } break; case UART_TX_ABORTED: LOG_DBG("UART_TX_ABORTED"); if (!aborted_buf) { aborted_buf = (uint8_t *)evt->data.tx.buf; } aborted_len += evt->data.tx.len; buf = CONTAINER_OF(aborted_buf, struct uart_data_t, data[0]); uart_tx(uart, &buf->data[aborted_len], buf->len - aborted_len, SYS_FOREVER_MS); break; default: break; } } static void uart_work_handler(struct k_work *item) { struct uart_data_t *buf; buf = k_malloc(sizeof(*buf)); if (buf) { buf->len = 0; } else { LOG_WRN("Not able to allocate UART receive buffer"); k_work_reschedule(&uart_work, UART_WAIT_FOR_BUF_DELAY); return; } uart_rx_enable(uart, buf->data, sizeof(buf->data), UART_RX_TIMEOUT); } static int uart_init(void) { int err; struct uart_data_t *rx; if (!device_is_ready(uart)) { LOG_ERR("UART device not ready"); return -ENODEV; } rx = k_malloc(sizeof(*rx)); if (rx) { rx->len = 0; } else { return -ENOMEM; } k_work_init_delayable(&uart_work, uart_work_handler); err = uart_callback_set(uart, uart_cb, NULL); if (err) { return err; } return uart_rx_enable(uart, rx->data, sizeof(rx->data), UART_RX_TIMEOUT); } static void discovery_complete(struct bt_gatt_dm *dm, void *context) { struct bt_nus_client *nus = context; LOG_INF("Service discovery completed"); bt_gatt_dm_data_print(dm); bt_nus_handles_assign(dm, nus); bt_nus_subscribe_receive(nus); bt_gatt_dm_data_release(dm); } static void discovery_service_not_found(struct bt_conn *conn, void *context) { LOG_INF("Service not found"); } static void discovery_error(struct bt_conn *conn, int err, void *context) { LOG_WRN("Error while discovering GATT database: (%d)", err); } struct bt_gatt_dm_cb discovery_cb = { .completed = discovery_complete, .service_not_found = discovery_service_not_found, .error_found = discovery_error, }; static void gatt_discover(struct bt_conn *conn) { int err; if (conn != default_conn) { return; } err = bt_gatt_dm_start(conn, BT_UUID_NUS_SERVICE, &discovery_cb, &nus_client); if (err) { LOG_ERR("could not start the discovery procedure, error " "code: %d", err); } } static void exchange_func(struct bt_conn *conn, uint8_t err, struct bt_gatt_exchange_params *params) { if (!err) { LOG_INF("MTU exchange done"); } else { LOG_WRN("MTU exchange failed (err %" PRIu8 ")", err); } } static void connected(struct bt_conn *conn, uint8_t conn_err) { char addr[BT_ADDR_LE_STR_LEN]; int err; bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr)); if (conn_err) { LOG_INF("Failed to connect to %s, 0x%02x %s", addr, conn_err, bt_hci_err_to_str(conn_err)); if (default_conn == conn) { bt_conn_unref(default_conn); default_conn = NULL; err = bt_scan_start(BT_SCAN_TYPE_SCAN_ACTIVE); if (err) { LOG_ERR("Scanning failed to start (err %d)", err); } } return; } LOG_INF("Connected: %s", addr); static struct bt_gatt_exchange_params exchange_params; exchange_params.func = exchange_func; err = bt_gatt_exchange_mtu(conn, &exchange_params); if (err) { LOG_WRN("MTU exchange failed (err %d)", err); } err = bt_conn_set_security(conn, BT_SECURITY_L2); if (err) { LOG_WRN("Failed to set security: %d", err); gatt_discover(conn); } err = bt_scan_stop(); if ((!err) && (err != -EALREADY)) { LOG_ERR("Stop LE scan failed (err %d)", err); } // 启动任务 k_work_schedule(&rssi_work, K_NO_WAIT); } static void disconnected(struct bt_conn *conn, uint8_t reason) { k_work_cancel_delayable(&rssi_work); // 取消RSSI任务 char addr[BT_ADDR_LE_STR_LEN]; int err; bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr)); LOG_INF("Disconnected: %s, reason 0x%02x %s", addr, reason, bt_hci_err_to_str(reason)); if (default_conn != conn) { return; } bt_conn_unref(default_conn); default_conn = NULL; err = bt_scan_start(BT_SCAN_TYPE_SCAN_ACTIVE); if (err) { LOG_ERR("Scanning failed to start (err %d)", err); } } static void security_changed(struct bt_conn *conn, bt_security_t level, enum bt_security_err err) { char addr[BT_ADDR_LE_STR_LEN]; bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr)); if (!err) { LOG_INF("Security changed: %s level %u", addr, level); } else { LOG_WRN("Security failed: %s level %u err %d %s", addr, level, err, bt_security_err_to_str(err)); } gatt_discover(conn); } BT_CONN_CB_DEFINE(conn_callbacks) = { .connected = connected, .disconnected = disconnected, .security_changed = security_changed }; static void scan_filter_match(struct bt_scan_device_info *device_info, struct bt_scan_filter_match *filter_match, bool connectable) { char addr[BT_ADDR_LE_STR_LEN]; bt_addr_le_to_str(device_info->recv_info->addr, addr, sizeof(addr)); LOG_INF("Filters matched. Address: %s connectable: %d", addr, connectable); } static void scan_connecting_error(struct bt_scan_device_info *device_info) { LOG_WRN("Connecting failed"); } static void scan_connecting(struct bt_scan_device_info *device_info, struct bt_conn *conn) { default_conn = bt_conn_ref(conn); } static int nus_client_init(void) { int err; struct bt_nus_client_init_param init = { .cb = { .received = ble_data_received, .sent = ble_data_sent, } }; err = bt_nus_client_init(&nus_client, &init); if (err) { LOG_ERR("NUS Client initialization failed (err %d)", err); return err; } LOG_INF("NUS Client module initialized"); return err; } BT_SCAN_CB_INIT(scan_cb, scan_filter_match, NULL, scan_connecting_error, scan_connecting); static int scan_init(void) { int err; struct bt_scan_init_param scan_init = { .connect_if_match = 1, }; bt_scan_init(&scan_init); bt_scan_cb_register(&scan_cb); err = bt_scan_filter_add(BT_SCAN_FILTER_TYPE_UUID, BT_UUID_NUS_SERVICE); if (err) { LOG_ERR("Scanning filters cannot be set (err %d)", err); return err; } err = bt_scan_filter_add(BT_SCAN_FILTER_TYPE_NAME, "Dynamic test beacon"); // 替换为目标设备的名称 if (err) { LOG_ERR("Failed to set name filter (err %d)", err); return err; } err = bt_scan_filter_enable(BT_SCAN_UUID_FILTER|BT_SCAN_NAME_FILTER, false); if (err) { LOG_ERR("Filters cannot be turned on (err %d)", err); return err; } LOG_INF("Scan module initialized"); return err; } static void auth_cancel(struct bt_conn *conn) { char addr[BT_ADDR_LE_STR_LEN]; bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr)); LOG_INF("Pairing cancelled: %s", addr); } static void pairing_complete(struct bt_conn *conn, bool bonded) { char addr[BT_ADDR_LE_STR_LEN]; bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr)); LOG_INF("Pairing completed: %s, bonded: %d", addr, bonded); } static void pairing_failed(struct bt_conn *conn, enum bt_security_err reason) { char addr[BT_ADDR_LE_STR_LEN]; bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr)); LOG_WRN("Pairing failed conn: %s, reason %d %s", addr, reason, bt_security_err_to_str(reason)); } static struct bt_conn_auth_cb conn_auth_callbacks = { .cancel = auth_cancel, }; static struct bt_conn_auth_info_cb conn_auth_info_callbacks = { .pairing_complete = pairing_complete, .pairing_failed = pairing_failed }; int main(void) { int err; k_work_init_delayable(&rssi_work, rssi_work_handler); err = bt_conn_auth_cb_register(&conn_auth_callbacks); if (err) { LOG_ERR("Failed to register authorization callbacks."); return 0; } err = bt_conn_auth_info_cb_register(&conn_auth_info_callbacks); if (err) { printk("Failed to register authorization info callbacks.\n"); return 0; } err = bt_enable(NULL); if (err) { LOG_ERR("Bluetooth init failed (err %d)", err); return 0; } LOG_INF("Bluetooth initialized"); if (IS_ENABLED(CONFIG_SETTINGS)) { settings_load(); } err = uart_init(); if (err != 0) { LOG_ERR("uart_init failed (err %d)", err); return 0; } err = scan_init(); if (err != 0) { LOG_ERR("scan_init failed (err %d)", err); return 0; } err = nus_client_init(); if (err != 0) { LOG_ERR("nus_client_init failed (err %d)", err); return 0; } printk("Starting Bluetooth Central UART example\n"); err = bt_scan_start(BT_SCAN_TYPE_SCAN_ACTIVE); if (err) { LOG_ERR("Scanning failed to start (err %d)", err); return 0; } LOG_INF("Scanning successfully started"); struct uart_data_t nus_data = { .len = 0, }; for (;;) { /* Wait indefinitely for data to be sent over Bluetooth */ struct uart_data_t *buf = k_fifo_get(&fifo_uart_rx_data, K_FOREVER); int plen = MIN(sizeof(nus_data.data) - nus_data.len, buf->len); int loc = 0; while (plen > 0) { memcpy(&nus_data.data[nus_data.len], &buf->data[loc], plen); nus_data.len += plen; loc += plen; if (nus_data.len >= sizeof(nus_data.data) || (nus_data.data[nus_data.len - 1] == '\n') || (nus_data.data[nus_data.len - 1] == '\r')) { err = bt_nus_client_send(&nus_client, nus_data.data, nus_data.len); if (err) { LOG_WRN("Failed to send data over BLE connection" "(err %d)", err); } err = k_sem_take(&nus_write_sem, NUS_WRITE_TIMEOUT); if (err) { LOG_WRN("NUS send timeout"); } nus_data.len = 0; } plen = MIN(sizeof(nus_data.data), buf->len - loc); } k_free(buf); } }
Thank you so much for your time!