Merging Zephyr Samples (LIS2DH and UART bridge peripheral)

Hello all, I am writing this as I am very new to Studio visual code, nrf connect, and many various things used in this project. Currently I am using the two samples given using the extension nRF connect with VS code, trying to use the Thingy52 to log accelerometer data from the LIS2DH sensor to my PC involving a Blue fruit feather and Tera Term terminal. I have the original  

/*
 * Copyright (c) 2018 Nordic Semiconductor ASA
 *
 * SPDX-License-Identifier: LicenseRef-Nordic-5-Clause
 */

/** @file
 *  @brief Nordic UART Bridge Service (NUS) sample
 */
#include <uart_async_adapter.h>

#include <zephyr/types.h>
#include <zephyr/kernel.h>
#include <zephyr/drivers/uart.h>
#include <zephyr/usb/usb_device.h>

#include <zephyr/device.h>
#include <zephyr/devicetree.h>
#include <soc.h>

#include <zephyr/bluetooth/bluetooth.h>
#include <zephyr/bluetooth/uuid.h>
#include <zephyr/bluetooth/gatt.h>
#include <zephyr/bluetooth/hci.h>

#include <bluetooth/services/nus.h>

#include <dk_buttons_and_leds.h>

#include <zephyr/settings/settings.h>

#include <stdio.h>
#include <string.h>

#include <zephyr/logging/log.h>

#define LOG_MODULE_NAME peripheral_uart
LOG_MODULE_REGISTER(LOG_MODULE_NAME);

#define STACKSIZE CONFIG_BT_NUS_THREAD_STACK_SIZE
#define PRIORITY 7

#define DEVICE_NAME CONFIG_BT_DEVICE_NAME
#define DEVICE_NAME_LEN	(sizeof(DEVICE_NAME) - 1)

#define RUN_STATUS_LED DK_LED1
#define RUN_LED_BLINK_INTERVAL 1000

#define CON_STATUS_LED DK_LED2

#define KEY_PASSKEY_ACCEPT DK_BTN1_MSK
#define KEY_PASSKEY_REJECT DK_BTN2_MSK

#define UART_BUF_SIZE CONFIG_BT_NUS_UART_BUFFER_SIZE
#define UART_WAIT_FOR_BUF_DELAY K_MSEC(50)
#define UART_WAIT_FOR_RX CONFIG_BT_NUS_UART_RX_WAIT_TIME

static K_SEM_DEFINE(ble_init_ok, 0, 1);

static struct bt_conn *current_conn;
static struct bt_conn *auth_conn;
static struct k_work adv_work;

static const struct device *uart = DEVICE_DT_GET(DT_CHOSEN(nordic_nus_uart));
static struct k_work_delayable uart_work;

struct uart_data_t {
	void *fifo_reserved;
	uint8_t data[UART_BUF_SIZE];
	uint16_t len;
};

static K_FIFO_DEFINE(fifo_uart_tx_data);
static K_FIFO_DEFINE(fifo_uart_rx_data);

static const struct bt_data ad[] = {
	BT_DATA_BYTES(BT_DATA_FLAGS, (BT_LE_AD_GENERAL | BT_LE_AD_NO_BREDR)),
	BT_DATA(BT_DATA_NAME_COMPLETE, DEVICE_NAME, DEVICE_NAME_LEN),
};

static const struct bt_data sd[] = {
	BT_DATA_BYTES(BT_DATA_UUID128_ALL, BT_UUID_NUS_VAL),
};

#ifdef CONFIG_UART_ASYNC_ADAPTER
UART_ASYNC_ADAPTER_INST_DEFINE(async_adapter);
#else
#define async_adapter NULL
#endif

static void uart_cb(const struct device *dev, struct uart_event *evt, void *user_data)
{
	ARG_UNUSED(dev);

	static size_t aborted_len;
	struct uart_data_t *buf;
	static uint8_t *aborted_buf;
	static bool disable_req;

	switch (evt->type) {
	case UART_TX_DONE:
		LOG_DBG("UART_TX_DONE");
		if ((evt->data.tx.len == 0) ||
		    (!evt->data.tx.buf)) {
			return;
		}

		if (aborted_buf) {
			buf = CONTAINER_OF(aborted_buf, struct uart_data_t,
					   data[0]);
			aborted_buf = NULL;
			aborted_len = 0;
		} else {
			buf = CONTAINER_OF(evt->data.tx.buf, struct uart_data_t,
					   data[0]);
		}

		k_free(buf);

		buf = k_fifo_get(&fifo_uart_tx_data, K_NO_WAIT);
		if (!buf) {
			return;
		}

		if (uart_tx(uart, buf->data, buf->len, SYS_FOREVER_MS)) {
			LOG_WRN("Failed to send data over UART");
		}

		break;

	case UART_RX_RDY:
		LOG_DBG("UART_RX_RDY");
		buf = CONTAINER_OF(evt->data.rx.buf, struct uart_data_t, data[0]);
		buf->len += evt->data.rx.len;

		if (disable_req) {
			return;
		}

		if ((evt->data.rx.buf[buf->len - 1] == '\n') ||
		    (evt->data.rx.buf[buf->len - 1] == '\r')) {
			disable_req = true;
			uart_rx_disable(uart);
		}

		break;

	case UART_RX_DISABLED:
		LOG_DBG("UART_RX_DISABLED");
		disable_req = false;

		buf = k_malloc(sizeof(*buf));
		if (buf) {
			buf->len = 0;
		} else {
			LOG_WRN("Not able to allocate UART receive buffer");
			k_work_reschedule(&uart_work, UART_WAIT_FOR_BUF_DELAY);
			return;
		}

		uart_rx_enable(uart, buf->data, sizeof(buf->data),
			       UART_WAIT_FOR_RX);

		break;

	case UART_RX_BUF_REQUEST:
		LOG_DBG("UART_RX_BUF_REQUEST");
		buf = k_malloc(sizeof(*buf));
		if (buf) {
			buf->len = 0;
			uart_rx_buf_rsp(uart, buf->data, sizeof(buf->data));
		} else {
			LOG_WRN("Not able to allocate UART receive buffer");
		}

		break;

	case UART_RX_BUF_RELEASED:
		LOG_DBG("UART_RX_BUF_RELEASED");
		buf = CONTAINER_OF(evt->data.rx_buf.buf, struct uart_data_t,
				   data[0]);

		if (buf->len > 0) {
			k_fifo_put(&fifo_uart_rx_data, buf);
		} else {
			k_free(buf);
		}

		break;

	case UART_TX_ABORTED:
		LOG_DBG("UART_TX_ABORTED");
		if (!aborted_buf) {
			aborted_buf = (uint8_t *)evt->data.tx.buf;
		}

		aborted_len += evt->data.tx.len;
		buf = CONTAINER_OF((void *)aborted_buf, struct uart_data_t,
				   data);

		uart_tx(uart, &buf->data[aborted_len],
			buf->len - aborted_len, SYS_FOREVER_MS);

		break;

	default:
		break;
	}
}

static void uart_work_handler(struct k_work *item)
{
	struct uart_data_t *buf;

	buf = k_malloc(sizeof(*buf));
	if (buf) {
		buf->len = 0;
	} else {
		LOG_WRN("Not able to allocate UART receive buffer");
		k_work_reschedule(&uart_work, UART_WAIT_FOR_BUF_DELAY);
		return;
	}

	uart_rx_enable(uart, buf->data, sizeof(buf->data), UART_WAIT_FOR_RX);
}

static bool uart_test_async_api(const struct device *dev)
{
	const struct uart_driver_api *api =
			(const struct uart_driver_api *)dev->api;

	return (api->callback_set != NULL);
}

static int uart_init(void)
{
	int err;
	int pos;
	struct uart_data_t *rx;
	struct uart_data_t *tx;

	if (!device_is_ready(uart)) {
		return -ENODEV;
	}

	if (IS_ENABLED(CONFIG_USB_DEVICE_STACK)) {
		err = usb_enable(NULL);
		if (err && (err != -EALREADY)) {
			LOG_ERR("Failed to enable USB");
			return err;
		}
	}

	rx = k_malloc(sizeof(*rx));
	if (rx) {
		rx->len = 0;
	} else {
		return -ENOMEM;
	}

	k_work_init_delayable(&uart_work, uart_work_handler);


	if (IS_ENABLED(CONFIG_UART_ASYNC_ADAPTER) && !uart_test_async_api(uart)) {
		/* Implement API adapter */
		uart_async_adapter_init(async_adapter, uart);
		uart = async_adapter;
	}

	err = uart_callback_set(uart, uart_cb, NULL);
	if (err) {
		k_free(rx);
		LOG_ERR("Cannot initialize UART callback");
		return err;
	}

	if (IS_ENABLED(CONFIG_UART_LINE_CTRL)) {
		LOG_INF("Wait for DTR");
		while (true) {
			uint32_t dtr = 0;

			uart_line_ctrl_get(uart, UART_LINE_CTRL_DTR, &dtr);
			if (dtr) {
				break;
			}
			/* Give CPU resources to low priority threads. */
			k_sleep(K_MSEC(100));
		}
		LOG_INF("DTR set");
		err = uart_line_ctrl_set(uart, UART_LINE_CTRL_DCD, 1);
		if (err) {
			LOG_WRN("Failed to set DCD, ret code %d", err);
		}
		err = uart_line_ctrl_set(uart, UART_LINE_CTRL_DSR, 1);
		if (err) {
			LOG_WRN("Failed to set DSR, ret code %d", err);
		}
	}

	tx = k_malloc(sizeof(*tx));

	if (tx) {
		pos = snprintf(tx->data, sizeof(tx->data),
			       "Starting Nordic UART service sample\r\n");

		if ((pos < 0) || (pos >= sizeof(tx->data))) {
			k_free(rx);
			k_free(tx);
			LOG_ERR("snprintf returned %d", pos);
			return -ENOMEM;
		}

		tx->len = pos;
	} else {
		k_free(rx);
		return -ENOMEM;
	}

	err = uart_tx(uart, tx->data, tx->len, SYS_FOREVER_MS);
	if (err) {
		k_free(rx);
		k_free(tx);
		LOG_ERR("Cannot display welcome message (err: %d)", err);
		return err;
	}

	err = uart_rx_enable(uart, rx->data, sizeof(rx->data), UART_WAIT_FOR_RX);
	if (err) {
		LOG_ERR("Cannot enable uart reception (err: %d)", err);
		/* Free the rx buffer only because the tx buffer will be handled in the callback */
		k_free(rx);
	}

	return err;
}

static void adv_work_handler(struct k_work *work)
{
	int err = bt_le_adv_start(BT_LE_ADV_CONN_FAST_2, ad, ARRAY_SIZE(ad), sd, ARRAY_SIZE(sd));

	if (err) {
		LOG_ERR("Advertising failed to start (err %d)", err);
		return;
	}

	LOG_INF("Advertising successfully started");
}

static void advertising_start(void)
{
	k_work_submit(&adv_work);
}

static void connected(struct bt_conn *conn, uint8_t err)
{
	char addr[BT_ADDR_LE_STR_LEN];

	if (err) {
		LOG_ERR("Connection failed, err 0x%02x %s", err, bt_hci_err_to_str(err));
		return;
	}

	bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));
	LOG_INF("Connected %s", addr);

	current_conn = bt_conn_ref(conn);

	dk_set_led_on(CON_STATUS_LED);
}

static void disconnected(struct bt_conn *conn, uint8_t reason)
{
	char addr[BT_ADDR_LE_STR_LEN];

	bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));

	LOG_INF("Disconnected: %s, reason 0x%02x %s", addr, reason, bt_hci_err_to_str(reason));

	if (auth_conn) {
		bt_conn_unref(auth_conn);
		auth_conn = NULL;
	}

	if (current_conn) {
		bt_conn_unref(current_conn);
		current_conn = NULL;
		dk_set_led_off(CON_STATUS_LED);
	}
}

static void recycled_cb(void)
{
	LOG_INF("Connection object available from previous conn. Disconnect is complete!");
	advertising_start();
}

#ifdef CONFIG_BT_NUS_SECURITY_ENABLED
static void security_changed(struct bt_conn *conn, bt_security_t level,
			     enum bt_security_err err)
{
	char addr[BT_ADDR_LE_STR_LEN];

	bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));

	if (!err) {
		LOG_INF("Security changed: %s level %u", addr, level);
	} else {
		LOG_WRN("Security failed: %s level %u err %d %s", addr, level, err,
			bt_security_err_to_str(err));
	}
}
#endif

BT_CONN_CB_DEFINE(conn_callbacks) = {
	.connected        = connected,
	.disconnected     = disconnected,
	.recycled         = recycled_cb,
#ifdef CONFIG_BT_NUS_SECURITY_ENABLED
	.security_changed = security_changed,
#endif
};

#if defined(CONFIG_BT_NUS_SECURITY_ENABLED)
static void auth_passkey_display(struct bt_conn *conn, unsigned int passkey)
{
	char addr[BT_ADDR_LE_STR_LEN];

	bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));

	LOG_INF("Passkey for %s: %06u", addr, passkey);
}

static void auth_passkey_confirm(struct bt_conn *conn, unsigned int passkey)
{
	char addr[BT_ADDR_LE_STR_LEN];

	auth_conn = bt_conn_ref(conn);

	bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));

	LOG_INF("Passkey for %s: %06u", addr, passkey);

	if (IS_ENABLED(CONFIG_SOC_SERIES_NRF54HX) || IS_ENABLED(CONFIG_SOC_SERIES_NRF54LX)) {
		LOG_INF("Press Button 0 to confirm, Button 1 to reject.");
	} else {
		LOG_INF("Press Button 1 to confirm, Button 2 to reject.");
	}
}


static void auth_cancel(struct bt_conn *conn)
{
	char addr[BT_ADDR_LE_STR_LEN];

	bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));

	LOG_INF("Pairing cancelled: %s", addr);
}


static void pairing_complete(struct bt_conn *conn, bool bonded)
{
	char addr[BT_ADDR_LE_STR_LEN];

	bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));

	LOG_INF("Pairing completed: %s, bonded: %d", addr, bonded);
}


static void pairing_failed(struct bt_conn *conn, enum bt_security_err reason)
{
	char addr[BT_ADDR_LE_STR_LEN];

	bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));

	LOG_INF("Pairing failed conn: %s, reason %d %s", addr, reason,
		bt_security_err_to_str(reason));
}

static struct bt_conn_auth_cb conn_auth_callbacks = {
	.passkey_display = auth_passkey_display,
	.passkey_confirm = auth_passkey_confirm,
	.cancel = auth_cancel,
};

static struct bt_conn_auth_info_cb conn_auth_info_callbacks = {
	.pairing_complete = pairing_complete,
	.pairing_failed = pairing_failed
};
#else
static struct bt_conn_auth_cb conn_auth_callbacks;
static struct bt_conn_auth_info_cb conn_auth_info_callbacks;
#endif

static void bt_receive_cb(struct bt_conn *conn, const uint8_t *const data,
			  uint16_t len)
{
	int err;
	char addr[BT_ADDR_LE_STR_LEN] = {0};

	bt_addr_le_to_str(bt_conn_get_dst(conn), addr, ARRAY_SIZE(addr));

	LOG_INF("Received data from: %s", addr);

	for (uint16_t pos = 0; pos != len;) {
		struct uart_data_t *tx = k_malloc(sizeof(*tx));

		if (!tx) {
			LOG_WRN("Not able to allocate UART send data buffer");
			return;
		}

		/* Keep the last byte of TX buffer for potential LF char. */
		size_t tx_data_size = sizeof(tx->data) - 1;

		if ((len - pos) > tx_data_size) {
			tx->len = tx_data_size;
		} else {
			tx->len = (len - pos);
		}

		memcpy(tx->data, &data[pos], tx->len);

		pos += tx->len;

		/* Append the LF character when the CR character triggered
		 * transmission from the peer.
		 */
		if ((pos == len) && (data[len - 1] == '\r')) {
			tx->data[tx->len] = '\n';
			tx->len++;
		}

		err = uart_tx(uart, tx->data, tx->len, SYS_FOREVER_MS);
		if (err) {
			k_fifo_put(&fifo_uart_tx_data, tx);
		}
	}
}

static struct bt_nus_cb nus_cb = {
	.received = bt_receive_cb,
};

void error(void)
{
	dk_set_leds_state(DK_ALL_LEDS_MSK, DK_NO_LEDS_MSK);

	while (true) {
		/* Spin for ever */
		k_sleep(K_MSEC(1000));
	}
}

#ifdef CONFIG_BT_NUS_SECURITY_ENABLED
static void num_comp_reply(bool accept)
{
	if (accept) {
		bt_conn_auth_passkey_confirm(auth_conn);
		LOG_INF("Numeric Match, conn %p", (void *)auth_conn);
	} else {
		bt_conn_auth_cancel(auth_conn);
		LOG_INF("Numeric Reject, conn %p", (void *)auth_conn);
	}

	bt_conn_unref(auth_conn);
	auth_conn = NULL;
}

void button_changed(uint32_t button_state, uint32_t has_changed)
{
	uint32_t buttons = button_state & has_changed;

	if (auth_conn) {
		if (buttons & KEY_PASSKEY_ACCEPT) {
			num_comp_reply(true);
		}

		if (buttons & KEY_PASSKEY_REJECT) {
			num_comp_reply(false);
		}
	}
}
#endif /* CONFIG_BT_NUS_SECURITY_ENABLED */

static void configure_gpio(void)
{
	int err;

#ifdef CONFIG_BT_NUS_SECURITY_ENABLED
	err = dk_buttons_init(button_changed);
	if (err) {
		LOG_ERR("Cannot init buttons (err: %d)", err);
	}
#endif /* CONFIG_BT_NUS_SECURITY_ENABLED */

	err = dk_leds_init();
	if (err) {
		LOG_ERR("Cannot init LEDs (err: %d)", err);
	}
}

int main(void)
{
	int blink_status = 0;
	int err = 0;

	configure_gpio();

	err = uart_init();
	if (err) {
		error();
	}

	if (IS_ENABLED(CONFIG_BT_NUS_SECURITY_ENABLED)) {
		err = bt_conn_auth_cb_register(&conn_auth_callbacks);
		if (err) {
			LOG_ERR("Failed to register authorization callbacks. (err: %d)", err);
			return 0;
		}

		err = bt_conn_auth_info_cb_register(&conn_auth_info_callbacks);
		if (err) {
			LOG_ERR("Failed to register authorization info callbacks. (err: %d)", err);
			return 0;
		}
	}

	err = bt_enable(NULL);
	if (err) {
		error();
	}

	LOG_INF("Bluetooth initialized");

	k_sem_give(&ble_init_ok);

	if (IS_ENABLED(CONFIG_SETTINGS)) {
		settings_load();
	}

	err = bt_nus_init(&nus_cb);
	if (err) {
		LOG_ERR("Failed to initialize UART service (err: %d)", err);
		return 0;
	}

	k_work_init(&adv_work, adv_work_handler);
	advertising_start();

	for (;;) {
		dk_set_led(RUN_STATUS_LED, (++blink_status) % 2);
		k_sleep(K_MSEC(RUN_LED_BLINK_INTERVAL));
	}
}

void ble_write_thread(void)
{
	/* Don't go any further until BLE is initialized */
	k_sem_take(&ble_init_ok, K_FOREVER);
	struct uart_data_t nus_data = {
		.len = 0,
	};

	for (;;) {
		/* Wait indefinitely for data to be sent over bluetooth */
		struct uart_data_t *buf = k_fifo_get(&fifo_uart_rx_data,
						     K_FOREVER);

		int plen = MIN(sizeof(nus_data.data) - nus_data.len, buf->len);
		int loc = 0;

		while (plen > 0) {
			memcpy(&nus_data.data[nus_data.len], &buf->data[loc], plen);
			nus_data.len += plen;
			loc += plen;

			if (nus_data.len >= sizeof(nus_data.data) ||
			   (nus_data.data[nus_data.len - 1] == '\n') ||
			   (nus_data.data[nus_data.len - 1] == '\r')) {
				if (bt_nus_send(NULL, nus_data.data, nus_data.len)) {
					LOG_WRN("Failed to send data over BLE connection");
				}
				nus_data.len = 0;
			}

			plen = MIN(sizeof(nus_data.data), buf->len - loc);
		}

		k_free(buf);
	}
}

K_THREAD_DEFINE(ble_write_thread_id, STACKSIZE, ble_write_thread, NULL, NULL,
		NULL, PRIORITY, 0, 0);

sensor main c codes from both of the samples. This first one is the peripheral and the next one is the LIS2DH. Do I just add them together or how do i proceed? 

#include <zephyr/kernel.h>
#include <zephyr/drivers/sensor.h>
#include <zephyr/logging/log.h>

LOG_MODULE_REGISTER(main);

int main(void)
{
    const struct device *lis2dh = DEVICE_DT_GET_ONE(st_lis2dh);

    if (!device_is_ready(lis2dh)) {
        LOG_ERR("LIS2DH device not ready");
        return 0;
    }

    while (1) {
        struct sensor_value accel[3];
        int ret = sensor_sample_fetch(lis2dh);

        if (ret == 0) {
            ret = sensor_channel_get(lis2dh, SENSOR_CHAN_ACCEL_XYZ, accel);
        }

        if (ret == 0) {
            LOG_INF("X: %.2f, Y: %.2f, Z: %.2f",
                sensor_value_to_double(&accel[0]),
                sensor_value_to_double(&accel[1]),
                sensor_value_to_double(&accel[2]));
        } else {
            LOG_ERR("Failed to fetch LIS2DH data: %d", ret);
        }

        k_sleep(K_MSEC(100));
    }
}

Parents
  • Hi,

    If you want to add functionality from one sample into another, you must add the C code and any Kconfig options (like in prj.conf) and devicetree overlays (.dts files) from the project you want to copy into the other project. In this case, it's easiest to use the NUS sample as the starting point and add the LIS2DH code to this.

    If you are new to the nRF Connect SDK, I recommend the Nordic Developer Academy as an excellent place to start learning about the SDK, and especially the nRF Connect SDK Fundamentals course.

    Best regards,
    Marte

  • Thank you for the answer. I will look more into how to add each config and code to make it work. I was recommended to start with the NUS sample and add the sensor as you had suggested also. Looking at the figure of the LIS2DH sample I would assume I would copy paste the files into the NUS sample, unless the file was already in there (there are some files that are the same). As for the main c and prj.conf I will add those together. 

Reply
  • Thank you for the answer. I will look more into how to add each config and code to make it work. I was recommended to start with the NUS sample and add the sensor as you had suggested also. Looking at the figure of the LIS2DH sample I would assume I would copy paste the files into the NUS sample, unless the file was already in there (there are some files that are the same). As for the main c and prj.conf I will add those together. 

Children
No Data
Related