nrf52840 spi

hi,

i tring to initialize spi. i am facing an error.please find the attached file.

Regards,

jagadeesh

MAIN.C.txt
/**
 * Copyright (c) 2014 - 2019, Nordic Semiconductor ASA
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form, except as embedded into a Nordic
 *    Semiconductor ASA integrated circuit in a product or a software update for
 *    such product, must reproduce the above copyright notice, this list of
 *    conditions and the following disclaimer in the documentation and/or other
 *    materials provided with the distribution.
 *
 * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
 *    contributors may be used to endorse or promote products derived from this
 *    software without specific prior written permission.
 *
 * 4. This software, with or without modification, must only be used with a
 *    Nordic Semiconductor ASA integrated circuit.
 *
 * 5. Any software provided in binary form under this license must not be reverse
 *    engineered, decompiled, modified and/or disassembled.
 *
 * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 */
/** @file
 *
 * @defgroup ble_sdk_uart_over_ble_main main.c
 * @{
 * @ingroup  ble_sdk_app_nus_eval
 * @brief    UART over BLE application main file.
 *
 * This file contains the source code for a sample application that uses the Nordic UART service.
 * This application uses the @ref srvlib_conn_params module.
 */

#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <stdbool.h> 
#include <stddef.h> 
#include <ctype.h> 
#include <math.h>
#include "nordic_common.h"
#include "nrf.h"
#include "ble_hci.h"
#include "ble_advdata.h"
#include "ble_advertising.h"
#include "ble_conn_params.h"
#include "nrf_sdh.h"
#include "nrf_sdh_soc.h"
#include "nrf_sdh_ble.h"
#include "nrf_ble_gatt.h"
#include "nrf_ble_qwr.h"
#include "app_timer.h"
#include "ble_nus.h"
#include "app_uart.h"
#include "app_util_platform.h"
#include "bsp_btn_ble.h"
#include "nrf_pwr_mgmt.h"
#include "nrf_drv_clock.h"
#include "nrf_drv_power.h"
#include "app_error.h"
#include "app_util.h"
#include "boards.h"

#if defined (UART_PRESENT)
#include "nrf_uart.h"
#endif
#if defined (UARTE_PRESENT)
#include "nrf_uarte.h"
#endif

#include "nrf_log.h"
#include "nrf_log_ctrl.h"
#include "nrf_log_default_backends.h"
#include "nrf_delay.h"
#include "nrf.h"
#include "nrf_drv_timer.h"
#include "bsp.h"
#include "nrf_wdt.h"
#include "sdk_common.h"
#include "nrf_drv_spi.h"

#define APP_BLE_CONN_CFG_TAG            1                                           /**< A tag identifying the SoftDevice BLE configuration. */

#define DEVICE_NAME                     "Nordic_UART"                               /**< Name of device. Will be included in the advertising data. */
#define NUS_SERVICE_UUID_TYPE           BLE_UUID_TYPE_VENDOR_BEGIN                  /**< UUID type for the Nordic UART Service (vendor specific). */

#define APP_BLE_OBSERVER_PRIO           3                                           /**< Application's BLE observer priority. You shouldn't need to modify this value. */

#define APP_ADV_INTERVAL                32                                          /**< The advertising interval (in units of 0.625 ms. This value corresponds to 40 ms). */

#define APP_ADV_DURATION                18000                                       /**< The advertising duration (180 seconds) in units of 10 milliseconds. */

#define MIN_CONN_INTERVAL               MSEC_TO_UNITS(20, UNIT_1_25_MS)             /**< Minimum acceptable connection interval (20 ms), Connection interval uses 1.25 ms units. */
#define MAX_CONN_INTERVAL               MSEC_TO_UNITS(75, UNIT_1_25_MS)             /**< Maximum acceptable connection interval (75 ms), Connection interval uses 1.25 ms units. */
#define SLAVE_LATENCY                   0                                           /**< Slave latency. */
#define CONN_SUP_TIMEOUT                MSEC_TO_UNITS(4000, UNIT_10_MS)             /**< Connection supervisory timeout (4 seconds), Supervision Timeout uses 10 ms units. */
#define FIRST_CONN_PARAMS_UPDATE_DELAY  APP_TIMER_TICKS(5000)                       /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */
#define NEXT_CONN_PARAMS_UPDATE_DELAY   APP_TIMER_TICKS(30000)                      /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */
#define MAX_CONN_PARAMS_UPDATE_COUNT    3                                           /**< Number of attempts before giving up the connection parameter negotiation. */
#define BLE_UART_LIMIT 			240 	// size of UART sub packet


#define DEAD_BEEF                       0xDEADBEEF                                  /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */

#define UART_TX_BUF_SIZE                256                                         /**< UART TX buffer size. */
#define UART_RX_BUF_SIZE                256                                         /**< UART RX buffer size. */

#define TX_POWER_LEVEL  8

BLE_NUS_DEF(m_nus, NRF_SDH_BLE_TOTAL_LINK_COUNT);                                   /**< BLE NUS service instance. */
NRF_BLE_GATT_DEF(m_gatt);                                                           /**< GATT module instance. */
NRF_BLE_QWR_DEF(m_qwr);                                                             /**< Context for the Queued Write module.*/
BLE_ADVERTISING_DEF(m_advertising);                                                 /**< Advertising module instance. */

static uint16_t   m_conn_handle          = BLE_CONN_HANDLE_INVALID;                 /**< Handle of the current connection. */
static uint16_t   m_ble_nus_max_data_len = BLE_GATT_ATT_MTU_DEFAULT - 3;            /**< Maximum length of data (in bytes) that can be transmitted to the peer by the Nordic UART service module. */
static ble_uuid_t m_adv_uuids[]          =                                          /**< Universally unique service identifier. */
{
    {BLE_UUID_NUS_SERVICE, NUS_SERVICE_UUID_TYPE}
};

uint8_t DATA_PACKECT[82];
uint8_t data_array[512];
uint16_t uartIndex = 0;
uint16_t uartSubIdx;

uint8_t SLAVE_ID[9] ="SLAVE_ID:";
uint8_t NAME1[12] ="FUEL_HEIGHT:";
uint8_t NAME2[16] ="BATTERY_VOLTAGE:";
uint8_t NAME3[12] ="TEMPERATURE:";
uint8_t SPACE[2] = "  ";
uint8_t NEW_LINE[2] = "\r\n";

uint8_t UID[4];
uint8_t buffer[8];
uint8_t buffer1[7];
uint8_t buffer2[5];
uint8_t buffer3[5];

uint8_t FUEL_HEIGHT[4];
uint8_t BAT_VOLTAGE[4];
uint8_t TEMPERATURE[4];

float F_HEIGHT;
float B_VOLTAGE;
float TEMP;

    uint32_t num;
    uint32_t num1;
    uint32_t num2;

    union ui32_to_ui8 {
    uint32_t ui32;
    uint8_t ui8[4];
}u;

#define SPI_INSTANCE  0 /**< SPI instance index. */
static const nrf_drv_spi_t spi = NRF_DRV_SPI_INSTANCE(SPI_INSTANCE);  /**< SPI instance. */
static volatile bool spi_xfer_done;  /**< Flag used to indicate that SPI instance completed the transfer. */


/**@brief Function for assert macro callback.
 *
 * @details This function will be called in case of an assert in the SoftDevice.
 *
 * @warning This handler is an example only and does not fit a final product. You need to analyse
 *          how your product is supposed to react in case of Assert.
 * @warning On assert from the SoftDevice, the system can only recover on reset.
 *
 * @param[in] line_num    Line number of the failing ASSERT call.
 * @param[in] p_file_name File name of the failing ASSERT call.
 */
void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name)
{
    app_error_handler(DEAD_BEEF, line_num, p_file_name);
}

/**@brief Function for initializing the timer module.
 */
static void timers_init(void)
{
    ret_code_t err_code = app_timer_init();
    APP_ERROR_CHECK(err_code);
}

/**@brief Function for the GAP initialization.
 *
 * @details This function will set up all the necessary GAP (Generic Access Profile) parameters of
 *          the device. It also sets the permissions and appearance.
 */
static void gap_params_init(void)
{
    uint32_t                err_code;
    ble_gap_conn_params_t   gap_conn_params;
    ble_gap_conn_sec_mode_t sec_mode;

    BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode);

    err_code = sd_ble_gap_device_name_set(&sec_mode,
                                          (const uint8_t *) DEVICE_NAME,
                                          strlen(DEVICE_NAME));
    APP_ERROR_CHECK(err_code);

    memset(&gap_conn_params, 0, sizeof(gap_conn_params));

    gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL;
    gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL;
    gap_conn_params.slave_latency     = SLAVE_LATENCY;
    gap_conn_params.conn_sup_timeout  = CONN_SUP_TIMEOUT;

    err_code = sd_ble_gap_ppcp_set(&gap_conn_params);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling Queued Write Module errors.
 *
 * @details A pointer to this function will be passed to each service which may need to inform the
 *          application about an error.
 *
 * @param[in]   nrf_error   Error code containing information about what went wrong.
 */
static void nrf_qwr_error_handler(uint32_t nrf_error)
{
    APP_ERROR_HANDLER(nrf_error);
}

/*********************************************************************************/

/**@brief Function for handling the data from the Nordic UART Service.
 *
 * @details This function will process the data received from the Nordic UART BLE Service and send
 *          it to the UART module.
 *
 * @param[in] p_evt       Nordic UART Service event.
 */
/**@snippet [Handling the data received over BLE] */
static void nus_data_handler(ble_nus_evt_t * p_evt)
{

    if (p_evt->type == BLE_NUS_EVT_RX_DATA)
    {
        uint32_t err_code;
        uint32_t i;
        uint32_t DATA_LENGTH;

        NRF_LOG_DEBUG("Received data from BLE NUS. Writing data on UART.");
        NRF_LOG_HEXDUMP_DEBUG(p_evt->params.rx_data.p_data, p_evt->params.rx_data.length);

        NRF_UART_TASK_STARTTX;
        nrf_gpio_pin_set(TX_D);
              
    //     nrf_gpio_cfg_output(TX_D);
  /* if(p_evt->params.rx_data.p_data[0]=='0' || p_evt->params.rx_data.p_data[0]=='1' || p_evt->params.rx_data.p_data[0]=='4'
         || p_evt->params.rx_data.p_data[0]=='5' || p_evt->params.rx_data.p_data[0]=='B' ||p_evt->params.rx_data.p_data[0]=='7'
         || p_evt->params.rx_data.p_data[0]=='F'|| p_evt->params.rx_data.p_data[0]=='6'|| p_evt->params.rx_data.p_data[0]==' ') 
    {*/
        for ( i = 0; i < p_evt->params.rx_data.length; i++)
        {   
            do
            {
                err_code = app_uart_put(p_evt->params.rx_data.p_data[i]);
                if ((err_code != NRF_SUCCESS) && (err_code != NRF_ERROR_BUSY))
                {
                    NRF_LOG_ERROR("Failed receiving NUS message. Error 0x%x. ", err_code);
                    APP_ERROR_CHECK(err_code);
                }
         
            } while (err_code == NRF_ERROR_BUSY);
     //   inc++;
        }
    /*}
    else {
    printf("\r\nCOMMAND DATA MISMATCHED \r\n");
    inc = 0;
          }

      if(inc ==14)
     {
     printf("\r\nCOMMAND RECIEVED\r\n");
     ble_nus_data_send(&m_nus, &txdata[ii], &len, m_conn_handle);
     inc=0;
     }
*/
    }
}
/**@snippet [Handling the data received over BLE] */


/**@brief Function for initializing services that will be used by the application.
 */
static void services_init(void)
{
    uint32_t           err_code;
    ble_nus_init_t     nus_init;
    nrf_ble_qwr_init_t qwr_init = {0};

    // Initialize Queued Write Module.
    qwr_init.error_handler = nrf_qwr_error_handler;

    err_code = nrf_ble_qwr_init(&m_qwr, &qwr_init);
    APP_ERROR_CHECK(err_code);

    // Initialize NUS.
    memset(&nus_init, 0, sizeof(nus_init));

    nus_init.data_handler = nus_data_handler;

    err_code = ble_nus_init(&m_nus, &nus_init);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling an event from the Connection Parameters Module.
 *
 * @details This function will be called for all events in the Connection Parameters Module
 *          which are passed to the application.
 *
 * @note All this function does is to disconnect. This could have been done by simply setting
 *       the disconnect_on_fail config parameter, but instead we use the event handler
 *       mechanism to demonstrate its use.
 *
 * @param[in] p_evt  Event received from the Connection Parameters Module.
 */
static void on_conn_params_evt(ble_conn_params_evt_t * p_evt)
{
    uint32_t err_code;

    if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED)
    {
        err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE);
        APP_ERROR_CHECK(err_code);
    }
}


/**@brief Function for handling errors from the Connection Parameters module.
 *
 * @param[in] nrf_error  Error code containing information about what went wrong.
 */
static void conn_params_error_handler(uint32_t nrf_error)
{
    APP_ERROR_HANDLER(nrf_error);
}


/**@brief Function for initializing the Connection Parameters module.
 */
static void conn_params_init(void)
{
    uint32_t               err_code;
    ble_conn_params_init_t cp_init;

    memset(&cp_init, 0, sizeof(cp_init));

    cp_init.p_conn_params                  = NULL;
    cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY;
    cp_init.next_conn_params_update_delay  = NEXT_CONN_PARAMS_UPDATE_DELAY;
    cp_init.max_conn_params_update_count   = MAX_CONN_PARAMS_UPDATE_COUNT;
    cp_init.start_on_notify_cccd_handle    = BLE_GATT_HANDLE_INVALID;
    cp_init.disconnect_on_fail             = false;
    cp_init.evt_handler                    = on_conn_params_evt;
    cp_init.error_handler                  = conn_params_error_handler;

    err_code = ble_conn_params_init(&cp_init);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for putting the chip into sleep mode.
 *
 * @note This function will not return.
 */
static void sleep_mode_enter(void)
{
    uint32_t err_code = bsp_indication_set(BSP_INDICATE_IDLE);
    APP_ERROR_CHECK(err_code);

    // Prepare wakeup buttons.
    err_code = bsp_btn_ble_sleep_mode_prepare();
    APP_ERROR_CHECK(err_code);

    // Go to system-off mode (this function will not return; wakeup will cause a reset).
    err_code = sd_power_system_off();
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling advertising events.
 *
 * @details This function will be called for advertising events which are passed to the application.
 *
 * @param[in] ble_adv_evt  Advertising event.
 */
static void on_adv_evt(ble_adv_evt_t ble_adv_evt)
{
    uint32_t err_code;

    switch (ble_adv_evt)
    {
        case BLE_ADV_EVT_FAST:
            err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING);
            APP_ERROR_CHECK(err_code);
            break;
        case BLE_ADV_EVT_IDLE:
            sleep_mode_enter();
            break;
        default:
            break;
    }
}


/**@brief Function for handling BLE events.
 *
 * @param[in]   p_ble_evt   Bluetooth stack event.
 * @param[in]   p_context   Unused.
 */
static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context)
{
    uint32_t err_code;

    switch (p_ble_evt->header.evt_id)
    {
        case BLE_GAP_EVT_CONNECTED:
            NRF_LOG_INFO("Connected");
            nrf_gpio_pin_set(PAIR_LED);
            err_code = bsp_indication_set(BSP_INDICATE_CONNECTED);
            APP_ERROR_CHECK(err_code);
            m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle;
            err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr, m_conn_handle);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_GAP_EVT_DISCONNECTED:
            NRF_LOG_INFO("Disconnected");
            nrf_gpio_pin_clear(PAIR_LED);
            // LED indication will be changed when advertising starts.
            m_conn_handle = BLE_CONN_HANDLE_INVALID;
            break;

        case BLE_GAP_EVT_PHY_UPDATE_REQUEST:
        {
            NRF_LOG_DEBUG("PHY update request.");
            ble_gap_phys_t const phys =
            {
                .rx_phys = BLE_GAP_PHY_AUTO,
                .tx_phys = BLE_GAP_PHY_AUTO,
            };
            err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys);
            APP_ERROR_CHECK(err_code);
        } break;

        case BLE_GAP_EVT_SEC_PARAMS_REQUEST:
            // Pairing not supported
           /* err_code = sd_ble_gap_sec_params_reply(m_conn_handle, BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL);
            APP_ERROR_CHECK(err_code);*/
            break;

        case BLE_GATTS_EVT_SYS_ATTR_MISSING:
            // No system attributes have been stored.
            err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0, 0);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_GATTC_EVT_TIMEOUT:
            // Disconnect on GATT Client timeout event.
            err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle,
                                             BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_GATTS_EVT_TIMEOUT:
            // Disconnect on GATT Server timeout event.
            err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle,
                                             BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
            APP_ERROR_CHECK(err_code);
            break;

        default:
            // No implementation needed.
            break;
    }
}


/**@brief Function for the SoftDevice initialization.
 *
 * @details This function initializes the SoftDevice and the BLE event interrupt.
 */
static void ble_stack_init(void)
{
    ret_code_t err_code;

    err_code = nrf_sdh_enable_request();
    APP_ERROR_CHECK(err_code);

    // Configure the BLE stack using the default settings.
    // Fetch the start address of the application RAM.
    uint32_t ram_start = 0;
    err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start);
    APP_ERROR_CHECK(err_code);

    // Enable BLE stack.
    err_code = nrf_sdh_ble_enable(&ram_start);
    APP_ERROR_CHECK(err_code);

    // Register a handler for BLE events.
    NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL);
}


/**@brief Function for handling events from the GATT library. */
void gatt_evt_handler(nrf_ble_gatt_t * p_gatt, nrf_ble_gatt_evt_t const * p_evt)
{
    if ((m_conn_handle == p_evt->conn_handle) && (p_evt->evt_id == NRF_BLE_GATT_EVT_ATT_MTU_UPDATED))
    {
        m_ble_nus_max_data_len = p_evt->params.att_mtu_effective - OPCODE_LENGTH - HANDLE_LENGTH;
        NRF_LOG_INFO("Data len is set to 0x%X(%d)", m_ble_nus_max_data_len, m_ble_nus_max_data_len);
    }
    NRF_LOG_DEBUG("ATT MTU exchange completed. central 0x%x peripheral 0x%x",
                  p_gatt->att_mtu_desired_central,
                  p_gatt->att_mtu_desired_periph);
}


/**@brief Function for initializing the GATT library. */
void gatt_init(void)
{
    ret_code_t err_code;

    err_code = nrf_ble_gatt_init(&m_gatt, gatt_evt_handler);
    APP_ERROR_CHECK(err_code);

    err_code = nrf_ble_gatt_att_mtu_periph_set(&m_gatt, NRF_SDH_BLE_GATT_MAX_MTU_SIZE);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling events from the BSP module.
 *
 * @param[in]   event   Event generated by button press.
 */
void bsp_event_handler(bsp_event_t event)
{
    uint32_t err_code;
    switch (event)
    {
        case BSP_EVENT_SLEEP:
            sleep_mode_enter();
            break;

        case BSP_EVENT_DISCONNECT:
            err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
            if (err_code != NRF_ERROR_INVALID_STATE)
            {
                APP_ERROR_CHECK(err_code);
            }
            break;

        case BSP_EVENT_WHITELIST_OFF:
            if (m_conn_handle == BLE_CONN_HANDLE_INVALID)
            {
                err_code = ble_advertising_restart_without_whitelist(&m_advertising);
                if (err_code != NRF_ERROR_INVALID_STATE)
                {
                    APP_ERROR_CHECK(err_code);
                }
            }
            break;

        default:
            break;
    }
}


/**@brief   Function for handling app_uart events.
 *
 * @details This function will receive a single character from the app_uart module and append it to
 *          a string. The string will be be sent over BLE when the last character received was a
 *          'new line' '\n' (hex 0x0A) or if the string has reached the maximum data length.
 */
/**@snippet [Handling the data received over UART] */
#if 0
void uart_event_handle(app_uart_evt_t * p_event)
{
    static uint8_t data_array[BLE_NUS_MAX_DATA_LEN];
    static uint8_t index = 0;
    uint32_t       err_code;

    switch (p_event->evt_type)
    {

        case APP_UART_DATA_READY:
           
         //  if(rs485_communication2 == 0)

         //  {
            nrf_gpio_pin_clear(TX_D);
            UNUSED_VARIABLE(app_uart_get(&data_array[index]));
            index++;         
            //rs485_communication2 = 1;
         //   }


 
          /*  if ((data_array[index - 1] == '\n') ||
                (data_array[index - 1] == '\r') ||
                (index >= m_ble_nus_max_data_len))
            {*/
        //  if(rs485_communication2 == 1)
         // {
             //   if (index > 0)
             //   {
                    NRF_LOG_DEBUG("Ready to send data over BLE NUS");
                    NRF_LOG_HEXDUMP_DEBUG(data_array, index);

                    do
                    {
                        uint16_t length = (uint16_t)index;
                        err_code = ble_nus_data_send(&m_nus, data_array, &length, m_conn_handle);
                        if ((err_code != NRF_ERROR_INVALID_STATE) &&
                            (err_code != NRF_ERROR_RESOURCES) &&
                            (err_code != NRF_ERROR_NOT_FOUND))
                        {
                            APP_ERROR_CHECK(err_code);
                        }
                    } while (err_code == NRF_ERROR_RESOURCES);
                 index = 0;
             //   }
          
        //   rs485_communication2 = 0;
         //  }
           //  nrf_gpio_pin_clear(TX_D);
            
           // }
            
            break;

        case APP_UART_COMMUNICATION_ERROR:
            APP_ERROR_HANDLER(p_event->data.error_communication);
            break;

        case APP_UART_FIFO_ERROR:
            APP_ERROR_HANDLER(p_event->data.error_code);
            break;

        case APP_UART_TX_EMPTY:
        nrf_gpio_pin_clear(TX_D);
        NRF_UART_TASK_STOPTX;
        break;

        default:
            break;
    }
}
#endif

void uart_event_handle(app_uart_evt_t * p_event)
{

    switch (p_event->evt_type)
    {
        case APP_UART_DATA_READY:
            UNUSED_VARIABLE(app_uart_get(&data_array[uartIndex]));
            uartIndex++;
            break;

        case APP_UART_COMMUNICATION_ERROR:
            APP_ERROR_HANDLER(p_event->data.error_communication);
            break;

        case APP_UART_FIFO_ERROR:
            APP_ERROR_HANDLER(p_event->data.error_code);
            break;

        case APP_UART_TX_EMPTY:
        nrf_gpio_pin_clear(TX_D);
        NRF_UART_TASK_STOPTX;
        break;

        default:
            break;
    }
}

/**@snippet [Handling the data received over UART] */


/**@brief  Function for initializing the UART module.
 */
/**@snippet [UART Initialization] */
static void uart_init(void)
{
    uint32_t                     err_code;
    app_uart_comm_params_t const comm_params =
    {
        .rx_pin_no    = RX_PIN_NUMBER,
        .tx_pin_no    = TX_PIN_NUMBER,
        .rts_pin_no   = RTS_PIN_NUMBER,
        .cts_pin_no   = CTS_PIN_NUMBER,
        .flow_control = APP_UART_FLOW_CONTROL_DISABLED,
        .use_parity   = false,
#if defined (UART_PRESENT)
        .baud_rate    = NRF_UARTE_BAUDRATE_9600
#else
        .baud_rate    = NRF_UARTE_BAUDRATE_115200
#endif
    };

    APP_UART_FIFO_INIT(&comm_params,
                       UART_RX_BUF_SIZE,
                       UART_TX_BUF_SIZE,
                       uart_event_handle,
                       APP_IRQ_PRIORITY_LOWEST,
                       err_code);
    APP_ERROR_CHECK(err_code);
}
/**@snippet [UART Initialization] */


/**@brief Function for initializing the Advertising functionality.
 */
static void advertising_init(void)
{
    uint32_t               err_code;
    ble_advertising_init_t init;

    memset(&init, 0, sizeof(init));

    init.advdata.name_type          = BLE_ADVDATA_FULL_NAME;
    init.advdata.include_appearance = false;
    init.advdata.flags              = BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE;

    init.srdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]);
    init.srdata.uuids_complete.p_uuids  = m_adv_uuids;

    init.config.ble_adv_fast_enabled  = true;
    init.config.ble_adv_fast_interval = APP_ADV_INTERVAL;
    init.config.ble_adv_fast_timeout  = APP_ADV_DURATION;
    init.evt_handler = on_adv_evt;

    err_code = ble_advertising_init(&m_advertising, &init);
    APP_ERROR_CHECK(err_code);

    ble_advertising_conn_cfg_tag_set(&m_advertising, APP_BLE_CONN_CFG_TAG);
}


/**@brief Function for initializing buttons and leds.
 *
 * @param[out] p_erase_bonds  Will be true if the clear bonding button was pressed to wake the application up.
 */
static void buttons_leds_init(bool * p_erase_bonds)
{
    bsp_event_t startup_event;

    uint32_t err_code = bsp_init(BSP_INIT_LEDS | BSP_INIT_BUTTONS, bsp_event_handler);
    APP_ERROR_CHECK(err_code);

    err_code = bsp_btn_ble_init(NULL, &startup_event);
    APP_ERROR_CHECK(err_code);

    *p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA);
}


/**@brief Function for initializing the nrf log module.
 */
static void log_init(void)
{
    ret_code_t err_code = NRF_LOG_INIT(NULL);
    APP_ERROR_CHECK(err_code);

    NRF_LOG_DEFAULT_BACKENDS_INIT();
}


/**@brief Function for initializing power management.
 */
static void power_management_init(void)
{
    ret_code_t err_code;
    err_code = nrf_pwr_mgmt_init();
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling the idle state (main loop).
 *
 * @details If there is no pending log operation, then sleep until next the next event occurs.
 */
static void idle_state_handle(void)
{
    if (NRF_LOG_PROCESS() == false)
    {
        nrf_pwr_mgmt_run();
    }
}


/**@brief Function for starting advertising.
 */
static void advertising_start(void)
{
    uint32_t err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST);
    APP_ERROR_CHECK(err_code);
}

static void tx_power_set(void)
{
    ret_code_t err_code = sd_ble_gap_tx_power_set(BLE_GAP_TX_POWER_ROLE_ADV, m_advertising.adv_handle, TX_POWER_LEVEL);
    APP_ERROR_CHECK(err_code);
}

void Delay(uint16_t count)
{
	uint16_t ii,jj;
	
	for(ii=0;ii<count;ii++) 
		for(jj=0;jj<10000;jj++);
}

void reverse(char *str, int len) 
{ 
    int i=0, j=len-1, temp; 
    while (i<j) 
    { 
        temp = str[i]; 
        str[i] = str[j]; 
        str[j] = temp; 
        i++; j--; 
    } 
} 

int intToStr(int x, char str[], int d) 
{ 
    int i = 0; 
    while (x) 
    { 
        str[i++] = (x%10) + '0'; 
        x = x/10; 
    } 
  
    // If number of digits required is more, then 
    // add 0s at the beginning 
    while (i < d) 
        str[i++] = '0'; 
  
    reverse(str, i); 
    str[i] = '\0'; 
    return i; 
} 

void ftoa(float n, char *res, int afterpoint) 
{ 
    // Extract integer part 
    int ipart = (int)n; 
  
    // Extract floating part 
    float fpart = n - (float)ipart; 
  
    // convert integer part to string 
    int i = intToStr(ipart, res, 0); 
  
    // check for display option after point 
    if (afterpoint != 0) 
    { 
        res[i] = '.';  // add dot 
  
        // Get the value of fraction part upto given no. 
        // of points after dot. The third parameter is needed 
        // to handle cases like 233.007 
        fpart = fpart * pow(10, afterpoint); 
  
        intToStr((int)fpart, res + i + 1, afterpoint); 
    } 
} 

/**@brief Application main function.
 */
void wdt_init(void)
{
NRF_WDT->CONFIG = (WDT_CONFIG_HALT_Pause << WDT_CONFIG_HALT_Pos) | ( WDT_CONFIG_SLEEP_Run << WDT_CONFIG_SLEEP_Pos); 
NRF_WDT->CRV = 9*32768; 
NRF_WDT->RREN |= WDT_RREN_RR0_Msk; 
NRF_WDT-> RR [0] = 0x6E524635UL;
NRF_WDT->TASKS_START = 1; 
}

void spi_init(void)
{
    nrf_drv_spi_config_t spi_config = NRF_DRV_SPI_DEFAULT_CONFIG;
    spi_config.ss_pin   = SPI_SS_PIN;
    spi_config.miso_pin = SPI_MISO_PIN;
    spi_config.sck_pin  = SPI_SCK_PIN;
    APP_ERROR_CHECK(nrf_drv_spi_init(&spi, &spi_config,NULL, NULL));

}

/*void temp_spi(void)
{
float adcv_volt_f;
long temp = 0;
uint8_t ti;

	switch(adc_sts_flag)
	{
		case 1:						
			cs_low;
			adc_sts_flag = 2;
		break;

		case 2:						
			if(MISO_high)
			{
				adc_sts_flag = 3;
			}
		break;

		case 3:					
			if(MISO_low)
			{
				adc.byte_cnt[3] = 0;
				adc.byte_cnt[2] = SPI_Tran_sieve(0);
				adc.byte_cnt[1] = SPI_Tran_sieve(0);
				adc.byte_cnt[0] = SPI_Tran_sieve(0);
				adc_sts_flag = 4;
				cs_high;	
			}
		break;

		case 4:
			ti = (mav_sample_indx-1)&(MAV_SAMPLE_WINDOW_MASK);
			temp = mav_samples[ti]-adc.full_cnt;

			mav_samples[mav_sample_indx] = adc.full_cnt;
			if(mav_sample_indx>=MAV_SAMPLE_WINDOW_MASK)mav_sample_ready = true;
			mav_sample_indx = (mav_sample_indx+1)&(MAV_SAMPLE_WINDOW_MASK);
			if(mav_sample_ready==false)break;

//avg samples	
			temp = 0;
			for(uint8_t i=0;i<MAV_SAMPLE_WINDOW_SIZE;i++)
			{
			temp = (unsigned long)(temp + mav_samples[i]);
			}
			temp/= MAV_SAMPLE_WINDOW_SIZE;

			adcv_volt_f = ((6800*(float)temp/(2097152-temp))-100)/0.385;//calculate

			//unit conversion
			eMBRegHoldingCB(&temp_buf[0], UNIT_ADD, 1, MB_REG_READ);
			switch(temp_buf[1])
				{
					case 'F':
						adcv_volt_f = (adcv_volt_f * 1.8) + 32;
					break;

					case 'K':
						adcv_volt_f = adcv_volt_f + 273;
					break;

					case 'C':
					default:
					break;
				}

			//avg
			mav_temperature[mav_temperature_indx] = adcv_volt_f * read_float(CALIB_VALUE_ADD);//calibrate

			if(mav_temperature_indx>=MAV_TEMPER_WINDOW_MASK)mav_temperature_ready = true;
			mav_temperature_indx = (mav_temperature_indx+1)&(MAV_TEMPER_WINDOW_MASK);
			if(mav_temperature_ready==false)break;

//avg temperature	
			adcv_volt_f = 0;
			for(uint8_t i=0;i<MAV_TEMPER_WINDOW_SIZE;i++)
			{
				adcv_volt_f += mav_temperature[i];	
			}
			adcv_volt_f = adcv_volt_f/MAV_TEMPER_WINDOW_SIZE;

			process_resolution(adcv_volt_f);

			adc_sts_flag = 0xFF;
			adc_read_tim_out_cnt = 0;

		break;

		default:
			adc_sts_flag = 1;
		break;		
}*/

int main(void)
{
u.ui32 = NRF_FICR->DEVICEID[0];
itoa(u.ui32,buffer,16);
uint8_t PIN_SENSE1[1],PIN_SENSE2[1];
uint16_t value1,value2,value3,value4,value5,value6,value7,value8,value9,value10,value11,value12;
uint16_t dlen,dlen1,dlen2,dlen3,dlen4,dlen5,dlen6,dlen7,dlen8,dlen9;
uint8_t CMD0;
uint8_t CMD1[8];
uint8_t CMD2[8];
uint8_t CMD3[8];

    uint16_t len=1;
    uint16_t lenn=9;
    uint16_t leng=12;
    uint16_t lengg=16;
    uint16_t lengt=5;
    uint16_t le=2;

unsigned char DUMMY_BYTE[5] = "0x00";
CMD0 = strtol(DUMMY_BYTE, NULL, 16);

unsigned char FUEL0[5] = "0x28";
unsigned char FUEL1[5] = "0x03";
unsigned char FUEL2[5] = "0x07";
unsigned char FUEL3[5] = "0xD3";
unsigned char FUEL4[5] = "0x00";
unsigned char FUEL5[5] = "0x02";
unsigned char FUEL6[5] = "0x33";
unsigned char FUEL7[5] = "0x7F";

unsigned char BAT0[5] = "0x28";
unsigned char BAT1[5] = "0x03";
unsigned char BAT2[5] = "0x07";
unsigned char BAT3[5] = "0xD7";
unsigned char BAT4[5] = "0x00";
unsigned char BAT5[5] = "0x02";
unsigned char BAT6[5] = "0x72";
unsigned char BAT7[5] = "0xBE";

unsigned char TEMP0[5] = "0x0F";
unsigned char TEMP1[5] = "0x03";
unsigned char TEMP2[5] = "0x08";
unsigned char TEMP3[5] = "0x03";
unsigned char TEMP4[5] = "0x00";
unsigned char TEMP5[5] = "0x02";
unsigned char TEMP6[5] = "0x37";
unsigned char TEMP7[5] = "0x45";

CMD1[0] = strtol(FUEL0, NULL, 16);
CMD1[1] = strtol(FUEL1, NULL, 16);
CMD1[2] = strtol(FUEL2, NULL, 16);
CMD1[3] = strtol(FUEL3, NULL, 16);
CMD1[4] = strtol(FUEL4, NULL, 16);
CMD1[5] = strtol(FUEL5, NULL, 16);
CMD1[6] = strtol(FUEL6, NULL, 16);
CMD1[7] = strtol(FUEL7, NULL, 16);

CMD2[0] = strtol(BAT0, NULL, 16);
CMD2[1] = strtol(BAT1, NULL, 16);
CMD2[2] = strtol(BAT2, NULL, 16);
CMD2[3] = strtol(BAT3, NULL, 16);
CMD2[4] = strtol(BAT4, NULL, 16);
CMD2[5] = strtol(BAT5, NULL, 16);
CMD2[6] = strtol(BAT6, NULL, 16);
CMD2[7] = strtol(BAT7, NULL, 16);

CMD3[0] = strtol(TEMP0, NULL, 16);
CMD3[1] = strtol(TEMP1, NULL, 16);
CMD3[2] = strtol(TEMP2, NULL, 16);
CMD3[3] = strtol(TEMP3, NULL, 16);
CMD3[4] = strtol(TEMP4, NULL, 16);
CMD3[5] = strtol(TEMP5, NULL, 16);
CMD3[6] = strtol(TEMP6, NULL, 16);
CMD3[7] = strtol(TEMP7, NULL, 16);

  nrf_gpio_cfg_output(TX_D);
  nrf_gpio_cfg_output(PAIR_LED);
  nrf_gpio_cfg_output(GPIO_1);
  nrf_gpio_pin_clear(GPIO_1);
  nrf_gpio_cfg_output(GPIO_2);
  nrf_gpio_pin_clear(GPIO_2);
  nrf_gpio_cfg_sense_input(IN1,NRF_GPIO_PIN_PULLUP, NRF_GPIO_PIN_SENSE_HIGH);
  nrf_gpio_cfg_sense_input(IN2,NRF_GPIO_PIN_PULLUP, NRF_GPIO_PIN_SENSE_HIGH);

    bool erase_bonds;
    ret_code_t err_code;
    uint16_t length;

    // Initialize.
    uart_init();
    log_init();
    timers_init();
    buttons_leds_init(&erase_bonds);
    power_management_init();
    ble_stack_init();
    gap_params_init();
    gatt_init();
    services_init();
    advertising_init();
    conn_params_init();
    wdt_init();

    // Start execution.
  //  printf("\r\nUART started.\r\n");
    NRF_LOG_INFO("Debug logging for UART over RTT started.");
    advertising_start();
    tx_power_set();
    
    for (;;) {
             idle_state_handle();
nrf_gpio_pin_clear(GPIO_1);
nrf_gpio_pin_clear(GPIO_2);
NRF_WDT->RR[0] = WDT_RR_RR_Reload;    

nrf_gpio_pin_set(TX_D);
for(int jj=0;jj<6;jj++)
{
for(int ii=0;ii<8;ii++)
{app_uart_put(CMD0);}
}
nrf_delay_ms(1000);
nrf_gpio_pin_set(TX_D);
for(int ii=0;ii<8;ii++)
{app_uart_put(CMD1[ii]);}
nrf_delay_ms(2000);
nrf_gpio_pin_set(TX_D);
for(int ii=0;ii<8;ii++)
{app_uart_put(CMD2[ii]);}
nrf_delay_ms(2000);
nrf_gpio_pin_set(TX_D);
for(int ii=0;ii<8;ii++)
{app_uart_put(CMD3[ii]);}
nrf_delay_ms(2000);

FUEL_HEIGHT[0] = data_array[4];
FUEL_HEIGHT[1] = data_array[3];
FUEL_HEIGHT[2] = data_array[6];
FUEL_HEIGHT[3] = data_array[5];

BAT_VOLTAGE[0]  = data_array[13];
BAT_VOLTAGE[1]  = data_array[12];
BAT_VOLTAGE[2]  = data_array[15];
BAT_VOLTAGE[3]  = data_array[14];

TEMPERATURE[0]  = data_array[22];
TEMPERATURE[1]  = data_array[21];
TEMPERATURE[2]  = data_array[24];
TEMPERATURE[3]  = data_array[23];

num = ((FUEL_HEIGHT[0] << 24)|(FUEL_HEIGHT[1] << 16)|(FUEL_HEIGHT[2] << 8)|(FUEL_HEIGHT[3]));
F_HEIGHT = *((float*)&num);
num1 = ((BAT_VOLTAGE[0] << 24)|(BAT_VOLTAGE[1] << 16)|(BAT_VOLTAGE[2] << 8)|(BAT_VOLTAGE[3]));
B_VOLTAGE = *((float*)&num1);
num2 = ((TEMPERATURE[0] << 24)|(TEMPERATURE[1] << 16)|(TEMPERATURE[2] << 8)|(TEMPERATURE[3]));
TEMP = *((float*)&num2);

ftoa(F_HEIGHT, buffer1, 6); 
ftoa(B_VOLTAGE, buffer2, 2);
ftoa(TEMP, buffer3, 3);

/*ble_nus_data_send(&m_nus, &SLAVE_ID[0], &lenn, m_conn_handle);
ble_nus_data_send(&m_nus, &buffer[0], &len, m_conn_handle);
ble_nus_data_send(&m_nus, &SPACE[0], &le, m_conn_handle);
ble_nus_data_send(&m_nus, &NAME1[0], &leng, m_conn_handle);
ble_nus_data_send(&m_nus, &buffer1[0], &lengt, m_conn_handle);
ble_nus_data_send(&m_nus, &SPACE[0], &le, m_conn_handle);
ble_nus_data_send(&m_nus, &NAME2[0], &lengg, m_conn_handle);
ble_nus_data_send(&m_nus, &buffer2[0], &lengt, m_conn_handle);
ble_nus_data_send(&m_nus, &SPACE[0], &le, m_conn_handle);
ble_nus_data_send(&m_nus, &NAME3[0], &leng, m_conn_handle);
ble_nus_data_send(&m_nus, &buffer3[0], &lengt, m_conn_handle);
ble_nus_data_send(&m_nus, &NEW_LINE[0], &le, m_conn_handle);*/

value1 = sizeof(SLAVE_ID);
value2 = sizeof(buffer);
value3 = sizeof(SPACE);
value4 = sizeof(NAME1);
value5 = sizeof(buffer1);
value6 = sizeof(SPACE);
value7 = sizeof(NAME2);
value8 = sizeof(buffer2);
value9 = sizeof(SPACE);
value10 = sizeof(NAME3);
value11 = sizeof(buffer3);
value12 = sizeof(NEW_LINE);

dlen = value1+value2;
dlen1 = dlen+value3;
dlen2 = dlen1+value4;
dlen3 = dlen2+value5;
dlen4 = dlen3+value6;
dlen5 = dlen4+value7;
dlen6 = dlen5+value8;
dlen7 = dlen6+value9;
dlen8 = dlen7+value10;
dlen9 = dlen8+value11;
//dlen10 = dlen9+value12;

for(int ii=0;ii < value1; ii++)
{DATA_PACKECT[ii] = SLAVE_ID[ii];}
for(int ii=0;ii < value2; ii++)
{DATA_PACKECT[(value1 + ii)] = buffer[ii];}
for(int ii=0;ii < value3; ii++)
{DATA_PACKECT[(dlen + ii)] = SPACE[ii];}
for(int ii=0;ii < value4; ii++)
{DATA_PACKECT[(dlen1 + ii)] = NAME1[ii];}
for(int ii=0;ii < value5; ii++)
{DATA_PACKECT[(dlen2 + ii)] = buffer1[ii];}
for(int ii=0;ii < value6; ii++)
{DATA_PACKECT[(dlen3 + ii)] = SPACE[ii];}
for(int ii=0;ii < value7; ii++)
{DATA_PACKECT[(dlen4 + ii)] = NAME2[ii];}
for(int ii=0;ii < value8; ii++)
{DATA_PACKECT[(dlen5 + ii)] = buffer2[ii];}
for(int ii=0;ii < value9; ii++)
{DATA_PACKECT[(dlen6 + ii)] = SPACE[ii];}
for(int ii=0;ii < value10; ii++)
{DATA_PACKECT[(dlen7 + ii)] = NAME3[ii];}
for(int ii=0;ii < value11; ii++)
{DATA_PACKECT[(dlen8 + ii)] = buffer3[ii];}
for(int ii=0;ii < value12; ii++)
{DATA_PACKECT[(dlen9 + ii)] = NEW_LINE[ii];}
length = sizeof(DATA_PACKECT);
ble_nus_data_send(&m_nus, &DATA_PACKECT[0], &length, m_conn_handle);

    if(nrf_gpio_pin_read(IN1) == 1)
     {PIN_SENSE1[0]='1';}
     else
     {PIN_SENSE1[0]='0';}
ble_nus_data_send(&m_nus, &PIN_SENSE1[0],&len, m_conn_handle);
     if(nrf_gpio_pin_read(IN2) == 1)
     {PIN_SENSE2[0]='1';}
     else
     {PIN_SENSE2[0]='0';}
ble_nus_data_send(&m_nus, &PIN_SENSE2[0], &len, m_conn_handle);

        /*     if(uartIndex != 0) {
                   // Delay(130); // delay to capture all byte about 1K
                    Delay(100);
 //                   NRF_LOG_DEBUG("Ready to send data over BLE NUS");
 //                   NRF_LOG_HEXDUMP_DEBUG(data_array, uartIndex);
                    uartSubIdx =0;
                    do {
                          do	{
                                if(uartIndex < BLE_UART_LIMIT) length = (uint16_t)uartIndex;
                                else length = BLE_UART_LIMIT;
                                err_code = ble_nus_data_send(&m_nus, &data_array[uartSubIdx], &length, m_conn_handle);
                                if ((err_code != NRF_ERROR_INVALID_STATE) &&
                                        (err_code != NRF_ERROR_RESOURCES) &&
                                        (err_code != NRF_ERROR_NOT_FOUND))	{
                                                      APP_ERROR_CHECK(err_code);
                                 }
                            } while (err_code == NRF_ERROR_RESOURCES);
                            if(uartIndex < BLE_UART_LIMIT) uartIndex = 0;
                            else {
                                  uartIndex = uartIndex - BLE_UART_LIMIT;
                                  uartSubIdx = uartSubIdx + BLE_UART_LIMIT;
                            }
                        } while (uartIndex > 0);
                }
                uartIndex = 0;*/
          }
          
}


/**
 * @}
 */
 

SDK.txt