Hi Nordic Team,
I'm currently working on a BLE project using the nRF52840 DK with the nRF5 SDK (not using SoftDevice Controller), and I’ve run into a critical issue related to BLE security and the Peer Manager.
After successfully connecting to a central device (a mobile phone), my application attempts to initiate a security procedure using pm_conn_secure()
inside the BLE_GAP_EVT_CONNECTED
event handler. However, I consistently receive the following runtime error:
<info> app_timer: RTC: initialized.
<info> app: Debug logging for UART over RTT started.
<info> app: Fast advertising
<info> app: Connected
<error> peer_manager_sm: Could not perform security procedure. smd_params_reply() or smd_link_secure() returned NRF_ERROR_INVALID_ADDR. conn_handle: 0
<error> peer_manager_handler: Unexpected fatal error occurred: error: NRF_ERROR_INVALID_ADDR
<error> peer_manager_handler: Asserting.
<error> app: Fatal error
<warning> app: System reset
Key notes:
-
I verified that the connection handle (
m_conn_handle
) is being set duringBLE_GAP_EVT_CONNECTED
, but it shows as 0 in the error log, which seems invalid or not expected. -
The Peer Manager has been initialized and
pm_register()
is called. -
I have security parameters set, similar to the BLE NUS and GLS examples.
-
My application uses LE Secure Connections and sets
sec_param.lesc = 1
,sec_param.io_caps = BLE_GAP_IO_CAPS_DISPLAY_ONLY
. -
RNG_ENABLED
is set to 1, andNRF_CRYPTO
is enabled insdk_config.h
.
During pairing with the nRF Connect mobile app, I receive the pairing notification, but the passkey input window never appears, and the connection fails shortly afterward.
/** * Copyright (c) 2014 - 2021, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /** @file * * @defgroup ble_sdk_uart_over_ble_main main.c * @{ * @ingroup ble_sdk_app_nus_eval * @brief UART over BLE application main file. * * This file contains the source code for a sample application that uses the Nordic UART service. * This application uses the @ref srvlib_conn_params module. */ #include <stdint.h> #include <string.h> #include "nordic_common.h" #include "nrf.h" #include "ble_hci.h" #include "ble_advdata.h" #include "ble_advertising.h" #include "ble_conn_params.h" #include "nrf_sdh.h" #include "nrf_sdh_soc.h" #include "nrf_sdh_ble.h" #include "nrf_ble_gatt.h" #include "nrf_ble_qwr.h" #include "app_timer.h" #include "ble_nus.h" #include "app_uart.h" #include "app_util_platform.h" #include "bsp_btn_ble.h" #include "nrf_pwr_mgmt.h" #if defined (UART_PRESENT) #include "nrf_uart.h" #endif #if defined (UARTE_PRESENT) #include "nrf_uarte.h" #endif #include "nrf_log.h" #include "nrf_log_ctrl.h" #include "nrf_log_default_backends.h" #include "nrf_gpio.h" #include "nrf_delay.h" // File related to Enable Encryption based pairing #define ENCRPTION_EN 1 #if (ENCRPTION_EN) #include "peer_manager.h" #include "peer_manager_handler.h" #include "fds.h" #include "nrf_ble_lesc.h" #include "app_error.h" #include "ble.h" #include "ble_err.h" #include "ble_srv_common.h" #include "ble_racp.h" #include "ble_conn_state.h" #endif #define USR_PIN NRF_GPIO_PIN_MAP(1,8) #define APP_BLE_CONN_CFG_TAG 1 /**< A tag identifying the SoftDevice BLE configuration. */ #define DEVICE_NAME "Sainti" /**< Name of device. Will be included in the advertising data. */ #define NUS_SERVICE_UUID_TYPE BLE_UUID_TYPE_VENDOR_BEGIN /**< UUID type for the Nordic UART Service (vendor specific). */ #define APP_BLE_OBSERVER_PRIO 3 /**< Application's BLE observer priority. You shouldn't need to modify this value. */ #define APP_ADV_INTERVAL 64 /**< The advertising interval (in units of 0.625 ms. This value corresponds to 40 ms). */ #define APP_ADV_DURATION 18000 /**< The advertising duration (180 seconds) in units of 10 milliseconds. */ #define MIN_CONN_INTERVAL MSEC_TO_UNITS(10, UNIT_1_25_MS) /**< Minimum acceptable connection interval (20 ms), Connection interval uses 1.25 ms units. */ #define MAX_CONN_INTERVAL MSEC_TO_UNITS(15, UNIT_1_25_MS) /**< Maximum acceptable connection interval (75 ms), Connection interval uses 1.25 ms units. */ #define SLAVE_LATENCY 0 /**< Slave latency. */ #define CONN_SUP_TIMEOUT MSEC_TO_UNITS(4000, UNIT_10_MS) /**< Connection supervisory timeout (4 seconds), Supervision Timeout uses 10 ms units. */ #define FIRST_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(5000) /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */ #define NEXT_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(30000) /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */ #define MAX_CONN_PARAMS_UPDATE_COUNT 3 /**< Number of attempts before giving up the connection parameter negotiation. */ #define SEC_PARAM_BOND 1 /**< Perform bonding. */ #define SEC_PARAM_MITM 1 /**< Man In The Middle protection required (applicable when display module is detected). */ #define SEC_PARAM_LESC 1 /**< LE Secure Connections enabled. */ #define SEC_PARAM_KEYPRESS 0 /**< Keypress notifications not enabled. */ #define SEC_PARAM_IO_CAPABILITIES BLE_GAP_IO_CAPS_DISPLAY_ONLY /**< Display I/O capabilities. */ #define SEC_PARAM_OOB 0 /**< Out Of Band data not available. */ #define SEC_PARAM_MIN_KEY_SIZE 7 /**< Minimum encryption key size. */ #define SEC_PARAM_MAX_KEY_SIZE 16 /**< Maximum encryption key size. */ #define PASSKEY_TXT "Passkey:" /**< Message to be displayed together with the pass-key. */ #define PASSKEY_TXT_LENGTH 8 /**< Length of message to be displayed together with the pass-key. */ #define PASSKEY_LENGTH 6 #define DEAD_BEEF 0xDEADBEEF /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */ #define UART_TX_BUF_SIZE 256 /**< UART TX buffer size. */ #define UART_RX_BUF_SIZE 256 /**< UART RX buffer size. */ BLE_NUS_DEF(m_nus, NRF_SDH_BLE_TOTAL_LINK_COUNT); /**< BLE NUS service instance. */ NRF_BLE_GATT_DEF(m_gatt); /**< GATT module instance. */ NRF_BLE_QWR_DEF(m_qwr); /**< Context for the Queued Write module.*/ BLE_ADVERTISING_DEF(m_advertising); /**< Advertising module instance. */ static uint16_t m_conn_handle = BLE_CONN_HANDLE_INVALID; /**< Handle of the current connection. */ static uint16_t m_ble_nus_max_data_len = BLE_GATT_ATT_MTU_DEFAULT - 3; /**< Maximum length of data (in bytes) that can be transmitted to the peer by the Nordic UART service module. */ static ble_uuid_t m_adv_uuids[] = /**< Universally unique service identifier. */ { {BLE_UUID_NUS_SERVICE, NUS_SERVICE_UUID_TYPE} }; static pm_peer_id_t m_peer_to_be_deleted = PM_PEER_ID_INVALID; static void advertising_start(bool erase_bonds); /**@brief Function for assert macro callback. * * @details This function will be called in case of an assert in the SoftDevice. * * @warning This handler is an example only and does not fit a final product. You need to analyse * how your product is supposed to react in case of Assert. * @warning On assert from the SoftDevice, the system can only recover on reset. * * @param[in] line_num Line number of the failing ASSERT call. * @param[in] p_file_name File name of the failing ASSERT call. */ void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name) { app_error_handler(DEAD_BEEF, line_num, p_file_name); } /**@brief Function for initializing the timer module. */ static void timers_init(void) { ret_code_t err_code = app_timer_init(); APP_ERROR_CHECK(err_code); } /**@brief Function for the GAP initialization. * * @details This function will set up all the necessary GAP (Generic Access Profile) parameters of * the device. It also sets the permissions and appearance. */ static void gap_params_init(void) { uint32_t err_code; ble_gap_conn_params_t gap_conn_params; ble_gap_conn_sec_mode_t sec_mode; BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode); err_code = sd_ble_gap_device_name_set(&sec_mode, (const uint8_t *) DEVICE_NAME, strlen(DEVICE_NAME)); APP_ERROR_CHECK(err_code); err_code = sd_ble_gap_appearance_set(BLE_APPEARANCE_UNKNOWN); APP_ERROR_CHECK(err_code); memset(&gap_conn_params, 0, sizeof(gap_conn_params)); gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL; gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL; gap_conn_params.slave_latency = SLAVE_LATENCY; gap_conn_params.conn_sup_timeout = CONN_SUP_TIMEOUT; err_code = sd_ble_gap_ppcp_set(&gap_conn_params); APP_ERROR_CHECK(err_code); } /**@brief Function for handling Queued Write Module errors. * * @details A pointer to this function will be passed to each service which may need to inform the * application about an error. * * @param[in] nrf_error Error code containing information about what went wrong. */ static void nrf_qwr_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } /**@brief Function for handling the data from the Nordic UART Service. * * @details This function will process the data received from the Nordic UART BLE Service and send * it to the UART module. * * @param[in] p_evt Nordic UART Service event. */ /**@snippet [Handling the data received over BLE] */ volatile char BLE_ready=1; static void nus_data_handler(ble_nus_evt_t * p_evt) { if (p_evt->type == BLE_NUS_EVT_RX_DATA) { uint32_t err_code; NRF_LOG_DEBUG("Received data from BLE NUS. Writing data on UART."); NRF_LOG_HEXDUMP_DEBUG(p_evt->params.rx_data.p_data, p_evt->params.rx_data.length); for (uint32_t i = 0; i < p_evt->params.rx_data.length; i++) { do { err_code = app_uart_put(p_evt->params.rx_data.p_data[i]); if ((err_code != NRF_SUCCESS) && (err_code != NRF_ERROR_BUSY)) { NRF_LOG_ERROR("Failed receiving NUS message. Error 0x%x. ", err_code); APP_ERROR_CHECK(err_code); } } while (err_code == NRF_ERROR_BUSY); } if (p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 1] == '\r') { while (app_uart_put('\n') == NRF_ERROR_BUSY); } }else if (p_evt->type == BLE_NUS_EVT_TX_RDY) { BLE_ready = true; } } /**@snippet [Handling the data received over BLE] */ /**@brief Function for initializing services that will be used by the application. */ static void services_init(void) { uint32_t err_code; ble_nus_init_t nus_init; nrf_ble_qwr_init_t qwr_init = {0}; // Initialize Queued Write Module. qwr_init.error_handler = nrf_qwr_error_handler; err_code = nrf_ble_qwr_init(&m_qwr, &qwr_init); APP_ERROR_CHECK(err_code); // Initialize NUS. memset(&nus_init, 0, sizeof(nus_init)); nus_init.data_handler = nus_data_handler; err_code = ble_nus_init(&m_nus, &nus_init); APP_ERROR_CHECK(err_code); } /**@brief Function for handling an event from the Connection Parameters Module. * * @details This function will be called for all events in the Connection Parameters Module * which are passed to the application. * * @note All this function does is to disconnect. This could have been done by simply setting * the disconnect_on_fail config parameter, but instead we use the event handler * mechanism to demonstrate its use. * * @param[in] p_evt Event received from the Connection Parameters Module. */ static void on_conn_params_evt(ble_conn_params_evt_t * p_evt) { uint32_t err_code; if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED) { err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE); APP_ERROR_CHECK(err_code); } } /**@brief Function for handling errors from the Connection Parameters module. * * @param[in] nrf_error Error code containing information about what went wrong. */ static void conn_params_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } /**@brief Function for initializing the Connection Parameters module. */ static void conn_params_init(void) { uint32_t err_code; ble_conn_params_init_t cp_init; memset(&cp_init, 0, sizeof(cp_init)); cp_init.p_conn_params = NULL; cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY; cp_init.next_conn_params_update_delay = NEXT_CONN_PARAMS_UPDATE_DELAY; cp_init.max_conn_params_update_count = MAX_CONN_PARAMS_UPDATE_COUNT; cp_init.start_on_notify_cccd_handle = BLE_GATT_HANDLE_INVALID; cp_init.disconnect_on_fail = false; cp_init.evt_handler = on_conn_params_evt; cp_init.error_handler = conn_params_error_handler; err_code = ble_conn_params_init(&cp_init); APP_ERROR_CHECK(err_code); } /**@brief Function for putting the chip into sleep mode. * * @note This function will not return. */ static void sleep_mode_enter(void) { uint32_t err_code = bsp_indication_set(BSP_INDICATE_IDLE); APP_ERROR_CHECK(err_code); // Prepare wakeup buttons. err_code = bsp_btn_ble_sleep_mode_prepare(); APP_ERROR_CHECK(err_code); // Go to system-off mode (this function will not return; wakeup will cause a reset). err_code = sd_power_system_off(); APP_ERROR_CHECK(err_code); } /**@brief Function for handling advertising events. * * @details This function will be called for advertising events which are passed to the application. * * @param[in] ble_adv_evt Advertising event. */ static void on_adv_evt(ble_adv_evt_t ble_adv_evt) { uint32_t err_code; switch (ble_adv_evt) { case BLE_ADV_EVT_FAST: NRF_LOG_INFO("Fast advertising"); err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING); APP_ERROR_CHECK(err_code); break; case BLE_ADV_EVT_IDLE: sleep_mode_enter(); break; default: break; } } /**@brief Function for handling BLE events. * * @param[in] p_ble_evt Bluetooth stack event. * @param[in] p_context Unused. */ volatile short int BLE_Connect=0; static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context) { ret_code_t err_code; pm_handler_secure_on_connection(p_ble_evt); switch (p_ble_evt->header.evt_id) { case BLE_GAP_EVT_DISCONNECTED: NRF_LOG_INFO("Disconnected"); // Check if the last connected peer had not used MITM, if so, delete its bond information. if (m_peer_to_be_deleted != PM_PEER_ID_INVALID) { err_code = pm_peer_delete(m_peer_to_be_deleted); APP_ERROR_CHECK(err_code); NRF_LOG_DEBUG("Collector's bond deleted"); m_peer_to_be_deleted = PM_PEER_ID_INVALID; } BLE_Connect=0; break; case BLE_GAP_EVT_CONNECTED: NRF_LOG_INFO("Connected"); m_peer_to_be_deleted = PM_PEER_ID_INVALID; err_code = bsp_indication_set(BSP_INDICATE_CONNECTED); APP_ERROR_CHECK(err_code); m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle; err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr, m_conn_handle); APP_ERROR_CHECK(err_code); // pm_conn_sec_status_t status; // err_code = pm_conn_sec_status_get(m_conn_handle, &status); // APP_ERROR_CHECK(err_code); // if (!status.encrypted) // { // NRF_LOG_INFO("Link not encrypted. Initiating security procedure."); // err_code = pm_conn_secure(m_conn_handle, false); // APP_ERROR_CHECK(err_code); // } // Start Security Request timer. break; case BLE_GAP_EVT_PHY_UPDATE_REQUEST: { NRF_LOG_DEBUG("PHY update request."); ble_gap_phys_t const phys = { .rx_phys = BLE_GAP_PHY_AUTO, .tx_phys = BLE_GAP_PHY_AUTO, }; err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys); APP_ERROR_CHECK(err_code); } break; case BLE_GATTC_EVT_TIMEOUT: // Disconnect on GATT Client timeout event. NRF_LOG_DEBUG("GATT Client Timeout."); err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; case BLE_GATTS_EVT_TIMEOUT: // Disconnect on GATT Server timeout event. NRF_LOG_DEBUG("GATT Server Timeout."); err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; case BLE_GAP_EVT_SEC_PARAMS_REQUEST: NRF_LOG_DEBUG("BLE_GAP_EVT_SEC_PARAMS_REQUEST"); break; case BLE_GAP_EVT_PASSKEY_DISPLAY: { char passkey[PASSKEY_LENGTH + 1]; memcpy(passkey, p_ble_evt->evt.gap_evt.params.passkey_display.passkey, PASSKEY_LENGTH); passkey[PASSKEY_LENGTH] = 0; NRF_LOG_INFO("Passkey: %s", nrf_log_push(passkey)); } break; case BLE_GAP_EVT_AUTH_KEY_REQUEST: BLE_Connect=10; NRF_LOG_INFO("BLE_GAP_EVT_AUTH_KEY_REQUEST"); break; case BLE_GAP_EVT_LESC_DHKEY_REQUEST: NRF_LOG_INFO("BLE_GAP_EVT_LESC_DHKEY_REQUEST"); break; case BLE_GAP_EVT_AUTH_STATUS: NRF_LOG_INFO("BLE_GAP_EVT_AUTH_STATUS: status=0x%x bond=0x%x lv4: %d kdist_own:0x%x kdist_peer:0x%x", p_ble_evt->evt.gap_evt.params.auth_status.auth_status, p_ble_evt->evt.gap_evt.params.auth_status.bonded, p_ble_evt->evt.gap_evt.params.auth_status.sm1_levels.lv4, *((uint8_t *)&p_ble_evt->evt.gap_evt.params.auth_status.kdist_own), *((uint8_t *)&p_ble_evt->evt.gap_evt.params.auth_status.kdist_peer)); break; default: // No implementation needed. break; } } /**@brief Function for the SoftDevice initialization. * * @details This function initializes the SoftDevice and the BLE event interrupt. */ static void ble_stack_init(void) { ret_code_t err_code; err_code = nrf_sdh_enable_request(); APP_ERROR_CHECK(err_code); // Configure the BLE stack using the default settings. // Fetch the start address of the application RAM. uint32_t ram_start = 0; err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start); APP_ERROR_CHECK(err_code); // Enable BLE stack. err_code = nrf_sdh_ble_enable(&ram_start); APP_ERROR_CHECK(err_code); // Set static passkey const uint8_t passkey[] = "123456"; // Must be 6 digits ble_opt_t passkey_opt; memset(&passkey_opt, 0, sizeof(passkey_opt)); passkey_opt.gap_opt.passkey.p_passkey = passkey; err_code = sd_ble_opt_set(BLE_GAP_OPT_PASSKEY, &passkey_opt); APP_ERROR_CHECK(err_code); // Register a handler for BLE events. NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL); } /**@brief Function for initializing the GATT library. */ void gatt_init(void) { ret_code_t err_code; err_code = nrf_ble_gatt_init(&m_gatt, NULL); } /**@brief Function for handling events from the BSP module. * * @param[in] event Event generated by button press. */ void bsp_event_handler(bsp_event_t event) { uint32_t err_code; switch (event) { case BSP_EVENT_SLEEP: sleep_mode_enter(); break; case BSP_EVENT_DISCONNECT: err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); if (err_code != NRF_ERROR_INVALID_STATE) { APP_ERROR_CHECK(err_code); } break; case BSP_EVENT_WHITELIST_OFF: if (m_conn_handle == BLE_CONN_HANDLE_INVALID) { err_code = ble_advertising_restart_without_whitelist(&m_advertising); if (err_code != NRF_ERROR_INVALID_STATE) { APP_ERROR_CHECK(err_code); } } break; default: break; } } /**@brief Function for handling Peer Manager events. * * @param[in] p_evt Peer Manager event. */ static void pm_evt_handler(pm_evt_t const * p_evt) { ret_code_t err_code; pm_handler_on_pm_evt(p_evt); pm_handler_disconnect_on_sec_failure(p_evt); pm_handler_flash_clean(p_evt); switch (p_evt->evt_id) { case PM_EVT_CONN_SEC_SUCCEEDED: { pm_conn_sec_status_t conn_sec_status; // Check if the link is authenticated (meaning at least MITM). err_code = pm_conn_sec_status_get(p_evt->conn_handle, &conn_sec_status); APP_ERROR_CHECK(err_code); if (conn_sec_status.mitm_protected) { NRF_LOG_INFO("Link secured. Role: %d. conn_handle: %d, Procedure: %d", ble_conn_state_role(p_evt->conn_handle), p_evt->conn_handle, p_evt->params.conn_sec_succeeded.procedure); } else { // The peer did not use MITM, disconnect. NRF_LOG_INFO("Collector did not use MITM, disconnecting"); err_code = pm_peer_id_get(m_conn_handle, &m_peer_to_be_deleted); APP_ERROR_CHECK(err_code); err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); } } break; case PM_EVT_CONN_SEC_FAILED: m_conn_handle = BLE_CONN_HANDLE_INVALID; break; case PM_EVT_PEERS_DELETE_SUCCEEDED: advertising_start(false); break; default: break; } } /**@brief Function for the Peer Manager initialization. */ static void peer_manager_init(void) { ble_gap_sec_params_t sec_param; ret_code_t err_code; err_code = pm_init(); APP_ERROR_CHECK(err_code); memset(&sec_param, 0, sizeof(ble_gap_sec_params_t)); // Security parameters to be used for all security procedures. sec_param.bond = SEC_PARAM_BOND; sec_param.mitm = SEC_PARAM_MITM; sec_param.lesc = SEC_PARAM_LESC; sec_param.keypress = SEC_PARAM_KEYPRESS; sec_param.io_caps = BLE_GAP_IO_CAPS_DISPLAY_ONLY; sec_param.oob = SEC_PARAM_OOB; sec_param.min_key_size = SEC_PARAM_MIN_KEY_SIZE; sec_param.max_key_size = SEC_PARAM_MAX_KEY_SIZE; sec_param.kdist_own.enc = 1; sec_param.kdist_own.id = 1; sec_param.kdist_peer.enc = 1; sec_param.kdist_peer.id = 1; err_code = pm_sec_params_set(&sec_param); APP_ERROR_CHECK(err_code); err_code = pm_register(pm_evt_handler); APP_ERROR_CHECK(err_code); } /**@brief Clear bond information from persistent storage. */ static void delete_bonds(void) { ret_code_t err_code; NRF_LOG_INFO("Erase bonds!"); err_code = pm_peers_delete(); APP_ERROR_CHECK(err_code); } /**@brief Function for handling app_uart events. * * @details This function will receive a single character from the app_uart module and append it to * a string. The string will be be sent over BLE when the last character received was a * 'new line' '\n' (hex 0x0A) or if the string has reached the maximum data length. */ /**@snippet [Handling the data received over UART] */ void uart_event_handle(app_uart_evt_t * p_event) { static uint8_t data_array[BLE_NUS_MAX_DATA_LEN]; static uint8_t index = 0; uint32_t err_code; switch (p_event->evt_type) { case APP_UART_DATA_READY: UNUSED_VARIABLE(app_uart_get(&data_array[index])); index++; if ((data_array[index - 1] == '\n') || (data_array[index - 1] == '\r') || (index >= m_ble_nus_max_data_len)) { if (index > 1) { NRF_LOG_DEBUG("Ready to send data over BLE NUS"); NRF_LOG_HEXDUMP_DEBUG(data_array, index); do { uint16_t length = (uint16_t)index; err_code = ble_nus_data_send(&m_nus, data_array, &length, m_conn_handle); if ((err_code != NRF_ERROR_INVALID_STATE) && (err_code != NRF_ERROR_RESOURCES) && (err_code != NRF_ERROR_NOT_FOUND)) { APP_ERROR_CHECK(err_code); } } while (err_code == NRF_ERROR_RESOURCES); } index = 0; } break; case APP_UART_COMMUNICATION_ERROR: APP_ERROR_HANDLER(p_event->data.error_communication); break; case APP_UART_FIFO_ERROR: APP_ERROR_HANDLER(p_event->data.error_code); break; default: break; } } /**@snippet [Handling the data received over UART] */ /**@brief Function for initializing the UART module. */ /**@snippet [UART Initialization] */ static void uart_init(void) { uint32_t err_code; app_uart_comm_params_t const comm_params = { .rx_pin_no = RX_PIN_NUMBER, .tx_pin_no = TX_PIN_NUMBER, .rts_pin_no = RTS_PIN_NUMBER, .cts_pin_no = CTS_PIN_NUMBER, .flow_control = APP_UART_FLOW_CONTROL_DISABLED, .use_parity = false, #if defined (UART_PRESENT) .baud_rate = NRF_UART_BAUDRATE_460800//NRF_UART_BAUDRATE_115200 #else .baud_rate = NRF_UARTE_BAUDRATE_115200 #endif }; APP_UART_FIFO_INIT(&comm_params, UART_RX_BUF_SIZE, UART_TX_BUF_SIZE, uart_event_handle, APP_IRQ_PRIORITY_LOWEST, err_code); APP_ERROR_CHECK(err_code); } /**@snippet [UART Initialization] */ /**@brief Function for initializing the Advertising functionality. */ static void advertising_init(void) { uint32_t err_code; ble_advertising_init_t init; memset(&init, 0, sizeof(init)); init.advdata.name_type = BLE_ADVDATA_FULL_NAME; init.advdata.include_appearance = true;//false; init.advdata.flags = BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE; init.srdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]); init.srdata.uuids_complete.p_uuids = m_adv_uuids; init.config.ble_adv_fast_enabled = true; init.config.ble_adv_fast_interval = APP_ADV_INTERVAL; init.config.ble_adv_fast_timeout = APP_ADV_DURATION; init.evt_handler = on_adv_evt; err_code = ble_advertising_init(&m_advertising, &init); APP_ERROR_CHECK(err_code); ble_advertising_conn_cfg_tag_set(&m_advertising, APP_BLE_CONN_CFG_TAG); } /**@brief Function for initializing buttons and leds. * * @param[out] p_erase_bonds Will be true if the clear bonding button was pressed to wake the application up. */ static void buttons_leds_init(bool * p_erase_bonds) { bsp_event_t startup_event; uint32_t err_code = bsp_init(BSP_INIT_LEDS | BSP_INIT_BUTTONS, bsp_event_handler); APP_ERROR_CHECK(err_code); err_code = bsp_btn_ble_init(NULL, &startup_event); APP_ERROR_CHECK(err_code); *p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA); } /**@brief Function for initializing the nrf log module. */ static void log_init(void) { ret_code_t err_code = NRF_LOG_INIT(NULL); APP_ERROR_CHECK(err_code); NRF_LOG_DEFAULT_BACKENDS_INIT(); } /**@brief Function for initializing power management. */ static void power_management_init(void) { ret_code_t err_code; err_code = nrf_pwr_mgmt_init(); APP_ERROR_CHECK(err_code); } /**@brief Function for handling the idle state (main loop). * * @details If there is no pending log operation, then sleep until next the next event occurs. */ static void idle_state_handle(void) { #if (ENCRPTION_EN) ret_code_t err_code; err_code = nrf_ble_lesc_request_handler(); APP_ERROR_CHECK(err_code); #endif if (NRF_LOG_PROCESS() == false) { nrf_pwr_mgmt_run(); } } /**@brief Function for starting advertising. */ static void advertising_start(bool erase_bonds) { if (erase_bonds == true) { delete_bonds(); // Advertising is started by PM_EVT_PEERS_DELETE_SUCCEEDED event. } else { ret_code_t err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST); APP_ERROR_CHECK(err_code); } } #define BLE_SPEED_TEST 1//0 /************************************* START TIMER Driver**********************************/ #define PKT_LEN 240 #define FIFO_SIZE 4//16 uint8_t TxFiFo[FIFO_SIZE][512]; uint8_t FifoWrInd=0, FifoRdInd=0, FifoWrCnt=0, FifoDue=0, SampleCnt=0; void send_custom_packet(void) { uint32_t err_code; uint16_t length = PKT_LEN; // Try sending the packet err_code = ble_nus_data_send(&m_nus, &TxFiFo[FifoRdInd][0], &length, m_conn_handle); if ((err_code != NRF_ERROR_INVALID_STATE) && (err_code != NRF_ERROR_RESOURCES) && (err_code != NRF_ERROR_NOT_FOUND)) { APP_ERROR_CHECK(err_code); if (err_code == NRF_SUCCESS) { FifoRdInd = (FifoRdInd+1) & (FIFO_SIZE-1); --FifoDue; // nrf_gpio_pin_toggle(USR_PIN); } } } APP_TIMER_DEF(m_data_send_timer); // Timer for sending data #define DATA_SEND_INTERVAL APP_TIMER_TICKS(3) void data_send_timer_handler(void * p_context) { UNUSED_PARAMETER(p_context); if(BLE_Connect==1) { for(int j=0;j<2;j++) { TxFiFo[FifoWrInd][FifoWrCnt++] = 0x55; // Sync byte for(int i=1;i<20;i++) TxFiFo[FifoWrInd][FifoWrCnt++] = SampleCnt; SampleCnt++; if(FifoWrCnt>=PKT_LEN) { FifoWrCnt = 0; FifoWrInd = (FifoWrInd+1) & (FIFO_SIZE-1); if(FifoDue<FIFO_SIZE-1) FifoDue++; else { //Fifo Reset FifoDue=0; FifoWrCnt = 0; FifoRdInd = FifoWrInd; } } } } else { //Fifo Reset FifoDue=0; FifoWrCnt = 0; FifoRdInd = FifoWrInd; if(BLE_Connect>1) --BLE_Connect; } } void Newtimers_init(void) { ret_code_t err_code ; err_code = app_timer_create(&m_data_send_timer, APP_TIMER_MODE_REPEATED, data_send_timer_handler); APP_ERROR_CHECK(err_code); } void start_timers(void) { ret_code_t err_code; err_code = app_timer_start(m_data_send_timer, DATA_SEND_INTERVAL, NULL); APP_ERROR_CHECK(err_code); } /************************************* END TIMER Driver**********************************/ /****************************** START UART1 with DMA Driver ***************************************/ // Define your UART pins here (replace with your specific pins) #define UART1_TX_PIN 31 #define UART1_RX_PIN 30 #define UART1_CTS_PIN 29 // Optional - for hardware flow control #define UART1_RTS_PIN 28 // Optional - for hardware flow control // Buffer for transmission //static uint8_t tx_buffer[256]; // Make sure this is in RAM, not flash static uint8_t rx_buffer[16][256]; // Initialize UART1 with EasyDMA void UART1_Init(void) { // Configure GPIO pins for UART1 // Configure TX pin as output NRF_P0->PIN_CNF[UART1_TX_PIN] = (GPIO_PIN_CNF_DRIVE_S0H1 << GPIO_PIN_CNF_DRIVE_Pos) | (GPIO_PIN_CNF_INPUT_Disconnect << GPIO_PIN_CNF_INPUT_Pos) | (GPIO_PIN_CNF_DIR_Output << GPIO_PIN_CNF_DIR_Pos); // Configure RX pin as input NRF_P0->PIN_CNF[UART1_RX_PIN] = (GPIO_PIN_CNF_DRIVE_S0H1 << GPIO_PIN_CNF_DRIVE_Pos) | (GPIO_PIN_CNF_INPUT_Connect << GPIO_PIN_CNF_INPUT_Pos) | (GPIO_PIN_CNF_DIR_Input << GPIO_PIN_CNF_DIR_Pos); // Optional: Configure CTS and RTS pins for hardware flow control /* NRF_P0->PIN_CNF[UART1_CTS_PIN] = (GPIO_PIN_CNF_DRIVE_S0H1 << GPIO_PIN_CNF_DRIVE_Pos) | (GPIO_PIN_CNF_INPUT_Connect << GPIO_PIN_CNF_INPUT_Pos) | (GPIO_PIN_CNF_DIR_Input << GPIO_PIN_CNF_DIR_Pos); NRF_P0->PIN_CNF[UART1_RTS_PIN] = (GPIO_PIN_CNF_DRIVE_S0H1 << GPIO_PIN_CNF_DRIVE_Pos) | (GPIO_PIN_CNF_INPUT_Disconnect << GPIO_PIN_CNF_INPUT_Pos) | (GPIO_PIN_CNF_DIR_Output << GPIO_PIN_CNF_DIR_Pos); */ // Disable UART1 before configuration NRF_UARTE1->ENABLE = UARTE_ENABLE_ENABLE_Disabled << UARTE_ENABLE_ENABLE_Pos; // Configure UART1 pins NRF_UARTE1->PSEL.TXD = UART1_TX_PIN; NRF_UARTE1->PSEL.RXD = UART1_RX_PIN; // Optional: Configure hardware flow control pins /* NRF_UARTE1->PSEL.CTS = UART1_CTS_PIN; NRF_UARTE1->PSEL.RTS = UART1_RTS_PIN; */ // Configure baudrate (115200) NRF_UARTE1->BAUDRATE = UARTE_BAUDRATE_BAUDRATE_Baud460800 << UARTE_BAUDRATE_BAUDRATE_Pos; // Configure parity, hardware flow control, stop bits // No parity, no flow control, 1 stop bit NRF_UARTE1->CONFIG = (UARTE_CONFIG_PARITY_Excluded << UARTE_CONFIG_PARITY_Pos) | (UARTE_CONFIG_HWFC_Disabled << UARTE_CONFIG_HWFC_Pos) | (UARTE_CONFIG_STOP_One << UARTE_CONFIG_STOP_Pos); // Clear any previous events NRF_UARTE1->EVENTS_ENDRX = 0; NRF_UARTE1->EVENTS_ENDTX = 0; NRF_UARTE1->EVENTS_ERROR = 0; NRF_UARTE1->EVENTS_RXDRDY = 0; NRF_UARTE1->EVENTS_RXSTARTED = 0; NRF_UARTE1->EVENTS_TXSTARTED = 0; NRF_UARTE1->EVENTS_TXSTOPPED = 0; // Optional: Enable interrupts NRF_UARTE1->INTENSET = UARTE_INTENSET_ENDTX_Msk | UARTE_INTENSET_ENDRX_Msk; NVIC_SetPriority(UARTE1_IRQn, 7); // Set your desired priority NVIC_EnableIRQ(UARTE1_IRQn); // Enable UART1 with EasyDMA NRF_UARTE1->ENABLE = UARTE_ENABLE_ENABLE_Enabled << UARTE_ENABLE_ENABLE_Pos; } // Transmit data using EasyDMA void UART1_Transmit(uint8_t* data_ptr, uint32_t length) { // Make sure previous transmission is complete if (NRF_UARTE1->EVENTS_ENDTX == 0) { // Wait for any ongoing transmission to complete while (NRF_UARTE1->EVENTS_TXSTOPPED == 0) { // If transmission is ongoing, stop it NRF_UARTE1->TASKS_STOPTX = 1; } NRF_UARTE1->EVENTS_TXSTOPPED = 0; } // Configure EasyDMA for transmission NRF_UARTE1->TXD.PTR = (uint32_t)data_ptr; NRF_UARTE1->TXD.MAXCNT = length; // Clear ENDTX event NRF_UARTE1->EVENTS_ENDTX = 0; // Start transmission NRF_UARTE1->TASKS_STARTTX = 1; // Wait for transmission to complete (polling method) while (NRF_UARTE1->EVENTS_ENDTX == 0); // Clear the event NRF_UARTE1->EVENTS_ENDTX = 0; } // Receive data using EasyDMA void UART1_Receive(uint8_t* data_ptr, uint32_t length) { uint8_t Timeout = 100; // Make sure previous reception is complete if (NRF_UARTE1->EVENTS_ENDRX == 0) { // Wait for any ongoing reception to complete while (NRF_UARTE1->EVENTS_RXSTARTED != 0 && NRF_UARTE1->EVENTS_ENDRX == 0) { // If reception is ongoing, stop it NRF_UARTE1->TASKS_STOPRX = 1; if(--Timeout==0)break; } } // Configure EasyDMA for reception NRF_UARTE1->RXD.PTR = (uint32_t)data_ptr; NRF_UARTE1->RXD.MAXCNT = length; // Clear ENDRX event NRF_UARTE1->EVENTS_ENDRX = 0; // Start reception NRF_UARTE1->TASKS_STARTRX = 1; // Wait for reception to complete (polling method) Timeout = 100; while (NRF_UARTE1->EVENTS_ENDRX == 0) {if(--Timeout==0)break; } // Clear the event NRF_UARTE1->EVENTS_ENDRX = 0; } #define ECG_PKT_SIZE 20 #define U1INDX 16 uint8_t U1Fifo[U1INDX][PKT_LEN],U1Wr=0,U1Rd=0,U1Due=0; void SendDatabyBLE5() { uint32_t err_code; uint16_t length = PKT_LEN; if(U1Due>0) { err_code = ble_nus_data_send(&m_nus, &rx_buffer[U1Rd][0], &length, m_conn_handle); if ((err_code != NRF_ERROR_INVALID_STATE) && (err_code != NRF_ERROR_RESOURCES) && (err_code != NRF_ERROR_NOT_FOUND)) { APP_ERROR_CHECK(err_code); if (err_code == NRF_SUCCESS) { U1Rd = (U1Rd+1) & (U1INDX-1); U1Due--; } } } } void UARTE1_IRQHandler(void) { // Handle transmission complete if (NRF_UARTE1->EVENTS_ENDTX != 0) { NRF_UARTE1->EVENTS_ENDTX = 0; } // Handle reception complete if (NRF_UARTE1->EVENTS_ENDRX != 0) { NRF_UARTE1->EVENTS_ENDRX = 0; if(BLE_Connect>1) --BLE_Connect; if(BLE_Connect==1) { U1Wr = ((U1Wr+1) &(U1INDX-1)); U1Due++; if(U1Due > U1INDX) { U1Due = 0; U1Wr = 0; U1Rd = 0; } } UART1_Receive(&rx_buffer[U1Wr][0],PKT_LEN); } // Handle errors if (NRF_UARTE1->EVENTS_ERROR != 0) { NRF_UARTE1->EVENTS_ERROR = 0; } } /**@brief Application main function. */ int main(void) { bool erase_bonds; // Initialize. // uart_init(); UART1_Init(); log_init(); timers_init(); buttons_leds_init(&erase_bonds); nrf_gpio_cfg_output(USR_PIN); // Testing purpose power_management_init(); ble_stack_init(); gap_params_init(); gatt_init(); services_init(); advertising_init(); conn_params_init(); #if (ENCRPTION_EN) peer_manager_init(); #endif // Start execution. NRF_LOG_INFO("Debug logging for UART over RTT started."); advertising_start(erase_bonds); #if (BLE_SPEED_TEST ==1) Newtimers_init();start_timers(); #else UART1_Receive(&rx_buffer[U1Wr][0],PKT_LEN); #endif // Enter main loop. for (;;) { #if (BLE_SPEED_TEST ==1) if(FifoDue>0) { send_custom_packet(); } #else SendDatabyBLE5(); #endif idle_state_handle(); } } /** * @} */This issue doesn't happen when I run the original ble_gls example with the same central device.
-
A timing issue or race condition with connection handle assignment?
-
Missing configuration or improper initialization of a required module like
nrf_ble_gq
ornrf_queue
? -
Something specific to LESC pairing with mobile phones?
I am using SDK17.0.1
Any help in identifying what might be going wrong or what I should double-check in my configuration would be greatly appreciated.