This post is older than 2 years and might not be relevant anymore
More Info: Consider searching for newer posts

using spi reading External flash

Hi ;

       I am using the sdk12.3 spi example to read external flash W25Q16, but it fails . Here is my code. Do you have any suggestion ?

/**
 * Copyright (c) 2015 - 2017, Nordic Semiconductor ASA
 * 
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 * 
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 * 
 * 2. Redistributions in binary form, except as embedded into a Nordic
 *    Semiconductor ASA integrated circuit in a product or a software update for
 *    such product, must reproduce the above copyright notice, this list of
 *    conditions and the following disclaimer in the documentation and/or other
 *    materials provided with the distribution.
 * 
 * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
 *    contributors may be used to endorse or promote products derived from this
 *    software without specific prior written permission.
 * 
 * 4. This software, with or without modification, must only be used with a
 *    Nordic Semiconductor ASA integrated circuit.
 * 
 * 5. Any software provided in binary form under this license must not be reverse
 *    engineered, decompiled, modified and/or disassembled.
 * 
 * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 * 
 */

#include "sdk_common.h"

#include "nrf_drv_spi.h"
#include "nrf_drv_common.h"
#include "nrf_gpio.h"
#include "nrf_assert.h"
#include "app_util_platform.h"
#include "nrf_log.h"
#include "nrf_log_ctrl.h"

#if 0
#define NRF_LOG_MODULE_NAME "SPI"

#if SPI_CONFIG_LOG_ENABLED
#define NRF_LOG_LEVEL       SPI_CONFIG_LOG_LEVEL
#define NRF_LOG_INFO_COLOR  SPI_CONFIG_INFO_COLOR
#define NRF_LOG_DEBUG_COLOR SPI_CONFIG_DEBUG_COLOR
#else //SPI_CONFIG_LOG_ENABLED
#define NRF_LOG_LEVEL       0
#endif //SPI_CONFIG_LOG_ENABLED
#include "nrf_log.h"
#endif

 #define IRQ_HANDLER(n) void SPI##n##_IRQ_HANDLER(void)
/* Defines -------------------------------------------------------------------*/


/* Flash ID */
#define GD25Q32_FLASH_ID 		0xC8

/* Status Register Bits */
#define STATUS_BUSY				0x01
#define	STATUS_WEL				0x02
#define	STATUS_BP0				0x04
#define	STATUS_BP1				0x08
#define	STATUS_TB   			0x20
#define	STATUS_SRP				0x80

/* Flash operation command */
#define WRITE_STATUS_REG		0x01
#define PAGE_PROGRAM			0x02
#define READ_DATA_BYTE			0x03
#define READ_STATUS_REG			0x05
#define CHIP_EARSE				0x60
#define READ_ID					0x9f

/** @addtogroup Exported_types
  * @{
  */  


// Control block - driver instance local data.
typedef struct
{
    nrf_drv_spi_handler_t handler;
    nrf_drv_spi_evt_t     evt;  // Keep the struct that is ready for event handler. Less memcpy.
    nrf_drv_state_t       state;
    volatile bool         transfer_in_progress;

    // [no need for 'volatile' attribute for the following members, as they
    //  are not concurrently used in IRQ handlers and main line code]
    uint8_t         ss_pin;
    uint8_t         orc;
    uint8_t         bytes_transferred;

    bool tx_done : 1;
    bool rx_done : 1;
} spi_control_block_t;
static spi_control_block_t m_cb[1];

/*******************************************************************************************/
//static volatile bool spi_xfer_done;  /**< Flag used to indicate that SPI instance completed the transfer. */
extern bool spi_xfer_done; 


/**
 * @brief SPI user event handler.
 * @param event
 */
void spi_event_handler(nrf_drv_spi_evt_t const * p_event)
{
    spi_xfer_done = true;
    NRF_LOG_INFO("Transfer completed.\r\n");
   // if (m_rx_buf[0] != 0)
    {
        NRF_LOG_INFO(" Received: \r\n");
     //   NRF_LOG_HEXDUMP_INFO(m_rx_buf, strlen((const char *)m_rx_buf));
    }
}



ret_code_t nrf_drv_spi_init(nrf_drv_spi_t const * const p_instance,
                            nrf_drv_spi_config_t const * p_config,
                            nrf_drv_spi_handler_t handler)
{
    ASSERT(p_config);
    spi_control_block_t * p_cb  = &m_cb[p_instance->drv_inst_idx];
    ret_code_t err_code;
    
    p_cb->handler = handler;

    uint32_t mosi_pin;
    uint32_t miso_pin;

    // Configure pins used by the peripheral:
    // - SCK - output with initial value corresponding with the SPI mode used:
    //   0 - for modes 0 and 1 (CPOL = 0), 1 - for modes 2 and 3 (CPOL = 1);
    //   according to the reference manual guidelines this pin and its input
    //   buffer must always be connected for the SPI to work.
    if (p_config->mode <= NRF_DRV_SPI_MODE_1)
    {
        nrf_gpio_pin_clear(p_config->sck_pin);
    }
    else
    {
        nrf_gpio_pin_set(p_config->sck_pin);
    }
    NRF_GPIO->PIN_CNF[p_config->sck_pin] =
        (GPIO_PIN_CNF_DIR_Output        << GPIO_PIN_CNF_DIR_Pos)
      | (GPIO_PIN_CNF_INPUT_Connect     << GPIO_PIN_CNF_INPUT_Pos)
      | (GPIO_PIN_CNF_PULL_Disabled     << GPIO_PIN_CNF_PULL_Pos)
      | (GPIO_PIN_CNF_DRIVE_S0S1        << GPIO_PIN_CNF_DRIVE_Pos)
      | (GPIO_PIN_CNF_SENSE_Disabled    << GPIO_PIN_CNF_SENSE_Pos);

    // - MOSI (optional) - output with initial value 0,
        mosi_pin = p_config->mosi_pin;
        nrf_gpio_pin_clear(mosi_pin);
        nrf_gpio_cfg_output(mosi_pin);
   
    // - MISO (optional) - input,
        miso_pin = p_config->miso_pin;
        nrf_gpio_cfg_input(miso_pin, NRF_GPIO_PIN_NOPULL);

    // - Slave Select (optional) - output with initial value 1 (inactive).
        nrf_gpio_pin_set(p_config->ss_pin);
        nrf_gpio_cfg_output(p_config->ss_pin);
        m_cb[p_instance->drv_inst_idx].ss_pin = p_config->ss_pin;

        NRF_SPI_Type * p_spi = p_instance->p_registers;
        nrf_spi_pins_set(p_spi, p_config->sck_pin, mosi_pin, miso_pin);
        nrf_spi_frequency_set(p_spi,
            (nrf_spi_frequency_t)p_config->frequency);
        nrf_spi_configure(p_spi,
            (nrf_spi_mode_t)p_config->mode,
            (nrf_spi_bit_order_t)p_config->bit_order);

        m_cb[p_instance->drv_inst_idx].orc = p_config->orc;

        if (p_cb->handler)
        {
            nrf_spi_int_enable(p_spi, NRF_SPI_INT_READY_MASK);
        }
        nrf_spi_enable(p_spi);
        if (p_cb->handler)
        {
            nrf_drv_common_irq_enable(p_instance->irq, p_config->irq_priority);
        }

    p_cb->transfer_in_progress = false;
    p_cb->state = NRF_DRV_STATE_INITIALIZED;

    NRF_LOG_INFO("Init\r\n");
    
    err_code = NRF_SUCCESS;
    NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)ERR_TO_STR(err_code));
    return err_code;
}

void nrf_drv_spi_uninit(nrf_drv_spi_t const * const p_instance)
{
    spi_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx];
    ASSERT(p_cb->state != NRF_DRV_STATE_UNINITIALIZED);

    if (p_cb->handler)
    {
        nrf_drv_common_irq_disable(p_instance->irq);
    }

    #define DISABLE_ALL  0xFFFFFFFF

        NRF_SPI_Type * p_spi = p_instance->p_registers;
        if (p_cb->handler)
        {
            nrf_spi_int_disable(p_spi, DISABLE_ALL);
        }
        nrf_spi_disable(p_spi);
    #undef DISABLE_ALL

    p_cb->state = NRF_DRV_STATE_UNINITIALIZED;
}


ret_code_t nrf_drv_spi_transfer(nrf_drv_spi_t const * const p_instance,
                                uint8_t   * p_tx_buffer,
                                uint8_t         tx_buffer_length,
                                uint8_t       * p_rx_buffer,
                                uint8_t         rx_buffer_length)
{
    nrf_drv_spi_xfer_desc_t xfer_desc;

    NRF_SPI_Type * p_spi = p_instance->p_registers;
        nrf_spi_event_clear(p_spi, NRF_SPI_EVENT_READY);

    xfer_desc.p_tx_buffer = p_tx_buffer;
    xfer_desc.tx_length   = tx_buffer_length;

    xfer_desc.p_rx_buffer = p_rx_buffer;
    xfer_desc.rx_length  =  rx_buffer_length;

    NRF_LOG_DEBUG("Tx data:\r\n");
    NRF_LOG_DEBUG("%x\r\n",p_tx_buffer[0] );
    NRF_LOG_INFO("Transfer tx_len:%d, rx_len:%d.\r\n", tx_buffer_length, rx_buffer_length);
     NRF_LOG_FLUSH();
    return nrf_drv_spi_xfer(p_instance, &xfer_desc, 0);
}

static void finish_transfer(spi_control_block_t * p_cb)
{
    // If Slave Select signal is used, this is the time to deactivate it.
    if (p_cb->ss_pin != NRF_DRV_SPI_PIN_NOT_USED)
    {
        nrf_gpio_pin_set(p_cb->ss_pin);
    }

    // By clearing this flag before calling the handler we allow subsequent
    // transfers to be started directly from the handler function.
    p_cb->transfer_in_progress = false;
    p_cb->evt.type = NRF_DRV_SPI_EVENT_DONE;
    NRF_LOG_INFO("finish_transfer rx_len:%d.\r\n", p_cb->evt.data.done.rx_length);
    NRF_LOG_DEBUG("Rx data:\r\n");
    NRF_LOG_HEXDUMP_DEBUG((uint8_t *)p_cb->evt.data.done.p_rx_buffer, 
                            p_cb->evt.data.done.rx_length * sizeof(p_cb->evt.data.done.p_rx_buffer));

    p_cb->handler(&p_cb->evt);
}


// This function is called from IRQ handler or, in blocking mode, directly
// from the 'nrf_drv_spi_transfer' function.
// It returns true as long as the transfer should be continued, otherwise (when
// there is nothing more to send/receive) it returns false.
static bool transfer_byte(NRF_SPI_Type * p_spi, spi_control_block_t * p_cb)
{
    // Read the data byte received in this transfer and store it in RX buffer,
    // if needed.

    volatile uint8_t rx_data = nrf_spi_rxd_get(p_spi);
    if (p_cb->bytes_transferred < p_cb->evt.data.done.rx_length)
    {
        if(READ_DATA_BYTE == p_cb->evt.data.done.p_tx_buffer[0])
        {
            if(p_cb->bytes_transferred >= 4)
            {
                p_cb->evt.data.done.p_rx_buffer[p_cb->bytes_transferred-4] = rx_data;
            }
        }
        else 
        {
            p_cb->evt.data.done.p_rx_buffer[p_cb->bytes_transferred] = rx_data; 
        }    
               
    }

    ++p_cb->bytes_transferred;

    // Check if there are more bytes to send or receive and write proper data
    // byte (next one from TX buffer or over-run character) to the TXD register
    // when needed.
    // NOTE - we've already used 'p_cb->bytes_transferred + 1' bytes from our
    //        buffers, because we take advantage of double buffering of TXD
    //        register (so in effect one byte is still being transmitted now);
    //        see how the transfer is started in the 'nrf_drv_spi_transfer'
    //        function.
 //   uint16_t bytes_used = p_cb->bytes_transferred + 1;
 //   if (bytes_used < p_cb->evt.data.done.tx_length)
    if (p_cb->bytes_transferred < p_cb->evt.data.done.tx_length)
    {
       // NRF_LOG_DEBUG("transfer_byte Tx0 data:%x\r\n", p_cb->evt.data.done.p_tx_buffer[bytes_used]);
       // nrf_spi_txd_set(p_spi, p_cb->evt.data.done.p_tx_buffer[bytes_used]);
		//	  NRF_LOG_DEBUG("transfer_byte Tx0 data:%x\r\n", p_cb->evt.data.done.p_tx_buffer[p_cb->bytes_transferred]);
        nrf_spi_txd_set(p_spi, p_cb->evt.data.done.p_tx_buffer[p_cb->bytes_transferred]);
        return true;
    }
    //else if (bytes_used < p_cb->evt.data.done.rx_length)
    else if (p_cb->bytes_transferred < p_cb->evt.data.done.rx_length)
    {
     //   NRF_LOG_DEBUG("transfer_byte Tx1 data:%x\r\n",  p_cb->orc);
        nrf_spi_txd_set(p_spi, p_cb->orc);
        return true;
    }

    return (p_cb->bytes_transferred < p_cb->evt.data.done.tx_length ||
            p_cb->bytes_transferred < p_cb->evt.data.done.rx_length);
}

static void spi_xfer(NRF_SPI_Type                  * p_spi,
                     spi_control_block_t           * p_cb,
                     nrf_drv_spi_xfer_desc_t const * p_xfer_desc)
{

    p_cb->bytes_transferred = 0;

    nrf_spi_int_disable(p_spi, NRF_SPI_INT_READY_MASK);
    nrf_spi_event_clear(p_spi, NRF_SPI_EVENT_READY);

    nrf_spi_txd_set(p_spi, p_xfer_desc->tx_length > 0 ?  p_xfer_desc->p_tx_buffer[0] : p_cb->orc);

    // TXD register is double buffered, so next byte to be transmitted can
    // be written immediately, if needed, i.e. if TX or RX transfer is to
    // be more that 1 byte long. Again - if there is something more in TX
    // buffer send it, otherwise use over-run character.
#if 0
    if (p_xfer_desc->tx_length > 1)
    {
        nrf_spi_txd_set(p_spi, p_xfer_desc->p_tx_buffer[1]);
    }
    else if (p_xfer_desc->rx_length > 1)
    {
        nrf_spi_txd_set(p_spi, p_cb->orc);
    }
#endif
    // For blocking mode (user handler not provided) wait here for READY
    // events (indicating that the byte from TXD register was transmitted
    // and a new incoming byte was moved to the RXD register) and continue
    // transaction until all requested bytes are transferred.
    // In non-blocking mode - IRQ service routine will do this stuff.
    if (p_cb->handler)
    {
        nrf_spi_int_enable(p_spi, NRF_SPI_INT_READY_MASK);
    }
    else
    {
        do {
            while (!nrf_spi_event_check(p_spi, NRF_SPI_EVENT_READY)) {}
            nrf_spi_event_clear(p_spi, NRF_SPI_EVENT_READY);
            NRF_LOG_DEBUG("SPI: Event: NRF_SPI_EVENT_READY.\r\n"); 
        } while (transfer_byte(p_spi, p_cb));
        if (p_cb->ss_pin != NRF_DRV_SPI_PIN_NOT_USED)
        {
            nrf_gpio_pin_set(p_cb->ss_pin);
        }
    }
}



ret_code_t nrf_drv_spi_xfer(nrf_drv_spi_t     const * const p_instance,
                            nrf_drv_spi_xfer_desc_t const * p_xfer_desc,
                            uint32_t                        flags)
{
    spi_control_block_t * p_cb  = &m_cb[p_instance->drv_inst_idx];
    ASSERT(p_cb->state != NRF_DRV_STATE_UNINITIALIZED);
    ASSERT(p_xfer_desc->p_tx_buffer != NULL || p_xfer_desc->tx_length == 0);
 //   ASSERT(p_xfer_desc->p_rx_buffer != NULL || p_xfer_desc->rx_length == 0);
    ret_code_t err_code = NRF_SUCCESS;

    if (p_cb->transfer_in_progress)
    {
        err_code = NRF_ERROR_BUSY;
        NRF_LOG_WARNING("nrf_drv_spi_xfer Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)ERR_TO_STR(err_code));
        return err_code;
    }
    else
    {
        if (p_cb->handler && !(flags & (NRF_DRV_SPI_FLAG_REPEATED_XFER | NRF_DRV_SPI_FLAG_NO_XFER_EVT_HANDLER)))
        {
            p_cb->transfer_in_progress = true;
        }
    }

    p_cb->evt.data.done = *p_xfer_desc;
    p_cb->tx_done = false;
    p_cb->rx_done = false;
        
    nrf_gpio_pin_clear(p_cb->ss_pin);
  

    if (flags)
    {
        p_cb->transfer_in_progress = false;
        err_code = NRF_ERROR_NOT_SUPPORTED;
    }
    else
    {
        spi_xfer(p_instance->p_registers, p_cb, p_xfer_desc);
    }
    NRF_LOG_INFO("nrf_drv_spi_xfer_1 Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)ERR_TO_STR(err_code));
    return err_code;
}


/**
  * @brief Read status register of flash.
  * @param  none.
  * @return value of status register.
  *
  */

uint8_t ExternalFlash_ReadStatus(nrf_drv_spi_t     const * const p_instance)
{
	uint8_t sendBuf[2] = {READ_STATUS_REG, 0};          // 05 read register
    uint8_t irecvBuf[2], recv_len = 2;;


    spi_xfer_done = false;
    APP_ERROR_CHECK(nrf_drv_spi_transfer(p_instance, sendBuf, sizeof(sendBuf), irecvBuf, recv_len));
    while (!spi_xfer_done)
    {
        __WFE();
    }
	return irecvBuf[1];
}


/**
  * @brief Check flash is in progress or not.
  * @param  none.
  * @return SET: Flash is always in progress. RESET: Flash is in standby mode.
  *
  */
FlagStatus ExternalFlash_CheckWriteStatus(nrf_drv_spi_t     const * const p_instance)
{
	uint32_t time_out = 0xfffff;
	uint8_t status = 0;
	do
	{
		/* Time out control */
		time_out--;
		if(time_out == 0)
		{
			return SET; 
		}
		status = ExternalFlash_ReadStatus(p_instance);
	}
	while(status & STATUS_BUSY);/* Check flash is communicating or not */
	return RESET;
}


/**
  * @brief  Send write enable command before every page program(PP), 
  * sector earse(SE), block earse(BE), chip earse(CE) and write status register(WRSR) command.
  * @param   No parameter.
  * @return  void
  *
  */
void ExternalFlash_WriteCmd(nrf_drv_spi_t const * const p_instance, FunctionalState NewState)
{
	uint8_t cmd, send_len = 1;
	uint8_t recvBuf[1], recv_len = 1;

	/* Check earse status */
	ExternalFlash_CheckWriteStatus(p_instance);

	/* Send write command */
	if(NewState == ENABLE)
	{
		/* Send write enable command */
		cmd  = 0x06;
	}
	else
	{
		/* Send write disable command */
		cmd  = 0x04;
	}

    spi_xfer_done =  false;
    APP_ERROR_CHECK(nrf_drv_spi_transfer(p_instance, &cmd, send_len, recvBuf, recv_len));
	while (!spi_xfer_done)
    {
        __WFE();
    }
	/* Check earse status */
	ExternalFlash_CheckWriteStatus(p_instance);

}

/**
  * @brief Earse flash.
  * @param  address: address which begin to earse.
  * @param  mode: select earse mode.
  * @return none.  
  *
  */
void ExternalFlash_Earse(nrf_drv_spi_t  const * const p_instance,uint32_t address, Flash_erase_module_t mode)
{
	uint8_t sendBuf[4],recvBuf[4];
	uint8_t send_len = 4;
	uint16_t recv_len = 4;
	
	/* Enable write */
	ExternalFlash_WriteCmd(p_instance,ENABLE);
	/* Write data */
	sendBuf[0] = mode;
	sendBuf[1] = (address>>16) & 0xff;
	sendBuf[2] = (address>>8) & 0xff;
	sendBuf[3] = address & 0xff;
    spi_xfer_done = false;
    APP_ERROR_CHECK(nrf_drv_spi_transfer(p_instance, sendBuf, send_len, recvBuf, recv_len));
	while (!spi_xfer_done)
    {
        __WFE();
    }
     APP_ERROR_CHECK(nrf_drv_spi_transfer(p_instance, sendBuf, send_len, recvBuf, recv_len));
}


/**
  * @brief Write flash.
  * @param  address: address which begin to write.
  * @param  psendBuf: address of data buffer which want to write.
  * @param  len: length of data buffer which want to write.
  * @return none.  
  *
  */
void ExternalFlash_Write(nrf_drv_spi_t  const * const p_instance,uint32_t address, uint8_t *psendBuf, uint16_t len)
{
	uint8_t sendBuf[255], recvBuf[1];// = {PAGE_PROGRAM, 0, 0, 0},recvBuf[10];
	/* Enable write */
	ExternalFlash_WriteCmd(p_instance,ENABLE);

	/* Send write command */
    sendBuf[0] = 0x02;
	sendBuf[1] = (address>>16) & 0xff;
	sendBuf[2] = (address>>8) & 0xff;
	sendBuf[3] = address & 0xff;

    /* Send write data */
    memcpy(&sendBuf[4], psendBuf, len);
    len = len + 4;
    spi_xfer_done = false;
    nrf_drv_spi_transfer(p_instance, sendBuf, len, recvBuf,0);//recvBuf, 30);
	while (!spi_xfer_done)
    {
        __WFE();
    }
}


/**
  * @brief Read flash.
  * @param  address: address which begin to read.
  * @param  pStoreBuf: address of data buffer which want to read.
  * @param  len: length of data buffer which want to read.
  * @return none.  
  *
  */
 void ExternalFlash_Read(nrf_drv_spi_t  const * const p_instance,uint32_t address, uint8_t *pStoreBuf, uint16_t len)
{
	uint8_t sendBuf[4] ={READ_DATA_BYTE,0,0,0};

	/* Read flash status register */	
    ExternalFlash_CheckWriteStatus(p_instance);

	/* Send read command and address */
	sendBuf[0] = READ_DATA_BYTE;
	sendBuf[1] = (address>>16) & 0xff;
	sendBuf[2] = (address>>8) & 0xff;
	sendBuf[3] = address & 0xff;

     spi_xfer_done = false;
    APP_ERROR_CHECK(nrf_drv_spi_transfer(p_instance, sendBuf, 4, pStoreBuf, len));
	while (!spi_xfer_done)
    {
        __WFE();
    }
} 

static void irq_handler_spi(NRF_SPI_Type * p_spi, spi_control_block_t * p_cb)
{

    ASSERT(p_cb->handler);
    nrf_spi_event_clear(p_spi, NRF_SPI_EVENT_READY);
    if (!transfer_byte(p_spi, p_cb))
    {
        finish_transfer(p_cb);
    }
}


#if NRF_MODULE_ENABLED(SPI0)
IRQ_HANDLER(0)
{
    spi_control_block_t * p_cb  = &m_cb[SPI0_INSTANCE_INDEX];
    #if SPI0_USE_EASY_DMA
        irq_handler_spim(NRF_SPIM0, p_cb);
    #else
        irq_handler_spi(NRF_SPI0, p_cb);
    #endif
}
#endif // NRF_MODULE_ENABLED(SPI0)

#if NRF_MODULE_ENABLED(SPI1)
IRQ_HANDLER(1)
{
    spi_control_block_t * p_cb  = &m_cb[SPI1_INSTANCE_INDEX];
    #if SPI1_USE_EASY_DMA
        irq_handler_spim(NRF_SPIM1, p_cb);
    #else
        irq_handler_spi(NRF_SPI1, p_cb);
    #endif
}
#endif // NRF_MODULE_ENABLED(SPI1)

#if NRF_MODULE_ENABLED(SPI2)
IRQ_HANDLER(2)
{
    spi_control_block_t * p_cb  = &m_cb[SPI2_INSTANCE_INDEX];
    #if SPI2_USE_EASY_DMA
        irq_handler_spim(NRF_SPIM2, p_cb);
    #else
        irq_handler_spi(NRF_SPI2, p_cb);
    #endif
}
#endif // NRF_MODULE_ENABLED(SPI2)




Related