Hi,
I am unable to program the nRF52 Dongle. What I see is that the "Write" option is not highlighted.
Though the Bootloader and Softdevice are already there on the dongle.
Thanks
Abhishek
Hi,
I am unable to program the nRF52 Dongle. What I see is that the "Write" option is not highlighted.
Though the Bootloader and Softdevice are already there on the dongle.
Thanks
Abhishek
Hi,
Somehow it showed the "write" option, I guess it was because earlier I chose pca10056 application hex. file and this time I chose the hex. file for pca10059 from the examples in SDk.
But now it is not programming again, it is showing errors as shown below :
What happens if you remove the dongle, insert it again, press the bootloader button on the dongle & then read the flash? Did the DFU work then or not?
What happens if you remove the dongle, insert it again, press the bootloader button on the dongle & then read the flash? Did the DFU work then or not?
Tried that it did not work
Hello,
Can you describe what part that didn't work? From your screenshots there are two very different issues. From your last reply, the two files are overlapping. What .hex files did you try to upload here?
In your original screenshot it seems like you are missing the softdevice. What .hex file did you try to upload here?
Check out the tutorial on nRF52 Dongle programming:
Best regards,
Edvin
Hi Edvin,
Thank for your reply in my other ticket as well.
In the queries I asked earlier I did not configure the preprocessor and the memory configurations as per the link you mentioned in the above post.
This time I started afresh follwoing the instructions to change a PCA10056 code to PCA10059 code.
Wirte option highlighted as well ,but looks like some problem with DFU , and could not program, below is the log I received:
2018-12-13T18:45:08.374Z INFO Using USB SDFU protocol to communicate with target
2018-12-13T18:45:08.391Z INFO Protocol Version: 1 found
2018-12-13T18:45:08.393Z INFO Hardware: 52840 found
2018-12-13T18:45:08.400Z INFO Firmware: Bootloader found
2018-12-13T18:45:08.400Z INFO Firmware: Application found
2018-12-13T18:45:16.407Z INFO Hash is generated by SHA256
2018-12-13T18:45:16.408Z INFO Performing DFU. This may take a few seconds
2018-12-13T18:45:16.417Z INFO DFU procedure starts. This may take a few seconds.
2018-12-13T18:45:19.600Z INFO DFU for Application completed successfully!
2018-12-13T18:45:19.600Z INFO 0 dfu package(s) left.
2018-12-13T18:45:19.600Z INFO Waiting for device
2018-12-13T18:45:24.600Z ERROR Reopen device failed: Timeout while waiting for device C77593AC7423 to be attached and enumerated
2018-12-13T18:45:24.600Z INFO Nordic DFU Trigger Interface was not found.Please physically reset device.
2018-12-13T18:45:24.602Z ERROR Device not found due to failure during DFU
2018-12-13T18:45:24.663Z INFO Target device closed.
Hello,
It looks like the update went fine.
Abhishek said:2018-12-13T18:45:19.600Z INFO DFU for Application completed successfully!
It always says "INFO Nordic DFU Trigger Interface was not found. Please physically reset device."
This just means that the device is no longer in DFU mode, and hence, it is not responding to the USB as a DFU device, which is what nRF Connect is looking for.
Now, I don't know what example you put on the dongle, but it may be that it is running, just that you can't see it. Note that the UART pins are not the same as the USB pins, so you will not get any log information. I suggest you try the blinky example for pca10059, then you should see that the LEDs blink.
So what application did you modify and upload to the Dongle?
BR,
Edvin
HI,
It is a customized application coming from blinky_app_c, it scans particular beacons and sends it across on SPI. I am aware of the that UART will not work, but I am not able to see any output on SPI.
I am using a pca10056 DK where I can see the output. The same code I change the preprocessor directives and memory setting for pca10059 ( dongle) it does not work? Below is the main file
/** * Copyright (c) 2014 - 2018, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /** * @brief BLE LED Button Service central and client application main file. * * This file contains the source code for a sample client application using the LED Button service. */ #include "sdk_config.h" #include "nrf_drv_spis.h" #include <stdint.h> #include <stdio.h> #include <string.h> #include "nrf_sdh.h" #include "nrf_sdh_ble.h" #include "nrf_sdh_soc.h" #include "nrf_pwr_mgmt.h" #include "app_timer.h" #include "boards.h" #include "bsp.h" #include "bsp_btn_ble.h" #include "ble.h" #include "ble_hci.h" #include "ble_advertising.h" #include "ble_conn_params.h" #include "ble_db_discovery.h" #include "ble_lbs_c.h" #include "nrf_ble_gatt.h" #include "nrf_ble_scan.h" #include "nrf_log.h" #include "nrf_log_ctrl.h" #include "nrf_log_default_backends.h" #include "nrf_drv_spis.h" #define CENTRAL_SCANNING_LED BSP_BOARD_LED_0 /**< Scanning LED will be on when the device is scanning. */ #define CENTRAL_CONNECTED_LED BSP_BOARD_LED_1 /**< Connected LED will be on when the device is connected. */ #define LEDBUTTON_LED BSP_BOARD_LED_2 /**< LED to indicate a change of state of the the Button characteristic on the peer. */ #define SCAN_INTERVAL 0x00A0 /**< Determines scan interval in units of 0.625 millisecond. */ #define SCAN_WINDOW 0x0050 /**< Determines scan window in units of 0.625 millisecond. */ #define SCAN_DURATION 0x0000 /**< Timout when scanning. 0x0000 disables timeout. */ #define MIN_CONNECTION_INTERVAL MSEC_TO_UNITS(7.5, UNIT_1_25_MS) /**< Determines minimum connection interval in milliseconds. */ #define MAX_CONNECTION_INTERVAL MSEC_TO_UNITS(30, UNIT_1_25_MS) /**< Determines maximum connection interval in milliseconds. */ #define SLAVE_LATENCY 0 /**< Determines slave latency in terms of connection events. */ #define SUPERVISION_TIMEOUT MSEC_TO_UNITS(4000, UNIT_10_MS) /**< Determines supervision time-out in units of 10 milliseconds. */ #define LEDBUTTON_BUTTON_PIN BSP_BUTTON_0 /**< Button that will write to the LED characteristic of the peer */ #define BUTTON_DETECTION_DELAY APP_TIMER_TICKS(50) /**< Delay from a GPIOTE event until a button is reported as pushed (in number of timer ticks). */ #define APP_BLE_CONN_CFG_TAG 1 /**< A tag identifying the SoftDevice BLE configuration. */ #define APP_BLE_OBSERVER_PRIO 3 /**< Application's BLE observer priority. You shouldn't need to modify this value. */ NRF_BLE_SCAN_DEF(m_scan); /**< Scanning module instance. */ BLE_LBS_C_DEF(m_ble_lbs_c); /**< Main structure used by the LBS client module. */ NRF_BLE_GATT_DEF(m_gatt); /**< GATT module instance. */ BLE_DB_DISCOVERY_DEF(m_db_disc); /**< DB discovery module instance. */ //static char const m_target_periph_name[] = "Nordic_Blinky"; /**< Name of the device we try to connect to. This name is searched in the scan report data*/ #define SCAN_LIST_REFRESH_INTERVAL 5000 // 5 sec #define FOUND_DEVICE_REFRESH_TIME APP_TIMER_TICKS(SCAN_LIST_REFRESH_INTERVAL) /**< Time after which the device list is clean and refreshed. */ #define DEVICE_NAME_MAX_SIZE 20 //#define DEVICE_TO_FIND_MAX 20 //Max numbers of devices in the list #define DEVICE_TO_FIND_MAX 30 //Max numbers of devices in the list #define FILTER_ON_COMPANY_ID 1 // Only matching company_identifiers will be added to the list. //#define COMPANY_ID_0 0x06 // E.g. 0x02 and 0x77 ->ABC inc, 06 00 is Microsoft. //#define COMPANY_ID_1 0x00 #define COMPANY_ID_0 0x77 //0x0277 , 0x0006 for Microsoft #define COMPANY_ID_1 0x02 #define SPIS_INSTANCE 1 /**< SPIS instance index. */ static const nrf_drv_spis_t spis = NRF_DRV_SPIS_INSTANCE(SPIS_INSTANCE);/**< SPIS instance. */ #define TEST_STRING "Nordic" static uint8_t m_tx_buf[] = TEST_STRING; /**< TX buffer. */ static uint8_t m_rx_buf[sizeof(TEST_STRING) + 1]; /**< RX buffer. */ static const uint16_t m_length = sizeof(m_tx_buf); /**< Transfer length. */ static volatile bool spis_xfer_done; /**< Flag used to indicate that SPIS instance completed the transfer. */ typedef struct { bool is_not_empty; /**< Indicates that the structure is not empty. */ uint16_t size; /**< Size of manuf data. */ uint8_t addr[BLE_GAP_ADDR_LEN]; /**< Device address. */ char dev_name[DEVICE_NAME_MAX_SIZE]; /**< Device name. */ uint8_t manuf_buffer[BLE_GAP_ADV_SET_DATA_SIZE_MAX]; /**< Buffer for storing an manuf data. */ } scanned_device_t; void device_list_print(scanned_device_t * p_device); void send_on_spi(scanned_device_t * ad_device); scanned_device_t m_device[DEVICE_TO_FIND_MAX]; /**< Stores device info from scan data. */ /**@brief Function for printing the devices. * *@details Function print list of devices. * * * @param[in] device Pointer to the struct storing the scanned devices. */ void device_list_print(scanned_device_t * p_device) { NRF_LOG_INFO("==== PRINTING DEVICE LIST ==="); for (uint8_t i = 0; i < DEVICE_TO_FIND_MAX; i++) { if (p_device[i].is_not_empty) { NRF_LOG_INFO("Device list number: %d:",i); NRF_LOG_INFO("Device-addr %02x:%02x:%02x:%02x:%02x:%02x", p_device[i].addr[5], p_device[i].addr[4], p_device[i].addr[3], p_device[i].addr[2], p_device[i].addr[1], p_device[i].addr[0] ); NRF_LOG_INFO("ManufData:"); NRF_LOG_HEXDUMP_INFO(m_device[i].manuf_buffer,m_device[i].size); NRF_LOG_INFO(""); } } NRF_LOG_INFO("======================"); } // Data Transmission on SPI bus void send_on_spi(scanned_device_t * ad_device) { NRF_LOG_INFO("==== SENDING ADDRESS ON SPI==="); // memset(m_rx_buf, 0, m_length); spis_xfer_done = false; for (uint8_t i = 0; i < DEVICE_TO_FIND_MAX; i++) { if (ad_device[i].is_not_empty) { //NRF_LOG_INFO("Device list number: %d:",i); for (uint8_t js = 5; js > 0 ; js--) { // uint8_t const * tx_buffer= &p_device[i].addr[j]; nrf_drv_spis_buffers_set(&spis, &ad_device[i].addr[js] , m_length, m_rx_buf, m_length); NRF_LOG_INFO("==== ADDRESS %d SENT ON SPI===", js); // while (!spis_xfer_done); /* { __WFE(); }*/ } if(!spis_xfer_done) NRF_LOG_INFO("==== ADDRESS SENT ON SPI==="); /* NRF_LOG_INFO("Device-addr %02x:%02x:%02x:%02x:%02x:%02x", p_device[i].addr[5], p_device[i].addr[4], p_device[i].addr[3], p_device[i].addr[2], p_device[i].addr[1], p_device[i].addr[0] ); */ NRF_LOG_INFO("ManufData on SPI:"); APP_ERROR_CHECK(nrf_drv_spis_buffers_set(&spis, m_device[i].manuf_buffer,m_device[i].size, m_rx_buf, m_length)); // NRF_LOG_HEXDUMP_INFO(m_device[i].manuf_buffer,m_device[i].size); NRF_LOG_INFO("Tx on SPI done"); } } NRF_LOG_INFO("======================"); } void scan_device_info_clear(void) { memset(m_device, 0, sizeof(m_device)); } scanned_device_t * scan_device_info_get(void) { return m_device; } typedef struct { uint8_t * p_data; /**< Pointer to data. */ uint16_t data_len; /**< Length of data. */ } data_t; static void device_to_list_add(ble_gap_evt_adv_report_t const * p_adv_report) { uint8_t idx = 0; uint16_t dev_name_offset = 0; uint16_t field_len; data_t adv_data; // Initialize advertisement report for parsing adv_data.p_data = (uint8_t *)p_adv_report->data.p_data; adv_data.data_len = p_adv_report->data.len; for ( idx = 0; idx < DEVICE_TO_FIND_MAX; idx++) { // If address is duplicated, then return. if (memcmp(p_adv_report->peer_addr.addr, m_device[idx].addr, sizeof(p_adv_report->peer_addr.addr)) == 0) { return; } } // Device is not in the list. for (idx = 0; idx < DEVICE_TO_FIND_MAX; idx++) { if (!m_device[idx].is_not_empty) // We find an empty entry { // Search for manuf_specific_data. uint8_t * p_manuf = ble_advdata_parse(p_adv_report->data.p_data, p_adv_report->data.len, BLE_GAP_AD_TYPE_MANUFACTURER_SPECIFIC_DATA); // If manuf_specific_data is not found, then return. if(p_manuf == NULL) { return; } uint16_t data_offset = 0; uint8_t manuf_len; manuf_len = ble_advdata_search(p_adv_report->data.p_data, p_adv_report->data.len, &data_offset, BLE_GAP_AD_TYPE_MANUFACTURER_SPECIFIC_DATA); uint8_t company_id[2]; memset(company_id,0,2); memcpy(company_id, p_manuf, 2); if(FILTER_ON_COMPANY_ID == 0) { // We add all devices with manuf_specific_data to the list m_device[idx].is_not_empty = true; //validating the list record memset(m_device[idx].manuf_buffer,0,BLE_GAP_ADV_SET_DATA_SIZE_MAX); memcpy(m_device[idx].manuf_buffer, p_manuf, manuf_len); m_device[idx].size = manuf_len; memset(m_device[idx].addr, 0, sizeof(p_adv_report->peer_addr.addr)); memcpy(m_device[idx].addr, p_adv_report->peer_addr.addr, sizeof(p_adv_report->peer_addr.addr)); return; } if( (FILTER_ON_COMPANY_ID == 1) && (company_id[0] == COMPANY_ID_0 ) && (company_id[1] == COMPANY_ID_1) ) { // We add ONLY devices with correct company ID to the list m_device[idx].is_not_empty = true; //validating the list record memset(m_device[idx].manuf_buffer,0,BLE_GAP_ADV_SET_DATA_SIZE_MAX); memcpy(m_device[idx].manuf_buffer, p_manuf, manuf_len); m_device[idx].size = manuf_len; memset(m_device[idx].addr, 0, sizeof(p_adv_report->peer_addr.addr)); memcpy(m_device[idx].addr, p_adv_report->peer_addr.addr, sizeof(p_adv_report->peer_addr.addr)); NRF_LOG_INFO("MANUFACTURER_SPECIFIC_DATA FOUND with correct company_id"); return; } //NRF_LOG_HEXDUMP_INFO(m_device[idx].manuf_buffer,m_device[idx].size); return; } } } /**@brief Function to handle asserts in the SoftDevice. * * @details This function will be called in case of an assert in the SoftDevice. * * @warning This handler is an example only and does not fit a final product. You need to analyze * how your product is supposed to react in case of Assert. * @warning On assert from the SoftDevice, the system can only recover on reset. * * @param[in] line_num Line number of the failing ASSERT call. * @param[in] p_file_name File name of the failing ASSERT call. */ void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name) { app_error_handler(0xDEADBEEF, line_num, p_file_name); } /**@brief Function for the LEDs initialization. * * @details Initializes all LEDs used by the application. */ static void leds_init(void) { bsp_board_init(BSP_INIT_LEDS); } /**@brief Function to start scanning. */ static void scan_start(void) { ret_code_t err_code; err_code = nrf_ble_scan_start(&m_scan); APP_ERROR_CHECK(err_code); bsp_board_led_off(CENTRAL_CONNECTED_LED); bsp_board_led_on(CENTRAL_SCANNING_LED); } /**@brief Function for handling BLE events. * * @param[in] p_ble_evt Bluetooth stack event. * @param[in] p_context Unused. */ static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context) { ret_code_t err_code; // For readability. ble_gap_evt_t const * p_gap_evt = &p_ble_evt->evt.gap_evt; switch (p_ble_evt->header.evt_id) { // Upon connection, check which peripheral has connected (HR or RSC), initiate DB // discovery, update LEDs status and resume scanning if necessary. */ case BLE_GAP_EVT_CONNECTED: { NRF_LOG_INFO("Connected."); // err_code = ble_lbs_c_handles_assign(&m_ble_lbs_c, p_gap_evt->conn_handle, NULL); // APP_ERROR_CHECK(err_code); // // err_code = ble_db_discovery_start(&m_db_disc, p_gap_evt->conn_handle); // APP_ERROR_CHECK(err_code); // Update LEDs status, and check if we should be looking for more // peripherals to connect to. bsp_board_led_on(CENTRAL_CONNECTED_LED); bsp_board_led_off(CENTRAL_SCANNING_LED); } break; // Upon disconnection, reset the connection handle of the peer which disconnected, update // the LEDs status and start scanning again. case BLE_GAP_EVT_DISCONNECTED: { NRF_LOG_INFO("Disconnected."); scan_start(); } break; case BLE_GAP_EVT_TIMEOUT: { // We have not specified a timeout for scanning, so only connection attemps can timeout. if (p_gap_evt->params.timeout.src == BLE_GAP_TIMEOUT_SRC_CONN) { NRF_LOG_DEBUG("Connection request timed out."); } } break; case BLE_GAP_EVT_CONN_PARAM_UPDATE_REQUEST: { // Accept parameters requested by peer. err_code = sd_ble_gap_conn_param_update(p_gap_evt->conn_handle, &p_gap_evt->params.conn_param_update_request.conn_params); APP_ERROR_CHECK(err_code); } break; case BLE_GAP_EVT_PHY_UPDATE_REQUEST: { NRF_LOG_DEBUG("PHY update request."); ble_gap_phys_t const phys = { .rx_phys = BLE_GAP_PHY_AUTO, .tx_phys = BLE_GAP_PHY_AUTO, }; err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys); APP_ERROR_CHECK(err_code); } break; case BLE_GATTC_EVT_TIMEOUT: { // Disconnect on GATT Client timeout event. NRF_LOG_DEBUG("GATT Client Timeout."); err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); } break; case BLE_GATTS_EVT_TIMEOUT: { // Disconnect on GATT Server timeout event. NRF_LOG_DEBUG("GATT Server Timeout."); err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); } break; default: // No implementation needed. break; } } /**@brief Function for initializing the BLE stack. * * @details Initializes the SoftDevice and the BLE event interrupts. */ static void ble_stack_init(void) { ret_code_t err_code; err_code = nrf_sdh_enable_request(); APP_ERROR_CHECK(err_code); // Configure the BLE stack using the default settings. // Fetch the start address of the application RAM. uint32_t ram_start = 0; err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start); APP_ERROR_CHECK(err_code); // Enable BLE stack. err_code = nrf_sdh_ble_enable(&ram_start); APP_ERROR_CHECK(err_code); // Register a handler for BLE events. NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL); } /**@brief Function for handling events from the button handler module. * * @param[in] pin_no The pin that the event applies to. * @param[in] button_action The button action (press/release). */ static void button_event_handler(uint8_t pin_no, uint8_t button_action) { ret_code_t err_code; switch (pin_no) { case LEDBUTTON_BUTTON_PIN: break; default: //APP_ERROR_HANDLER(pin_no); break; } } /**@brief Function for handling Scaning events. * * @param[in] p_scan_evt Scanning event. */ static void scan_evt_handler(scan_evt_t const * p_scan_evt) { ret_code_t err_code; switch(p_scan_evt->scan_evt_id) { case NRF_BLE_SCAN_EVT_CONNECTING_ERROR: err_code = p_scan_evt->params.connecting_err.err_code; APP_ERROR_CHECK(err_code); break; case NRF_BLE_SCAN_EVT_NOT_FOUND: device_to_list_add(p_scan_evt->params.p_not_found); break; default: break; } } /**@brief Function for initializing the button handler module. */ static void buttons_init(void) { ret_code_t err_code; //The array must be static because a pointer to it will be saved in the button handler module. static app_button_cfg_t buttons[] = { {LEDBUTTON_BUTTON_PIN, false, BUTTON_PULL, button_event_handler} }; err_code = app_button_init(buttons, ARRAY_SIZE(buttons), BUTTON_DETECTION_DELAY); APP_ERROR_CHECK(err_code); } /**@brief Function for initializing the log. */ static void log_init(void) { ret_code_t err_code = NRF_LOG_INIT(NULL); APP_ERROR_CHECK(err_code); NRF_LOG_DEFAULT_BACKENDS_INIT(); } /**@brief Function for handling the list_timer event, */ static void adv_list_timer_handle(void * p_context) { // Print devices scanned_device_t * p_device_list = scan_device_info_get(); device_list_print(p_device_list); // send_on_spi(p_device_list); //scan_device_info_clear(); } /**@brief Function for initializing the timer. */ static void timer_init(void) { ret_code_t err_code = app_timer_init(); APP_ERROR_CHECK(err_code); // Timer for refreshing scanned devices data. APP_TIMER_DEF(adv_list_timer); err_code = app_timer_create(&adv_list_timer, APP_TIMER_MODE_REPEATED, adv_list_timer_handle); APP_ERROR_CHECK(err_code); err_code = app_timer_start(adv_list_timer, FOUND_DEVICE_REFRESH_TIME, NULL); APP_ERROR_CHECK(err_code); } /**@brief Function for initializing the Power manager. */ static void power_management_init(void) { ret_code_t err_code; err_code = nrf_pwr_mgmt_init(); APP_ERROR_CHECK(err_code); } static void scan_init(void) { ret_code_t err_code; nrf_ble_scan_init_t init_scan; memset(&init_scan, 0, sizeof(init_scan)); init_scan.connect_if_match = false; init_scan.conn_cfg_tag = APP_BLE_CONN_CFG_TAG; err_code = nrf_ble_scan_init(&m_scan, &init_scan, scan_evt_handler); APP_ERROR_CHECK(err_code); // // Setting filters for scanning. // err_code = nrf_ble_scan_filters_enable(&m_scan, NRF_BLE_SCAN_NAME_FILTER, false); // APP_ERROR_CHECK(err_code); // // err_code = nrf_ble_scan_filter_set(&m_scan, SCAN_NAME_FILTER, m_target_periph_name); // APP_ERROR_CHECK(err_code); } /**@brief Function for initializing the GATT module. */ static void gatt_init(void) { ret_code_t err_code = nrf_ble_gatt_init(&m_gatt, NULL); APP_ERROR_CHECK(err_code); } /**@brief Function for handling the idle state (main loop). * * @details Handle any pending log operation(s), then sleep until the next event occurs. */ static void idle_state_handle(void) { NRF_LOG_FLUSH(); nrf_pwr_mgmt_run(); } /** * @brief SPIS user event handler. * * @param event */ void spis_event_handler(nrf_drv_spis_event_t event) { if (event.evt_type == NRF_DRV_SPIS_XFER_DONE) { spis_xfer_done = true; NRF_LOG_INFO(" Transfer completed. Received: %s",(uint32_t)m_rx_buf); // NRF_LOG_INFO(" Transfer completed. Received: %d",(int32_t)m_rx_buf); } } int main(void) { // Initialize. log_init(); timer_init(); leds_init(); buttons_init(); power_management_init(); ble_stack_init(); scan_init(); gatt_init(); // Start execution. NRF_LOG_INFO("Beacon scanner example started."); scan_start(); // Turn on the LED to signal scanning. bsp_board_led_on(CENTRAL_SCANNING_LED); //SPI Transmission Init NRF_LOG_INFO("SPIS Transmission parameters set"); nrf_drv_spis_config_t spis_config = NRF_DRV_SPIS_DEFAULT_CONFIG; spis_config.csn_pin = APP_SPIS_CS_PIN; spis_config.miso_pin = APP_SPIS_MISO_PIN; spis_config.mosi_pin = APP_SPIS_MOSI_PIN; spis_config.sck_pin = APP_SPIS_SCK_PIN; APP_ERROR_CHECK(nrf_drv_spis_init(&spis, &spis_config, spis_event_handler)); // Enter main loop. for (;;) { memset(m_rx_buf, 0, m_length); spis_xfer_done = false; scanned_device_t * p_device_list = scan_device_info_get(); // APP_ERROR_CHECK(nrf_drv_spis_buffers_set(&spis, m_tx_buf, m_length, m_rx_buf, m_length)); for (uint8_t js = 6; js > 0 ;) { js--; // uint8_t const * tx_buffer= &p_device[i].addr[j]; nrf_drv_spis_buffers_set(&spis, &p_device_list[0].addr[js] , m_length, m_rx_buf, m_length); NRF_LOG_INFO("==== ADDRESS %d SENT ON SPI===", js); // js--; } NRF_LOG_INFO("ManufData on SPI:"); nrf_drv_spis_buffers_set(&spis, m_device[0].manuf_buffer, m_device[0].size, m_rx_buf, m_length); while (!spis_xfer_done) { // __WFE(); idle_state_handle(); } // idle_state_handle(); // __WFE(); } }