Im struck at some point with some error, added all supporting file along with header files but still im getting error. Im using sdk15.3 pca10040 nrf52832.
please verify code i have attached.
/** * Copyright (c) 2014 - 2019, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /** @file * * @defgroup ble_sdk_uart_over_ble_main main.c * @{ * @ingroup ble_sdk_app_nus_eval * @brief UART over BLE application main file. * * This file contains the source code for a sample application that uses the Nordic UART service. * This application uses the @ref srvlib_conn_params module. */ #include <stdint.h> #include <string.h> #include "nordic_common.h" #include "nrf.h" #include "app_timer.h" #include "ble_hci.h" #include "ble_advdata.h" #include "ble_advertising.h" #include "ble_conn_params.h" #include "nrf_sdh.h" #include "nrf_sdh_soc.h" #include "nrf_sdh_ble.h" #include "nrf_ble_gatt.h" #include "nrf_ble_qwr.h" #include "app_timer.h" #include "ble_nus.h" #include "app_uart.h" #include "app_util_platform.h" #include "bsp_btn_ble.h" #include "nrf_pwr_mgmt.h" #include "nrf_drv_saadc.h" #include "nrf_delay.h" #if defined (UART_PRESENT) #include "nrf_uart.h" #endif #if defined (UARTE_PRESENT) #include "nrf_uarte.h" #endif #include "nrf_log.h" #include "nrf_log_ctrl.h" #include "nrf_log_default_backends.h" #include "nrf_drv_power.h" #include "nrf_drv_clock.h" #include "nrf_drv_twi.h" #include "nrf_drv_spi.h" #include "nrf_gpio.h" #define APP_BLE_CONN_CFG_TAG 1 /**< A tag identifying the SoftDevice BLE configuration. */ #define DEVICE_NAME "BLE_SAADC" /**< Name of device. Will be included in the advertising data. */ #define NUS_SERVICE_UUID_TYPE BLE_UUID_TYPE_VENDOR_BEGIN /**< UUID type for the Nordic UART Service (vendor specific). */ #define APP_BLE_OBSERVER_PRIO 3 /**< Application's BLE observer priority. You shouldn't need to modify this value. */ #define APP_ADV_INTERVAL 320 /**< The advertising interval (in units of 0.625 ms. This value corresponds to 40 ms). */ #define APP_ADV_DURATION 180 /**< The advertising duration (180 seconds) in units of 10 milliseconds. */ #define MIN_CONN_INTERVAL MSEC_TO_UNITS(20, UNIT_1_25_MS) /**< Minimum acceptable connection interval (20 ms), Connection interval uses 1.25 ms units. */ #define MAX_CONN_INTERVAL MSEC_TO_UNITS(75, UNIT_1_25_MS) /**< Maximum acceptable connection interval (75 ms), Connection interval uses 1.25 ms units. */ #define SLAVE_LATENCY 20 /**< Slave latency. */ #define CONN_SUP_TIMEOUT MSEC_TO_UNITS(4000, UNIT_10_MS) /**< Connection supervisory timeout (4 seconds), Supervision Timeout uses 10 ms units. */ #define FIRST_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(5000) /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */ #define NEXT_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(30000) /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */ #define MAX_CONN_PARAMS_UPDATE_COUNT 3 /**< Number of attempts before giving up the connection parameter negotiation. */ #define DEAD_BEEF 0xDEADBEEF /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */ #define UART_TX_BUF_SIZE 256 /**< UART TX buffer size. */ #define UART_RX_BUF_SIZE 256 /**< UART RX buffer size. */ #define RTC_FREQUENCY 32 //Determines the RTC frequency and prescaler #define RTC_CC_VALUE 80 //Determines the RTC interrupt frequency and thereby the SAADC sampling frequency #define SAADC_CALIBRATION_INTERVAL 1 //Determines how often the SAADC should be calibrated relative to NRF_DRV_SAADC_EVT_DONE event. E.g. value 5 will make the SAADC calibrate every fifth time the NRF_DRV_SAADC_EVT_DONE is received. #define SAADC_SAMPLES_IN_BUFFER 1 //Number of SAADC samples in RAM before returning a SAADC event. For low power SAADC set this constant to 1. Otherwise the EasyDMA will be enabled for an extended time which consumes high current. #define SAADC_OVERSAMPLE NRF_SAADC_OVERSAMPLE_DISABLED //Oversampling setting for the SAADC. Setting oversample to 4x This will make the SAADC output a single averaged value when the SAMPLE task is triggered 4 times. Enable BURST mode to make the SAADC sample 4 times when triggering SAMPLE task once. #define SAADC_BURST_MODE 0 //Set to 1 to enable BURST mode, otherwise set to 0. #define Button 21 #define Time_INTERVAL APP_TIMER_TICKS(10000) APP_TIMER_DEF(TIMER_2m); static const nrf_drv_twi_t m_twi_master = NRF_DRV_TWI_INSTANCE(0); #define EEPROM_ADDRESS (0xA0 >> 1) BLE_NUS_DEF(m_nus, NRF_SDH_BLE_TOTAL_LINK_COUNT); /**< BLE NUS service instance. */ NRF_BLE_GATT_DEF(m_gatt); /**< GATT module instance. */ NRF_BLE_QWR_DEF(m_qwr); /**< Context for the Queued Write module.*/ BLE_ADVERTISING_DEF(m_advertising); /**< Advertising module instance. */ static uint16_t m_conn_handle = BLE_CONN_HANDLE_INVALID; /**< Handle of the current connection. */ static uint16_t m_ble_nus_max_data_len = BLE_GATT_ATT_MTU_DEFAULT - 3; /**< Maximum length of data (in bytes) that can be transmitted to the peer by the Nordic UART service module. */ static ble_uuid_t m_adv_uuids[] = /**< Universally unique service identifier. */ { {BLE_UUID_NUS_SERVICE, NUS_SERVICE_UUID_TYPE} }; #define MAX30205_ADDRESS 0x48 #define COMMAND_ADDRESS 0x00 bool BLE = 0; char Data_string [20]; char saved [25]; //static uint8_t data_array[30]; char THB[30]; uint8_t control=0; char Sys_ID[] = "40001"; int battery; unsigned char temp[20]; int msg_len=0; uint8_t bleRecData[20]; #define LED0 16 #define LED1 9 #define LED2 10 bool CONNECTED=0; int value; const uint32_t UICR_ADDR_0x20C __attribute__((at(0x1000120C))) __attribute__((used)) = 0xFFFFFFFE ; /**@brief Function for assert macro callback. * * @details This function will be called in case of an assert in the SoftDevice. * * @warning This handler is an example only and does not fit a final product. You need to analyse * how your product is supposed to react in case of Assert. * @warning On assert from the SoftDevice, the system can only recover on reset. * * @param[in] line_num Line number of the failing ASSERT call. * @param[in] p_file_name File name of the failing ASSERT call. */ void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name) { app_error_handler(DEAD_BEEF, line_num, p_file_name); } /**@brief Function for the GAP initialization. * * @details This function will set up all the necessary GAP (Generic Access Profile) parameters of * the device. It also sets the permissions and appearance. */ static void gap_params_init(void) { uint32_t err_code; ble_gap_conn_params_t gap_conn_params; ble_gap_conn_sec_mode_t sec_mode; BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode); err_code = sd_ble_gap_device_name_set(&sec_mode, (const uint8_t *) DEVICE_NAME, strlen(DEVICE_NAME)); APP_ERROR_CHECK(err_code); memset(&gap_conn_params, 0, sizeof(gap_conn_params)); gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL; gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL; gap_conn_params.slave_latency = SLAVE_LATENCY; gap_conn_params.conn_sup_timeout = CONN_SUP_TIMEOUT; err_code = sd_ble_gap_ppcp_set(&gap_conn_params); APP_ERROR_CHECK(err_code); } /**@brief Function for handling Queued Write Module errors. * * @details A pointer to this function will be passed to each service which may need to inform the * application about an error. * * @param[in] nrf_error Error code containing information about what went wrong. */ static void nrf_qwr_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } /**@brief Function for handling the data from the Nordic UART Service. * * @details This function will process the data received from the Nordic UART BLE Service and send * it to the UART module. * * @param[in] p_evt Nordic UART Service event. */ /**@snippet [Handling the data received over BLE] */ void getData(const uint8_t* recData,uint8_t* saveData, uint8_t index) { saveData[index] = recData[index]; } static void nus_data_handler(ble_nus_evt_t * p_evt,uint8_t * p_data, uint16_t length) { if (p_evt->type == BLE_NUS_EVT_RX_DATA) { uint32_t err_code; NRF_LOG_DEBUG("Received data from BLE NUS. Writing data on UART."); NRF_LOG_HEXDUMP_DEBUG(p_evt->params.rx_data.p_data, p_evt->params.rx_data.length); for (uint32_t i = 0; i < p_evt->params.rx_data.length; i++) { do { getData(p_evt->params.rx_data.p_data, bleRecData, i); err_code = app_uart_put(p_evt->params.rx_data.p_data[i]); if ((err_code != NRF_SUCCESS) && (err_code != NRF_ERROR_BUSY)) { NRF_LOG_ERROR("Failed receiving NUS message. Error 0x%x. ", err_code); APP_ERROR_CHECK(err_code); } } while (err_code == NRF_ERROR_BUSY); } if (p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 1] == '\r') { while (app_uart_put('\n') == NRF_ERROR_BUSY); } } } /*static void nus_data_handler(ble_nus_t * p_nus, uint8_t * p_data, uint16_t length) { for (uint32_t i = 0; i < length; i++) { getData(p_data, bleRecData, i); while(app_uart_put(p_data[i]) != NRF_SUCCESS); } while(app_uart_put('\n') != NRF_SUCCESS); }*/ /**@snippet [Handling the data received over BLE] */ /**@brief Function for initializing services that will be used by the application. */ static void services_init(void) { uint32_t err_code; ble_nus_init_t nus_init; nrf_ble_qwr_init_t qwr_init = {0}; // Initialize Queued Write Module. qwr_init.error_handler = nrf_qwr_error_handler; err_code = nrf_ble_qwr_init(&m_qwr, &qwr_init); APP_ERROR_CHECK(err_code); // Initialize NUS. memset(&nus_init, 0, sizeof(nus_init)); nus_init.data_handler = nus_data_handler; err_code = ble_nus_init(&m_nus, &nus_init); APP_ERROR_CHECK(err_code); } /**@brief Function for handling an event from the Connection Parameters Module. * * @details This function will be called for all events in the Connection Parameters Module * which are passed to the application. * * @note All this function does is to disconnect. This could have been done by simply setting * the disconnect_on_fail config parameter, but instead we use the event handler * mechanism to demonstrate its use. * * @param[in] p_evt Event received from the Connection Parameters Module. */ static void on_conn_params_evt(ble_conn_params_evt_t * p_evt) { uint32_t err_code; if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED) { err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE); APP_ERROR_CHECK(err_code); } } /**@brief Function for handling errors from the Connection Parameters module. * * @param[in] nrf_error Error code containing information about what went wrong. */ static void conn_params_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } /**@brief Function for initializing the Connection Parameters module. */ static void conn_params_init(void) { uint32_t err_code; ble_conn_params_init_t cp_init; memset(&cp_init, 0, sizeof(cp_init)); cp_init.p_conn_params = NULL; cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY; cp_init.next_conn_params_update_delay = NEXT_CONN_PARAMS_UPDATE_DELAY; cp_init.max_conn_params_update_count = MAX_CONN_PARAMS_UPDATE_COUNT; cp_init.start_on_notify_cccd_handle = BLE_GATT_HANDLE_INVALID; cp_init.disconnect_on_fail = false; cp_init.evt_handler = on_conn_params_evt; cp_init.error_handler = conn_params_error_handler; err_code = ble_conn_params_init(&cp_init); APP_ERROR_CHECK(err_code); } /**@brief Function for putting the chip into sleep mode. * * @note This function will not return. */ static void sleep_mode_enter(void) { uint32_t err_code = bsp_indication_set(BSP_INDICATE_IDLE); APP_ERROR_CHECK(err_code); // Prepare wakeup buttons. err_code = bsp_btn_ble_sleep_mode_prepare(); APP_ERROR_CHECK(err_code); // Go to system-off mode (this function will not return; wakeup will cause a reset). err_code = sd_power_system_off(); APP_ERROR_CHECK(err_code); } /**@brief Function for handling advertising events. * * @details This function will be called for advertising events which are passed to the application. * * @param[in] ble_adv_evt Advertising event. */ static void on_adv_evt(ble_adv_evt_t ble_adv_evt) { uint32_t err_code; switch (ble_adv_evt) { case BLE_ADV_EVT_FAST: err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING); APP_ERROR_CHECK(err_code); break; case BLE_ADV_EVT_IDLE: sleep_mode_enter(); break; default: break; } } /**@brief Function for handling BLE events. * * @param[in] p_ble_evt Bluetooth stack event. * @param[in] p_context Unused. */ static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context) { uint32_t err_code; switch (p_ble_evt->header.evt_id) { case BLE_GAP_EVT_CONNECTED: //NRF_LOG_INFO("Connected"); CONNECTED = 1; nrf_gpio_pin_set(LED0); //err_code = bsp_indication_set(BSP_INDICATE_CONNECTED); //APP_ERROR_CHECK(err_code); m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle; err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr, m_conn_handle); APP_ERROR_CHECK(err_code); break; case BLE_GAP_EVT_DISCONNECTED: CONNECTED = 0; nrf_gpio_pin_clear(LED0); //NRF_LOG_INFO("Disconnected"); // LED indication will be changed when advertising starts. m_conn_handle = BLE_CONN_HANDLE_INVALID; break; case BLE_GAP_EVT_PHY_UPDATE_REQUEST: { //NRF_LOG_DEBUG("PHY update request."); ble_gap_phys_t const phys = { .rx_phys = BLE_GAP_PHY_AUTO, .tx_phys = BLE_GAP_PHY_AUTO, }; err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys); APP_ERROR_CHECK(err_code); } break; case BLE_GAP_EVT_SEC_PARAMS_REQUEST: // Pairing not supported err_code = sd_ble_gap_sec_params_reply(m_conn_handle, BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL); APP_ERROR_CHECK(err_code); break; case BLE_GATTS_EVT_SYS_ATTR_MISSING: // No system attributes have been stored. err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0, 0); APP_ERROR_CHECK(err_code); break; case BLE_GATTC_EVT_TIMEOUT: // Disconnect on GATT Client timeout event. err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; case BLE_GATTS_EVT_TIMEOUT: // Disconnect on GATT Server timeout event. err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; default: // No implementation needed. break; } } /**@brief Function for the SoftDevice initialization. * * @details This function initializes the SoftDevice and the BLE event interrupt. */ static void ble_stack_init(void) { ret_code_t err_code; err_code = nrf_sdh_enable_request(); APP_ERROR_CHECK(err_code); // Configure the BLE stack using the default settings. // Fetch the start address of the application RAM. uint32_t ram_start = 0; err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start); APP_ERROR_CHECK(err_code); // Enable BLE stack. err_code = nrf_sdh_ble_enable(&ram_start); APP_ERROR_CHECK(err_code); // Register a handler for BLE events. NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL); } /**@brief Function for handling events from the GATT library. */ void gatt_evt_handler(nrf_ble_gatt_t * p_gatt, nrf_ble_gatt_evt_t const * p_evt) { if ((m_conn_handle == p_evt->conn_handle) && (p_evt->evt_id == NRF_BLE_GATT_EVT_ATT_MTU_UPDATED)) { m_ble_nus_max_data_len = p_evt->params.att_mtu_effective - OPCODE_LENGTH - HANDLE_LENGTH; //NRF_LOG_INFO("Data len is set to 0x%X(%d)", m_ble_nus_max_data_len, m_ble_nus_max_data_len); } //NRF_LOG_DEBUG("ATT MTU exchange completed. central 0x%x peripheral 0x%x", // p_gatt->att_mtu_desired_central, // p_gatt->att_mtu_desired_periph); } /**@brief Function for initializing the GATT library. */ void gatt_init(void) { ret_code_t err_code; err_code = nrf_ble_gatt_init(&m_gatt, gatt_evt_handler); APP_ERROR_CHECK(err_code); err_code = nrf_ble_gatt_att_mtu_periph_set(&m_gatt, NRF_SDH_BLE_GATT_MAX_MTU_SIZE); APP_ERROR_CHECK(err_code); } /**@brief Function for handling events from the BSP module. * * @param[in] event Event generated by button press. */ void bsp_event_handler(bsp_event_t event) { uint32_t err_code; switch (event) { case BSP_EVENT_SLEEP: sleep_mode_enter(); break; case BSP_EVENT_DISCONNECT: err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); if (err_code != NRF_ERROR_INVALID_STATE) { APP_ERROR_CHECK(err_code); } break; case BSP_EVENT_WHITELIST_OFF: if (m_conn_handle == BLE_CONN_HANDLE_INVALID) { err_code = ble_advertising_restart_without_whitelist(&m_advertising); if (err_code != NRF_ERROR_INVALID_STATE) { APP_ERROR_CHECK(err_code); } } break; default: break; } } /**@snippet [UART Initialization] */ /**@brief Function for initializing the Advertising functionality. */ static void advertising_init(void) { uint32_t err_code; ble_advertising_init_t init; memset(&init, 0, sizeof(init)); init.advdata.name_type = BLE_ADVDATA_FULL_NAME; init.advdata.include_appearance = false; init.advdata.flags = BLE_GAP_ADV_FLAGS_LE_ONLY_GENERAL_DISC_MODE; init.srdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]); init.srdata.uuids_complete.p_uuids = m_adv_uuids; init.config.ble_adv_fast_enabled = true; init.config.ble_adv_fast_interval = APP_ADV_INTERVAL; init.config.ble_adv_fast_timeout = 0; init.evt_handler = on_adv_evt; err_code = ble_advertising_init(&m_advertising, &init); APP_ERROR_CHECK(err_code); ble_advertising_conn_cfg_tag_set(&m_advertising, APP_BLE_CONN_CFG_TAG); } /**@brief Function for initializing buttons and leds. * * @param[out] p_erase_bonds Will be true if the clear bonding button was pressed to wake the application up. * static void buttons_leds_init(bool * p_erase_bonds) { bsp_event_t startup_event; uint32_t err_code = bsp_init(BSP_INIT_LEDS | BSP_INIT_BUTTONS, bsp_event_handler); APP_ERROR_CHECK(err_code); err_code = bsp_btn_ble_init(NULL, &startup_event); APP_ERROR_CHECK(err_code); *p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA); }*/ /**@brief Function for initializing the nrf log module. */ static void log_init(void) { ret_code_t err_code = NRF_LOG_INIT(NULL); APP_ERROR_CHECK(err_code); NRF_LOG_DEFAULT_BACKENDS_INIT(); } /**@brief Function for initializing power management. */ static void power_management_init(void) { ret_code_t err_code; err_code = nrf_pwr_mgmt_init(); APP_ERROR_CHECK(err_code); } /**@brief Function for handling the idle state (main loop). * * @details If there is no pending log operation, then sleep until next the next event occurs. */ static void idle_state_handle(void) { if (NRF_LOG_PROCESS() == false) { nrf_pwr_mgmt_run(); } } /**@brief Function for starting advertising. */ static void advertising_start(void) { uint32_t err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST); APP_ERROR_CHECK(err_code); } void timers_init(void){ uint32_t err_code; err_code = app_timer_init(); APP_ERROR_CHECK(err_code); // Create timers. /* err_code = app_timer_create(&TIMER_2m, APP_TIMER_MODE_REPEATED, timer_event_handler); APP_ERROR_CHECK(err_code);*/ } #define SPI_INSTANCE 0 /**< SPI instance index. */ static const nrf_drv_spi_t spi = NRF_DRV_SPI_INSTANCE(SPI_INSTANCE); /**< SPI instance. */ static volatile bool spi_xfer_done; /**< Flag used to indicate that SPI instance completed the transfer. */ //#define TEST_STRING "Nordic" static uint8_t m_tx_buf[2]; /**< TX buffer. */ static uint8_t m_rx_buf[40]; /**< RX buffer. */ //static const uint8_t m_length = sizeof(m_tx_buf); /**< Transfer length. */ void spi_event_handler(nrf_drv_spi_evt_t const * p_event) { spi_xfer_done = true; NRF_LOG_INFO(" Sent %d bytes: ", p_event->data.done.tx_length); for(int i=0; i< p_event->data.done.tx_length;i++) { NRF_LOG_INFO(" ;(0x%x); ",p_event->data.done.p_tx_buffer[i], p_event->data.done.p_tx_buffer[i]); } //NRF_LOG_INFO("\r\n"); NRF_LOG_INFO(" Received %d bytes: ", p_event->data.done.rx_length); for(int i=0; i< p_event->data.done.rx_length;i++) { NRF_LOG_INFO(" ;(0x%x); ",p_event->data.done.p_rx_buffer[i], p_event->data.done.p_rx_buffer[i]); nrf_delay_ms(5); } //NRF_LOG_INFO("\r\n\n"); } void spi_con(void) { nrf_gpio_cfg_output(18); //Configure pin 18 as output NRF_CLOCK->TASKS_HFCLKSTART = 1; //Start high frequency clock while (NRF_CLOCK->EVENTS_HFCLKSTARTED == 0) { //Wait for HFCLK to start } NRF_CLOCK->EVENTS_HFCLKSTARTED = 0; //Clear event //Configure GPIOTE to toggle pin 18 NRF_GPIOTE->CONFIG[0] = GPIOTE_CONFIG_MODE_Task << GPIOTE_CONFIG_MODE_Pos | GPIOTE_CONFIG_POLARITY_Toggle << GPIOTE_CONFIG_POLARITY_Pos | 18 << GPIOTE_CONFIG_PSEL_Pos | GPIOTE_CONFIG_OUTINIT_Low << GPIOTE_CONFIG_OUTINIT_Pos; //Configure timer NRF_TIMER1->PRESCALER = 3; NRF_TIMER1->CC[0] = 1; // Adjust the output frequency by adjusting the CC. NRF_TIMER1->SHORTS = TIMER_SHORTS_COMPARE0_CLEAR_Enabled << TIMER_SHORTS_COMPARE0_CLEAR_Pos; NRF_TIMER1->TASKS_START = 1; //Configure PPI NRF_PPI->CH[0].EEP = (uint32_t) &NRF_TIMER1->EVENTS_COMPARE[0]; NRF_PPI->CH[0].TEP = (uint32_t) &NRF_GPIOTE->TASKS_OUT[0]; NRF_PPI->CHENSET = PPI_CHENSET_CH0_Enabled << PPI_CHENSET_CH0_Pos; LEDS_CONFIGURE(BSP_LED_0_MASK); LEDS_OFF(BSP_LED_0_MASK); nrf_drv_spi_config_t spi_config = NRF_DRV_SPI_DEFAULT_CONFIG; spi_config.ss_pin = SPI_SS_PIN; spi_config.miso_pin = SPI_MISO_PIN; spi_config.mosi_pin = SPI_MOSI_PIN; spi_config.sck_pin = SPI_SCK_PIN; APP_ERROR_CHECK(nrf_drv_spi_init(&spi, &spi_config, spi_event_handler, NULL)); NRF_LOG_INFO("SPI example started."); // Reset rx buffer and transfer done flag memset(m_rx_buf, 0, 40); spi_xfer_done = false; m_tx_buf[0]=0x0d; APP_ERROR_CHECK(nrf_drv_spi_transfer(&spi, m_tx_buf, 2, m_rx_buf, 40)); while (!spi_xfer_done) { __WFE(); } } ////\/\/\/\/\/\/\\/\//\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\//\/\/\/\/\/\/\/\/\/\/\/\/\/\\/\/\/\/\/\/\//\/\\/\/\/\/\/\/\/\/\/\/\/\/\/\/ void saadc_init(void); static nrf_saadc_value_t m_buffer_pool[2][SAADC_SAMPLES_IN_BUFFER]; static uint32_t m_adc_evt_counter = 0; static bool m_saadc_calibrate = false; static void lfclk_config(void) { ret_code_t err_code = nrf_drv_clock_init(); //Initialize the clock source specified in the nrf_drv_config.h file, i.e. the CLOCK_CONFIG_LF_SRC constant APP_ERROR_CHECK(err_code); nrf_drv_clock_lfclk_request(NULL); } void saadc_callback(nrf_drv_saadc_evt_t const * p_event) { if (p_event->type == NRF_DRV_SAADC_EVT_DONE) { ret_code_t err_code; err_code = nrf_drv_saadc_buffer_convert(p_event->data.done.p_buffer, SAADC_SAMPLES_IN_BUFFER); APP_ERROR_CHECK(err_code); int i; NRF_LOG_INFO("ADC event number: %d", (int)m_adc_evt_counter); for (i = 0; i < SAADC_SAMPLES_IN_BUFFER; i++) { NRF_LOG_INFO("%d", p_event->data.done.p_buffer[i]); } m_adc_evt_counter++; } } void saadc_init(void) { ret_code_t err_code; nrf_saadc_channel_config_t channel_config = NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(NRF_SAADC_INPUT_AIN0); err_code = nrf_drv_saadc_init(NULL, saadc_callback); APP_ERROR_CHECK(err_code); err_code = nrf_drv_saadc_channel_init(0, &channel_config); APP_ERROR_CHECK(err_code); err_code = nrf_drv_saadc_buffer_convert(m_buffer_pool[0], SAADC_SAMPLES_IN_BUFFER); APP_ERROR_CHECK(err_code); err_code = nrf_drv_saadc_buffer_convert(m_buffer_pool[1], SAADC_SAMPLES_IN_BUFFER); APP_ERROR_CHECK(err_code); } ////////////////////////////////////////////////////////////////////////\// static ret_code_t twi_init(void) { ret_code_t ret_code; //Setup SDA and SCL pin, twi frequency and interrupt priority const nrf_drv_twi_config_t config = { .scl = 8, .sda = 7, .frequency = NRF_DRV_TWI_FREQ_100K, .interrupt_priority = APP_IRQ_PRIORITY_LOW }; do { //ret_code = nrf_drv_twi_init(&m_twi_master, &config,twi_event_handler,NULL);//with event handler ret_code = nrf_drv_twi_init(&m_twi_master, &config,NULL,NULL);// Without event handler if(ret_code!= NRF_SUCCESS) { break; } nrf_drv_twi_enable(&m_twi_master); }while(0); return ret_code; } void eep_readByte(uint16_t eep_address, unsigned char* val){ unsigned char eep_by_address[2]; eep_by_address[1] = eep_address; eep_by_address[0] = (unsigned char)(eep_address << 8); // setting the start address nrf_drv_twi_tx(&m_twi_master, EEPROM_ADDRESS, eep_by_address, 2, true); // read a byte nrf_drv_twi_rx(&m_twi_master, EEPROM_ADDRESS, val,1); nrf_delay_ms(15); } void eep_WriteByte(uint16_t eep_address, unsigned char val){ unsigned char eep_by_address[3]; eep_by_address[2] = val; eep_by_address[1] = eep_address; eep_by_address[0] = (unsigned char)(eep_address << 8); nrf_drv_twi_tx(&m_twi_master, EEPROM_ADDRESS, eep_by_address, 3, false); nrf_delay_ms(5); } ///////TEMEPRATURE AND HUMIDITY///////////// ret_code_t start_Temp() { ret_code_t ret_code; uint8_t command_address = COMMAND_ADDRESS; ret_code = nrf_drv_twi_tx(&m_twi_master, MAX30205_ADDRESS, &command_address, 1, false); nrf_delay_ms(15); return ret_code; } ret_code_t fetch_Temp( int *temperature){ ret_code_t ret_code; uint8_t returned_over_I2C[4]; //Array to hold returned data ret_code = nrf_drv_twi_rx(&m_twi_master, MAX30205_ADDRESS, returned_over_I2C, 2); //Get raw humidity data nrf_delay_ms(1); //Temperature calculation uint16_t rawTemperature = ((unsigned int) returned_over_I2C[0] << 8) | (unsigned int) returned_over_I2C[1]; double tempTemperature = (double)rawTemperature * 0.00390625; *temperature = tempTemperature ;// Temperature value //Calculate humidity nrf_delay_ms(15); return ret_code; } /*void function(void){ uint16_t LEN; if (BLE){ i=0; k=0; if(control>0){ repeat: for(len = 0;len<=12;len++){ addr=len+p+10; eep_readByte(addr,&data[len]); if((data[len] == '!' || m>0) && data[len] != '&'){ if(data[len]=='!'){ m=1; continue;} temp[m] = data[len]; nrf_delay_ms(5); m++; } if (addr>= 32767) addr =10; } m=0; nrf_delay_ms(20); temp[0]='E'; sprintf(saved, "%s,%s",Sys_ID,temp); LEN = sizeof(saved); ble_nus_data_send(&m_nus,(uint8_t *)saved,&LEN,m_conn_handle); memset(saved,0, LEN); //printf("%s\r\n",temp); p=p+15; k=0; m=0; control--; LEN = sizeof(comp); if(control>0) goto repeat; } control =0; nrf_delay_ms(20); nrf_drv_saadc_sample(); nrf_delay_ms(50); nrf_drv_saadc_sample_task_get(); nrf_delay_ms(50); start_Temp(); fetch_Temp(&temperature); temperature =temperature; sprintf(Data_string, "%s,%d,%d",Sys_ID,temperature,battery); LEN = sizeof(Data_string); ble_nus_data_send(&m_nus, (uint8_t *)Data_string,&LEN, m_conn_handle); memset(Data_string,0, LEN); } else{ p = 0; nrf_drv_saadc_sample(); nrf_delay_ms(15); nrf_drv_saadc_sample_task_get(); nrf_delay_ms(15); start_Temp(); fetch_Temp(&temperature); nrf_delay_ms(15); temperature =temperature; memset(THB,0, 30); sprintf(THB,"!%d,%d&",temperature,battery); msg_len = strlen(THB); control++; for(len = 0;len<msg_len;len++){ addr=len+i+10; eep_WriteByte(addr,THB[len]); nrf_delay_ms(100); } i=i+15; if(i == 32767){ i = 10; } } }*/ /*void timer_event_handler( void* p_context) { function(); if(off == 1) sd_power_system_off(); }*/ /*void Timers_init(void){ uint32_t err_code; err_code = app_timer_init(); APP_ERROR_CHECK(err_code); // Create timers. err_code = app_timer_create(&TIMER_2m, APP_TIMER_MODE_REPEATED, timer_event_handler); APP_ERROR_CHECK(err_code); }*/ static void timers_start(void) { uint32_t err_code; err_code = app_timer_start(TIMER_2m, Time_INTERVAL, NULL); APP_ERROR_CHECK(err_code); } /**@brief Application main function. */ int main(void) { uint32_t err_code; // Initialize. log_init(); lfclk_config(); //Configure low frequency 32kHz clock timers_init(); //Timers_init(); //uart_init(); power_management_init(); ble_stack_init(); gap_params_init(); gatt_init(); services_init(); advertising_init(); conn_params_init(); nrf_gpio_cfg_output(LED0); nrf_gpio_cfg_output(LED1); nrf_gpio_cfg_output(LED2); err_code = twi_init(); APP_ERROR_CHECK(err_code); // Start execution. advertising_start(); //uint32_t err_code = NRF_LOG_INIT(NULL); APP_ERROR_CHECK(err_code); NRF_LOG_DEFAULT_BACKENDS_INIT(); ret_code_t ret_code = nrf_pwr_mgmt_init(); APP_ERROR_CHECK(ret_code); spi_con(); saadc_init(); err_code = sd_power_dcdc_mode_set(NRF_POWER_DCDC_ENABLE); APP_ERROR_CHECK(err_code); err_code = sd_power_mode_set(NRF_POWER_MODE_LOWPWR); APP_ERROR_CHECK(err_code); nrf_delay_ms(1000); //timers_start(); // Enter main loop. for (;;) { err_code = sd_power_dcdc_mode_set(NRF_POWER_DCDC_ENABLE); APP_ERROR_CHECK(err_code); idle_state_handle(); if(CONNECTED == 1) { if(strcmp((const char *)bleRecData,(const char *)"UV")==0) { nrf_gpio_pin_toggle(LED1); nrf_delay_ms(50); for(int i=0; i<20; i++) { bleRecData[i]= '\0'; } } if(strcmp((const char *)bleRecData,(const char *)"IR")==0) { nrf_gpio_pin_toggle(LED2); nrf_delay_ms(50); for(int i=0; i<20; i++) { bleRecData[i]= '\0'; } } /* if(strcmp((const char *)bleRecData,(const char *)"R")==0) { nrf_gpio_pin_toggle(LED3); nrf_delay_ms(50); for(int i=0; i<20; i++) { bleRecData[i]= '\0'; } } if(strcmp((const char *)bleRecData,(const char *)"G")==0) { nrf_gpio_pin_toggle(LED4); nrf_delay_ms(50); for(int i=0; i<20; i++) { bleRecData[i]= '\0'; } } if(strcmp((const char *)bleRecData,(const char *)"B")==0) { nrf_gpio_pin_toggle(LED5); nrf_delay_ms(50); for(int i=0; i<20; i++) { bleRecData[i]= '\0'; } }*/ } else { nrf_gpio_pin_clear(LED1); nrf_gpio_pin_clear(LED2); //nrf_gpio_pin_clear(LED3); //nrf_gpio_pin_clear(LED4); // nrf_gpio_pin_clear(LED5); } } } /** * @} */
But this is what error im getting.
Please suggest.