This post is older than 2 years and might not be relevant anymore
More Info: Consider searching for newer posts

Extending SAADC example for more channels (and preferably using "Scan" mode)

Hi there. I really love all the help and support this forum gives, especially compared to others. So thank you for taking the time to read this.

I have a custom PCB that I have designed and it works great. I am using an nRF52810 and the SAADC example (given below for reference):

/**
 * Copyright (c) 2014 - 2018, Nordic Semiconductor ASA
 * 
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 * 
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 * 
 * 2. Redistributions in binary form, except as embedded into a Nordic
 *    Semiconductor ASA integrated circuit in a product or a software update for
 *    such product, must reproduce the above copyright notice, this list of
 *    conditions and the following disclaimer in the documentation and/or other
 *    materials provided with the distribution.
 * 
 * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
 *    contributors may be used to endorse or promote products derived from this
 *    software without specific prior written permission.
 * 
 * 4. This software, with or without modification, must only be used with a
 *    Nordic Semiconductor ASA integrated circuit.
 * 
 * 5. Any software provided in binary form under this license must not be reverse
 *    engineered, decompiled, modified and/or disassembled.
 * 
 * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 * 
 */
/** @file
 * @defgroup nrf_adc_example main.c
 * @{
 * @ingroup nrf_adc_example
 * @brief ADC Example Application main file.
 *
 * This file contains the source code for a sample application using ADC.
 *
 * @image html example_board_setup_a.jpg "Use board setup A for this example."
 */

#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include "nrf.h"
#include "nrf_drv_saadc.h"
#include "nrf_drv_ppi.h"
#include "nrf_drv_timer.h"
#include "boards.h"
#include "app_error.h"
#include "nrf_delay.h"
#include "app_util_platform.h"
#include "nrf_pwr_mgmt.h"

#include "nrf_log.h"
#include "nrf_log_ctrl.h"
#include "nrf_log_default_backends.h"

#define SAMPLES_IN_BUFFER 5
volatile uint8_t state = 1;

static const nrf_drv_timer_t m_timer = NRF_DRV_TIMER_INSTANCE(0);
static nrf_saadc_value_t     m_buffer_pool[2][SAMPLES_IN_BUFFER];
static nrf_ppi_channel_t     m_ppi_channel;
static uint32_t              m_adc_evt_counter;


void timer_handler(nrf_timer_event_t event_type, void * p_context)
{

}


void saadc_sampling_event_init(void)
{
    ret_code_t err_code;

    err_code = nrf_drv_ppi_init();
    APP_ERROR_CHECK(err_code);

    nrf_drv_timer_config_t timer_cfg = NRF_DRV_TIMER_DEFAULT_CONFIG;
    timer_cfg.bit_width = NRF_TIMER_BIT_WIDTH_32;
    err_code = nrf_drv_timer_init(&m_timer, &timer_cfg, timer_handler);
    APP_ERROR_CHECK(err_code);

    /* setup m_timer for compare event every 400ms */
    uint32_t ticks = nrf_drv_timer_ms_to_ticks(&m_timer, 400);
    nrf_drv_timer_extended_compare(&m_timer,
                                   NRF_TIMER_CC_CHANNEL0,
                                   ticks,
                                   NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK,
                                   false);
    nrf_drv_timer_enable(&m_timer);

    uint32_t timer_compare_event_addr = nrf_drv_timer_compare_event_address_get(&m_timer,
                                                                                NRF_TIMER_CC_CHANNEL0);
    uint32_t saadc_sample_task_addr   = nrf_drv_saadc_sample_task_get();

    /* setup ppi channel so that timer compare event is triggering sample task in SAADC */
    err_code = nrf_drv_ppi_channel_alloc(&m_ppi_channel);
    APP_ERROR_CHECK(err_code);

    err_code = nrf_drv_ppi_channel_assign(m_ppi_channel,
                                          timer_compare_event_addr,
                                          saadc_sample_task_addr);
    APP_ERROR_CHECK(err_code);
}


void saadc_sampling_event_enable(void)
{
    ret_code_t err_code = nrf_drv_ppi_channel_enable(m_ppi_channel);

    APP_ERROR_CHECK(err_code);
}


void saadc_callback(nrf_drv_saadc_evt_t const * p_event)
{
    if (p_event->type == NRF_DRV_SAADC_EVT_DONE)
    {
        ret_code_t err_code;

        err_code = nrf_drv_saadc_buffer_convert(p_event->data.done.p_buffer, SAMPLES_IN_BUFFER);
        APP_ERROR_CHECK(err_code);

        int i;
        NRF_LOG_INFO("ADC event number: %d", (int)m_adc_evt_counter);

        for (i = 0; i < SAMPLES_IN_BUFFER; i++)
        {
            NRF_LOG_INFO("%d", p_event->data.done.p_buffer[i]);
        }
        m_adc_evt_counter++;
    }
}


void saadc_init(void)
{
    ret_code_t err_code;
    nrf_saadc_channel_config_t channel_config =
        NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(NRF_SAADC_INPUT_AIN0);

    err_code = nrf_drv_saadc_init(NULL, saadc_callback);
    APP_ERROR_CHECK(err_code);

    err_code = nrf_drv_saadc_channel_init(0, &channel_config);
    APP_ERROR_CHECK(err_code);

    err_code = nrf_drv_saadc_buffer_convert(m_buffer_pool[0], SAMPLES_IN_BUFFER);
    APP_ERROR_CHECK(err_code);

    err_code = nrf_drv_saadc_buffer_convert(m_buffer_pool[1], SAMPLES_IN_BUFFER);
    APP_ERROR_CHECK(err_code);

}


/**
 * @brief Function for main application entry.
 */
int main(void)
{
    uint32_t err_code = NRF_LOG_INIT(NULL);
    APP_ERROR_CHECK(err_code);

    NRF_LOG_DEFAULT_BACKENDS_INIT();

    ret_code_t ret_code = nrf_pwr_mgmt_init();
    APP_ERROR_CHECK(ret_code);

    saadc_init();
    saadc_sampling_event_init();
    saadc_sampling_event_enable();
    NRF_LOG_INFO("SAADC HAL simple example started.");

    while (1)
    {
        nrf_pwr_mgmt_run();
        NRF_LOG_FLUSH();
    }
}


/** @} */

My code is *slightly* different, as I am using UART printf() instead of logging the ADC value to a file - but it's pretty much the same.

Anyway, I find this code pretty confusing. I understand there is an initilisation function, a timer setup function, and a callback function which is triggered or something when the timer is called. But the code within each function is very confusing to me but I am keen to understand it better.I just wanted help on three minor parts:

    1. Extending the example to use 7 of the analogue input channels (AIN0 to AIN6)
    2. Using scanning mode to make this as fast as possible (I think the datasheet says if multiple channels are initialised this is enabled automatically anyway - am I correct?)
    3. Making the sampling rate per channel 1kS/s (which corresponds to sampling 7 channels every 12ms) or faster. The datasheet says it should be able to do up to 200kS/s so I hope this isn't asking too much. I don't need to print the data at this rate, but at least be able to check (if adcValue > 500 then print for example)

I have attempted this already with the following code changes, basically just guessing:

void saadc_callback(nrf_drv_saadc_evt_t const * p_event)
{
    
    /* SAADC Event is finished - read the channels */
    if (p_event->type == NRF_DRV_SAADC_EVT_DONE)
    {
        
        /* Get ADC readings */
        nrf_drv_saadc_buffer_convert(p_event->data.done.p_buffer, SAMPLES_IN_BUFFER);

        /* Print determined values */
        printf("Channel 0: %d\r\n", p_event->data.done.p_buffer[0]);
        printf("Channel 1: %d\r\n", p_event->data.done.p_buffer[1]);
        printf("Channel 2: %d\r\n", p_event->data.done.p_buffer[2]);
        printf("Channel 3: %d\r\n", p_event->data.done.p_buffer[3]);
        printf("Channel 4: %d\r\n", p_event->data.done.p_buffer[4]);
        printf("Channel 5: %d\r\n", p_event->data.done.p_buffer[5]);
        printf("Channel 6: %d\r\n\r\n", p_event->data.done.p_buffer[6]);
        
        /* Not sure what this does */
        m_adc_evt_counter++;

        if (m_adc_evt_counter == 7)
        {

            m_adc_evt_counter = 0;

        }
        
        /* Toggle LED */
        //nrf_gpio_pin_toggle(LED_PIN_NUMBER);

    }
}


void saadc_init(void)
{
    
    /* Create the configuration structs for all channels */
    nrf_saadc_channel_config_t channel_0_config = NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(NRF_SAADC_INPUT_AIN0);
    nrf_saadc_channel_config_t channel_1_config = NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(NRF_SAADC_INPUT_AIN1);
    nrf_saadc_channel_config_t channel_2_config = NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(NRF_SAADC_INPUT_AIN2);
    nrf_saadc_channel_config_t channel_3_config = NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(NRF_SAADC_INPUT_AIN3);
    nrf_saadc_channel_config_t channel_4_config = NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(NRF_SAADC_INPUT_AIN4);
    nrf_saadc_channel_config_t channel_5_config = NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(NRF_SAADC_INPUT_AIN5);
    nrf_saadc_channel_config_t channel_6_config = NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(NRF_SAADC_INPUT_AIN6);
  
    /* Initialise the SAADC peripheral */
    nrf_drv_saadc_init(NULL, saadc_callback);

    /* Initialise all channels */
    nrf_drv_saadc_channel_init(0, &channel_0_config);
    nrf_drv_saadc_channel_init(1, &channel_1_config);
    nrf_drv_saadc_channel_init(2, &channel_2_config);
    nrf_drv_saadc_channel_init(3, &channel_3_config);
    nrf_drv_saadc_channel_init(4, &channel_4_config);
    nrf_drv_saadc_channel_init(5, &channel_5_config);
    nrf_drv_saadc_channel_init(6, &channel_6_config);
    
    /* Not sure what this does */
    nrf_drv_saadc_buffer_convert(m_buffer_pool[0], SAMPLES_IN_BUFFER);
    nrf_drv_saadc_buffer_convert(m_buffer_pool[1], SAMPLES_IN_BUFFER);
    nrf_drv_saadc_buffer_convert(m_buffer_pool[2], SAMPLES_IN_BUFFER);
    nrf_drv_saadc_buffer_convert(m_buffer_pool[3], SAMPLES_IN_BUFFER);
    nrf_drv_saadc_buffer_convert(m_buffer_pool[4], SAMPLES_IN_BUFFER);
    nrf_drv_saadc_buffer_convert(m_buffer_pool[5], SAMPLES_IN_BUFFER);
    nrf_drv_saadc_buffer_convert(m_buffer_pool[6], SAMPLES_IN_BUFFER);
    

}

void timer_handler(nrf_timer_event_t event_type, void * p_context)
{
    /* Not sure what this is */
}

void saadc_sampling_event_enable(void)
{

    nrf_drv_ppi_channel_enable(m_ppi_channel);

}


void saadc_sampling_event_init(void)
{

    /* Initialise PPI */
    nrf_drv_ppi_init();

    /* Set the configuration struct to a default timer */
    nrf_drv_timer_config_t timer_cfg = NRF_DRV_TIMER_DEFAULT_CONFIG;
    
    /* Customise the bit width to 32 bits */
    timer_cfg.bit_width = NRF_TIMER_BIT_WIDTH_32;
  
    /* Initialise the timer */
    nrf_drv_timer_init(&m_timer, &timer_cfg, timer_handler);


    /* setup m_timer for compare event every 12ms */
    uint32_t ticks = nrf_drv_timer_ms_to_ticks(&m_timer, 12);
    nrf_drv_timer_extended_compare(&m_timer,
                                   NRF_TIMER_CC_CHANNEL0,
                                   ticks,
                                   NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK,
                                   false);
    nrf_drv_timer_enable(&m_timer);

    uint32_t timer_compare_event_addr = nrf_drv_timer_compare_event_address_get(&m_timer,
                                                                                NRF_TIMER_CC_CHANNEL0);
    uint32_t saadc_sample_task_addr   = nrf_drv_saadc_sample_task_get();

    /* setup ppi channel so that timer compare event is triggering sample task in SAADC */
    nrf_drv_ppi_channel_alloc(&m_ppi_channel);
    nrf_drv_ppi_channel_assign(m_ppi_channel,
                               timer_compare_event_addr,
                               saadc_sample_task_addr);

}

However, this did not really work and gave some weird output results. So I must be doing something wrong. Things like what SAMPLES_IN_BUFFER should be or what it means, or what m_adc_evt_counter means and what its importance is, or what nrf_drv_saadc_buffer_convert(m_buffer_pool[<Channel Number>], SAMPLES_IN_BUFFER); does exactly for each channel.

I know this is a big question but it should be a simple concept - just utilising the ADC on more channels, and at a faster rate. So I hope someone can help and I really appreciate if so!

Thanks for your time reading! :)

  • Hi,

    First of all I am not convinced it is good idea to print results in the interrupt handler. I would suggest you to rework your approach a bit. Create a global buffer with results and during callback only copy what was measured by ADC to this buffer, next in the main loop you can print it.

    Second, to have a robust data from all channels (working in scan mode), define: SAMPLES_IN_BUFFER shall have size not smaller than number of used channels.

    And finally function: nrf_drv_saadc_buffer_convert is informing SAADC where next results shall be stored. If you are using only one buffer for storing ADC results and you are priting the same buffer, it is very likely that what you will see printed will be mix of 2 different conversions.

    Regarding your comment: "Not sure what this does"

    What you are actually doing is informing SAADC peripheral where ADC conversion results shall be stored: First result will be copied to address: &m_buffer_pool from[0], second result will be copied to &m_buffer_pool from[1]. It means that if SAMPLES_IN_BUFFER are > 1 (and it shall be if you want to use scan mode) you will overwrite your results.

Related