HI,
i have initialised spi, getting errors.
/** * Copyright (c) 2014 - 2019, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /** @file * * @defgroup ble_sdk_uart_over_ble_main main.c * @{ * @ingroup ble_sdk_app_nus_eval * @brief UART over BLE application main file. * * This file contains the source code for a sample application that uses the Nordic UART service. * This application uses the @ref srvlib_conn_params module. */ #include <stdio.h> #include <stdint.h> #include <string.h> #include <stdbool.h> #include <stddef.h> #include <ctype.h> #include <math.h> #include "nordic_common.h" #include "nrf.h" #include "ble_hci.h" #include "ble_advdata.h" #include "ble_advertising.h" #include "ble_conn_params.h" #include "nrf_sdh.h" #include "nrf_sdh_soc.h" #include "nrf_sdh_ble.h" #include "nrf_ble_gatt.h" #include "nrf_ble_qwr.h" #include "app_timer.h" #include "ble_nus.h" #include "app_uart.h" #include "app_util_platform.h" #include "bsp_btn_ble.h" #include "nrf_pwr_mgmt.h" #include "nrf_drv_clock.h" #include "nrf_drv_power.h" #include "app_error.h" #include "app_util.h" #include "boards.h" #if defined (UART_PRESENT) #include "nrf_uart.h" #endif #if defined (UARTE_PRESENT) #include "nrf_uarte.h" #endif #include "nrf_log.h" #include "nrf_log_ctrl.h" #include "nrf_log_default_backends.h" #include "nrf_delay.h" #include "nrf.h" #include "nrf_drv_timer.h" #include "bsp.h" #include "nrf_wdt.h" #include "sdk_common.h" #include "nrf_drv_spi.h" #define APP_BLE_CONN_CFG_TAG 1 /**< A tag identifying the SoftDevice BLE configuration. */ #define DEVICE_NAME "Nordic_UART" /**< Name of device. Will be included in the advertising data. */ #define NUS_SERVICE_UUID_TYPE BLE_UUID_TYPE_VENDOR_BEGIN /**< UUID type for the Nordic UART Service (vendor specific). */ #define APP_BLE_OBSERVER_PRIO 3 /**< Application's BLE observer priority. You shouldn't need to modify this value. */ #define APP_ADV_INTERVAL 32 /**< The advertising interval (in units of 0.625 ms. This value corresponds to 40 ms). */ #define APP_ADV_DURATION 18000 /**< The advertising duration (180 seconds) in units of 10 milliseconds. */ #define MIN_CONN_INTERVAL MSEC_TO_UNITS(20, UNIT_1_25_MS) /**< Minimum acceptable connection interval (20 ms), Connection interval uses 1.25 ms units. */ #define MAX_CONN_INTERVAL MSEC_TO_UNITS(75, UNIT_1_25_MS) /**< Maximum acceptable connection interval (75 ms), Connection interval uses 1.25 ms units. */ #define SLAVE_LATENCY 0 /**< Slave latency. */ #define CONN_SUP_TIMEOUT MSEC_TO_UNITS(4000, UNIT_10_MS) /**< Connection supervisory timeout (4 seconds), Supervision Timeout uses 10 ms units. */ #define FIRST_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(5000) /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */ #define NEXT_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(30000) /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */ #define MAX_CONN_PARAMS_UPDATE_COUNT 3 /**< Number of attempts before giving up the connection parameter negotiation. */ #define BLE_UART_LIMIT 240 // size of UART sub packet #define DEAD_BEEF 0xDEADBEEF /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */ #define UART_TX_BUF_SIZE 256 /**< UART TX buffer size. */ #define UART_RX_BUF_SIZE 256 /**< UART RX buffer size. */ #define TX_POWER_LEVEL 8 #define cs_low NRF_GPIO_PIN_MAP(0,31) #define MISO NRF_GPIO_PIN_MAP(0,30) BLE_NUS_DEF(m_nus, NRF_SDH_BLE_TOTAL_LINK_COUNT); /**< BLE NUS service instance. */ NRF_BLE_GATT_DEF(m_gatt); /**< GATT module instance. */ NRF_BLE_QWR_DEF(m_qwr); /**< Context for the Queued Write module.*/ BLE_ADVERTISING_DEF(m_advertising); /**< Advertising module instance. */ static uint16_t m_conn_handle = BLE_CONN_HANDLE_INVALID; /**< Handle of the current connection. */ static uint16_t m_ble_nus_max_data_len = BLE_GATT_ATT_MTU_DEFAULT - 3; /**< Maximum length of data (in bytes) that can be transmitted to the peer by the Nordic UART service module. */ static ble_uuid_t m_adv_uuids[] = /**< Universally unique service identifier. */ { {BLE_UUID_NUS_SERVICE, NUS_SERVICE_UUID_TYPE} }; uint8_t DATA_PACKECT[82]; uint8_t data_array[512]; uint16_t uartIndex = 0; uint16_t uartSubIdx; uint8_t SLAVE_ID[9] ="SLAVE_ID:"; uint8_t NAME1[12] ="FUEL_HEIGHT:"; uint8_t NAME2[16] ="BATTERY_VOLTAGE:"; uint8_t NAME3[12] ="TEMPERATURE:"; uint8_t SPACE[2] = " "; uint8_t NEW_LINE[2] = "\r\n"; uint8_t UID[4]; uint8_t buffer[8]; uint8_t buffer1[7]; uint8_t buffer2[5]; uint8_t buffer3[5]; uint8_t buffer4[4]; uint8_t FUEL_HEIGHT[4]; uint8_t BAT_VOLTAGE[4]; uint8_t TEMPERATURE[4]; float F_HEIGHT; float B_VOLTAGE; float TEMP; uint32_t num; uint32_t num1; uint32_t num2; union ui32_to_ui8 { uint32_t ui32; uint8_t ui8[4]; }u; float RTD_TEMPERATURE; #define SPI_INSTANCE 0 /**< SPI instance index. */ static const nrf_drv_spi_t spi = NRF_DRV_SPI_INSTANCE(SPI_INSTANCE); /**< SPI instance. */ static volatile bool spi_xfer_done; /**< Flag used to indicate that SPI instance completed the transfer. */ static volatile bool config_done = false; #define MAV_SAMPLE_WINDOW_SIZE 4 #define MAV_TEMPER_WINDOW_SIZE 4 #define MAV_SAMPLE_WINDOW_MASK (MAV_SAMPLE_WINDOW_SIZE-1) #define MAV_TEMPER_WINDOW_MASK (MAV_TEMPER_WINDOW_SIZE-1) uint8_t adc_read_tim_out_cnt = 0, adc_sts_flag = 0; uint8_t temp_buf[2]; union cnt { unsigned char byte_cnt[4]; long full_cnt; }adc; //unsigned char REGDATA[2]; long mav_samples[MAV_SAMPLE_WINDOW_SIZE] = {0,0,0,0}; float mav_temperature[MAV_TEMPER_WINDOW_SIZE] = {0,0,0,0}; uint8_t mav_sample_indx = 0; uint8_t mav_temperature_indx = 0; uint8_t mav_sample_ready = false; uint8_t mav_temperature_ready = false; /**@brief Function for assert macro callback. * * @details This function will be called in case of an assert in the SoftDevice. * * @warning This handler is an example only and does not fit a final product. You need to analyse * how your product is supposed to react in case of Assert. * @warning On assert from the SoftDevice, the system can only recover on reset. * * @param[in] line_num Line number of the failing ASSERT call. * @param[in] p_file_name File name of the failing ASSERT call. */ void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name) { app_error_handler(DEAD_BEEF, line_num, p_file_name); } /**@brief Function for initializing the timer module. */ static void timers_init(void) { ret_code_t err_code = app_timer_init(); APP_ERROR_CHECK(err_code); } /**@brief Function for the GAP initialization. * * @details This function will set up all the necessary GAP (Generic Access Profile) parameters of * the device. It also sets the permissions and appearance. */ static void gap_params_init(void) { uint32_t err_code; ble_gap_conn_params_t gap_conn_params; ble_gap_conn_sec_mode_t sec_mode; BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode); err_code = sd_ble_gap_device_name_set(&sec_mode, (const uint8_t *) DEVICE_NAME, strlen(DEVICE_NAME)); APP_ERROR_CHECK(err_code); memset(&gap_conn_params, 0, sizeof(gap_conn_params)); gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL; gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL; gap_conn_params.slave_latency = SLAVE_LATENCY; gap_conn_params.conn_sup_timeout = CONN_SUP_TIMEOUT; err_code = sd_ble_gap_ppcp_set(&gap_conn_params); APP_ERROR_CHECK(err_code); } /**@brief Function for handling Queued Write Module errors. * * @details A pointer to this function will be passed to each service which may need to inform the * application about an error. * * @param[in] nrf_error Error code containing information about what went wrong. */ static void nrf_qwr_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } /*********************************************************************************/ /**@brief Function for handling the data from the Nordic UART Service. * * @details This function will process the data received from the Nordic UART BLE Service and send * it to the UART module. * * @param[in] p_evt Nordic UART Service event. */ /**@snippet [Handling the data received over BLE] */ static void nus_data_handler(ble_nus_evt_t * p_evt) { if (p_evt->type == BLE_NUS_EVT_RX_DATA) { uint32_t err_code; uint32_t i; uint32_t DATA_LENGTH; NRF_LOG_DEBUG("Received data from BLE NUS. Writing data on UART."); NRF_LOG_HEXDUMP_DEBUG(p_evt->params.rx_data.p_data, p_evt->params.rx_data.length); NRF_UART_TASK_STARTTX; nrf_gpio_pin_set(TX_D); // nrf_gpio_cfg_output(TX_D); /* if(p_evt->params.rx_data.p_data[0]=='0' || p_evt->params.rx_data.p_data[0]=='1' || p_evt->params.rx_data.p_data[0]=='4' || p_evt->params.rx_data.p_data[0]=='5' || p_evt->params.rx_data.p_data[0]=='B' ||p_evt->params.rx_data.p_data[0]=='7' || p_evt->params.rx_data.p_data[0]=='F'|| p_evt->params.rx_data.p_data[0]=='6'|| p_evt->params.rx_data.p_data[0]==' ') {*/ for ( i = 0; i < p_evt->params.rx_data.length; i++) { do { err_code = app_uart_put(p_evt->params.rx_data.p_data[i]); if ((err_code != NRF_SUCCESS) && (err_code != NRF_ERROR_BUSY)) { NRF_LOG_ERROR("Failed receiving NUS message. Error 0x%x. ", err_code); APP_ERROR_CHECK(err_code); } } while (err_code == NRF_ERROR_BUSY); // inc++; } /*} else { printf("\r\nCOMMAND DATA MISMATCHED \r\n"); inc = 0; } if(inc ==14) { printf("\r\nCOMMAND RECIEVED\r\n"); ble_nus_data_send(&m_nus, &txdata[ii], &len, m_conn_handle); inc=0; } */ } } /**@snippet [Handling the data received over BLE] */ /**@brief Function for initializing services that will be used by the application. */ static void services_init(void) { uint32_t err_code; ble_nus_init_t nus_init; nrf_ble_qwr_init_t qwr_init = {0}; // Initialize Queued Write Module. qwr_init.error_handler = nrf_qwr_error_handler; err_code = nrf_ble_qwr_init(&m_qwr, &qwr_init); APP_ERROR_CHECK(err_code); // Initialize NUS. memset(&nus_init, 0, sizeof(nus_init)); nus_init.data_handler = nus_data_handler; err_code = ble_nus_init(&m_nus, &nus_init); APP_ERROR_CHECK(err_code); } /**@brief Function for handling an event from the Connection Parameters Module. * * @details This function will be called for all events in the Connection Parameters Module * which are passed to the application. * * @note All this function does is to disconnect. This could have been done by simply setting * the disconnect_on_fail config parameter, but instead we use the event handler * mechanism to demonstrate its use. * * @param[in] p_evt Event received from the Connection Parameters Module. */ static void on_conn_params_evt(ble_conn_params_evt_t * p_evt) { uint32_t err_code; if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED) { err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE); APP_ERROR_CHECK(err_code); } } /**@brief Function for handling errors from the Connection Parameters module. * * @param[in] nrf_error Error code containing information about what went wrong. */ static void conn_params_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } /**@brief Function for initializing the Connection Parameters module. */ static void conn_params_init(void) { uint32_t err_code; ble_conn_params_init_t cp_init; memset(&cp_init, 0, sizeof(cp_init)); cp_init.p_conn_params = NULL; cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY; cp_init.next_conn_params_update_delay = NEXT_CONN_PARAMS_UPDATE_DELAY; cp_init.max_conn_params_update_count = MAX_CONN_PARAMS_UPDATE_COUNT; cp_init.start_on_notify_cccd_handle = BLE_GATT_HANDLE_INVALID; cp_init.disconnect_on_fail = false; cp_init.evt_handler = on_conn_params_evt; cp_init.error_handler = conn_params_error_handler; err_code = ble_conn_params_init(&cp_init); APP_ERROR_CHECK(err_code); } /**@brief Function for putting the chip into sleep mode. * * @note This function will not return. */ static void sleep_mode_enter(void) { uint32_t err_code = bsp_indication_set(BSP_INDICATE_IDLE); APP_ERROR_CHECK(err_code); // Prepare wakeup buttons. err_code = bsp_btn_ble_sleep_mode_prepare(); APP_ERROR_CHECK(err_code); // Go to system-off mode (this function will not return; wakeup will cause a reset). err_code = sd_power_system_off(); APP_ERROR_CHECK(err_code); } /**@brief Function for handling advertising events. * * @details This function will be called for advertising events which are passed to the application. * * @param[in] ble_adv_evt Advertising event. */ static void on_adv_evt(ble_adv_evt_t ble_adv_evt) { uint32_t err_code; switch (ble_adv_evt) { case BLE_ADV_EVT_FAST: err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING); APP_ERROR_CHECK(err_code); break; case BLE_ADV_EVT_IDLE: sleep_mode_enter(); break; default: break; } } /**@brief Function for handling BLE events. * * @param[in] p_ble_evt Bluetooth stack event. * @param[in] p_context Unused. */ static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context) { uint32_t err_code; switch (p_ble_evt->header.evt_id) { case BLE_GAP_EVT_CONNECTED: NRF_LOG_INFO("Connected"); nrf_gpio_pin_set(PAIR_LED); err_code = bsp_indication_set(BSP_INDICATE_CONNECTED); APP_ERROR_CHECK(err_code); m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle; err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr, m_conn_handle); APP_ERROR_CHECK(err_code); break; case BLE_GAP_EVT_DISCONNECTED: NRF_LOG_INFO("Disconnected"); nrf_gpio_pin_clear(PAIR_LED); // LED indication will be changed when advertising starts. m_conn_handle = BLE_CONN_HANDLE_INVALID; break; case BLE_GAP_EVT_PHY_UPDATE_REQUEST: { NRF_LOG_DEBUG("PHY update request."); ble_gap_phys_t const phys = { .rx_phys = BLE_GAP_PHY_AUTO, .tx_phys = BLE_GAP_PHY_AUTO, }; err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys); APP_ERROR_CHECK(err_code); } break; case BLE_GAP_EVT_SEC_PARAMS_REQUEST: // Pairing not supported /* err_code = sd_ble_gap_sec_params_reply(m_conn_handle, BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL); APP_ERROR_CHECK(err_code);*/ break; case BLE_GATTS_EVT_SYS_ATTR_MISSING: // No system attributes have been stored. err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0, 0); APP_ERROR_CHECK(err_code); break; case BLE_GATTC_EVT_TIMEOUT: // Disconnect on GATT Client timeout event. err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; case BLE_GATTS_EVT_TIMEOUT: // Disconnect on GATT Server timeout event. err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; default: // No implementation needed. break; } } /**@brief Function for the SoftDevice initialization. * * @details This function initializes the SoftDevice and the BLE event interrupt. */ static void ble_stack_init(void) { ret_code_t err_code; err_code = nrf_sdh_enable_request(); APP_ERROR_CHECK(err_code); // Configure the BLE stack using the default settings. // Fetch the start address of the application RAM. uint32_t ram_start = 0; err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start); APP_ERROR_CHECK(err_code); // Enable BLE stack. err_code = nrf_sdh_ble_enable(&ram_start); APP_ERROR_CHECK(err_code); // Register a handler for BLE events. NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL); } /**@brief Function for handling events from the GATT library. */ void gatt_evt_handler(nrf_ble_gatt_t * p_gatt, nrf_ble_gatt_evt_t const * p_evt) { if ((m_conn_handle == p_evt->conn_handle) && (p_evt->evt_id == NRF_BLE_GATT_EVT_ATT_MTU_UPDATED)) { m_ble_nus_max_data_len = p_evt->params.att_mtu_effective - OPCODE_LENGTH - HANDLE_LENGTH; NRF_LOG_INFO("Data len is set to 0x%X(%d)", m_ble_nus_max_data_len, m_ble_nus_max_data_len); } NRF_LOG_DEBUG("ATT MTU exchange completed. central 0x%x peripheral 0x%x", p_gatt->att_mtu_desired_central, p_gatt->att_mtu_desired_periph); } /**@brief Function for initializing the GATT library. */ void gatt_init(void) { ret_code_t err_code; err_code = nrf_ble_gatt_init(&m_gatt, gatt_evt_handler); APP_ERROR_CHECK(err_code); err_code = nrf_ble_gatt_att_mtu_periph_set(&m_gatt, NRF_SDH_BLE_GATT_MAX_MTU_SIZE); APP_ERROR_CHECK(err_code); } /**@brief Function for handling events from the BSP module. * * @param[in] event Event generated by button press. */ void bsp_event_handler(bsp_event_t event) { uint32_t err_code; switch (event) { case BSP_EVENT_SLEEP: sleep_mode_enter(); break; case BSP_EVENT_DISCONNECT: err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); if (err_code != NRF_ERROR_INVALID_STATE) { APP_ERROR_CHECK(err_code); } break; case BSP_EVENT_WHITELIST_OFF: if (m_conn_handle == BLE_CONN_HANDLE_INVALID) { err_code = ble_advertising_restart_without_whitelist(&m_advertising); if (err_code != NRF_ERROR_INVALID_STATE) { APP_ERROR_CHECK(err_code); } } break; default: break; } } /**@brief Function for handling app_uart events. * * @details This function will receive a single character from the app_uart module and append it to * a string. The string will be be sent over BLE when the last character received was a * 'new line' '\n' (hex 0x0A) or if the string has reached the maximum data length. */ /**@snippet [Handling the data received over UART] */ #if 0 void uart_event_handle(app_uart_evt_t * p_event) { static uint8_t data_array[BLE_NUS_MAX_DATA_LEN]; static uint8_t index = 0; uint32_t err_code; switch (p_event->evt_type) { case APP_UART_DATA_READY: // if(rs485_communication2 == 0) // { nrf_gpio_pin_clear(TX_D); UNUSED_VARIABLE(app_uart_get(&data_array[index])); index++; //rs485_communication2 = 1; // } /* if ((data_array[index - 1] == '\n') || (data_array[index - 1] == '\r') || (index >= m_ble_nus_max_data_len)) {*/ // if(rs485_communication2 == 1) // { // if (index > 0) // { NRF_LOG_DEBUG("Ready to send data over BLE NUS"); NRF_LOG_HEXDUMP_DEBUG(data_array, index); do { uint16_t length = (uint16_t)index; err_code = ble_nus_data_send(&m_nus, data_array, &length, m_conn_handle); if ((err_code != NRF_ERROR_INVALID_STATE) && (err_code != NRF_ERROR_RESOURCES) && (err_code != NRF_ERROR_NOT_FOUND)) { APP_ERROR_CHECK(err_code); } } while (err_code == NRF_ERROR_RESOURCES); index = 0; // } // rs485_communication2 = 0; // } // nrf_gpio_pin_clear(TX_D); // } break; case APP_UART_COMMUNICATION_ERROR: APP_ERROR_HANDLER(p_event->data.error_communication); break; case APP_UART_FIFO_ERROR: APP_ERROR_HANDLER(p_event->data.error_code); break; case APP_UART_TX_EMPTY: nrf_gpio_pin_clear(TX_D); NRF_UART_TASK_STOPTX; break; default: break; } } #endif void uart_event_handle(app_uart_evt_t * p_event) { switch (p_event->evt_type) { case APP_UART_DATA_READY: UNUSED_VARIABLE(app_uart_get(&data_array[uartIndex])); uartIndex++; break; case APP_UART_COMMUNICATION_ERROR: APP_ERROR_HANDLER(p_event->data.error_communication); break; case APP_UART_FIFO_ERROR: APP_ERROR_HANDLER(p_event->data.error_code); break; case APP_UART_TX_EMPTY: nrf_gpio_pin_clear(TX_D); NRF_UART_TASK_STOPTX; break; default: break; } } /**@snippet [Handling the data received over UART] */ /**@brief Function for initializing the UART module. */ /**@snippet [UART Initialization] */ static void uart_init(void) { uint32_t err_code; app_uart_comm_params_t const comm_params = { .rx_pin_no = RX_PIN_NUMBER, .tx_pin_no = TX_PIN_NUMBER, .rts_pin_no = RTS_PIN_NUMBER, .cts_pin_no = CTS_PIN_NUMBER, .flow_control = APP_UART_FLOW_CONTROL_DISABLED, .use_parity = false, #if defined (UART_PRESENT) .baud_rate = NRF_UARTE_BAUDRATE_9600 #else .baud_rate = NRF_UARTE_BAUDRATE_115200 #endif }; APP_UART_FIFO_INIT(&comm_params, UART_RX_BUF_SIZE, UART_TX_BUF_SIZE, uart_event_handle, APP_IRQ_PRIORITY_LOWEST, err_code); APP_ERROR_CHECK(err_code); } /**@snippet [UART Initialization] */ /**@brief Function for initializing the Advertising functionality. */ static void advertising_init(void) { uint32_t err_code; ble_advertising_init_t init; memset(&init, 0, sizeof(init)); init.advdata.name_type = BLE_ADVDATA_FULL_NAME; init.advdata.include_appearance = false; init.advdata.flags = BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE; init.srdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]); init.srdata.uuids_complete.p_uuids = m_adv_uuids; init.config.ble_adv_fast_enabled = true; init.config.ble_adv_fast_interval = APP_ADV_INTERVAL; init.config.ble_adv_fast_timeout = APP_ADV_DURATION; init.evt_handler = on_adv_evt; err_code = ble_advertising_init(&m_advertising, &init); APP_ERROR_CHECK(err_code); ble_advertising_conn_cfg_tag_set(&m_advertising, APP_BLE_CONN_CFG_TAG); } /**@brief Function for initializing buttons and leds. * * @param[out] p_erase_bonds Will be true if the clear bonding button was pressed to wake the application up. */ static void buttons_leds_init(bool * p_erase_bonds) { bsp_event_t startup_event; uint32_t err_code = bsp_init(BSP_INIT_LEDS | BSP_INIT_BUTTONS, bsp_event_handler); APP_ERROR_CHECK(err_code); err_code = bsp_btn_ble_init(NULL, &startup_event); APP_ERROR_CHECK(err_code); *p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA); } /**@brief Function for initializing the nrf log module. */ static void log_init(void) { ret_code_t err_code = NRF_LOG_INIT(NULL); APP_ERROR_CHECK(err_code); NRF_LOG_DEFAULT_BACKENDS_INIT(); } /**@brief Function for initializing power management. */ static void power_management_init(void) { ret_code_t err_code; err_code = nrf_pwr_mgmt_init(); APP_ERROR_CHECK(err_code); } /**@brief Function for handling the idle state (main loop). * * @details If there is no pending log operation, then sleep until next the next event occurs. */ static void idle_state_handle(void) { if (NRF_LOG_PROCESS() == false) { nrf_pwr_mgmt_run(); } } /**@brief Function for starting advertising. */ static void advertising_start(void) { uint32_t err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST); APP_ERROR_CHECK(err_code); } static void tx_power_set(void) { ret_code_t err_code = sd_ble_gap_tx_power_set(BLE_GAP_TX_POWER_ROLE_ADV, m_advertising.adv_handle, TX_POWER_LEVEL); APP_ERROR_CHECK(err_code); } void Delay(uint16_t count) { uint16_t ii,jj; for(ii=0;ii<count;ii++) for(jj=0;jj<10000;jj++); } void reverse(char *str, int len) { int i=0, j=len-1, temp; while (i<j) { temp = str[i]; str[i] = str[j]; str[j] = temp; i++; j--; } } int intToStr(int x, char str[], int d) { int i = 0; while (x) { str[i++] = (x%10) + '0'; x = x/10; } // If number of digits required is more, then // add 0s at the beginning while (i < d) str[i++] = '0'; reverse(str, i); str[i] = '\0'; return i; } void ftoa(float n, char *res, int afterpoint) { // Extract integer part int ipart = (int)n; // Extract floating part float fpart = n - (float)ipart; // convert integer part to string int i = intToStr(ipart, res, 0); // check for display option after point if (afterpoint != 0) { res[i] = '.'; // add dot // Get the value of fraction part upto given no. // of points after dot. The third parameter is needed // to handle cases like 233.007 fpart = fpart * pow(10, afterpoint); intToStr((int)fpart, res + i + 1, afterpoint); } } /**@brief Application main function. */ void wdt_init(void) { NRF_WDT->CONFIG = (WDT_CONFIG_HALT_Pause << WDT_CONFIG_HALT_Pos) | ( WDT_CONFIG_SLEEP_Run << WDT_CONFIG_SLEEP_Pos); NRF_WDT->CRV = 9*32768; NRF_WDT->RREN |= WDT_RREN_RR0_Msk; NRF_WDT-> RR [0] = 0x6E524635UL; NRF_WDT->TASKS_START = 1; } void spi_init(void) { nrf_drv_spi_config_t spi_config = NRF_DRV_SPI_DEFAULT_CONFIG; spi_config.ss_pin = SPI_SS_PIN; spi_config.miso_pin = SPI_MISO_PIN; spi_config.sck_pin = SPI_SCK_PIN; APP_ERROR_CHECK(nrf_drv_spi_init(&spi, &spi_config,NULL, NULL)); } void temp_spi(void) { float adcv_volt_f; long temp = 0; uint8_t ti; uint8_t m_tx_rx_buf1[] = {((uint8_t)0x00)}; uint8_t m_tx_rx_buf2[] = {((uint8_t)0x00)}; uint8_t m_tx_rx_buf3[] = {((uint8_t)0x00)}; uint8_t m_rx_buf1[1]; uint8_t m_rx_buf2[1]; uint8_t m_rx_buf3[1]; uint8_t m_length_rx = 1; switch(adc_sts_flag) { case 1: nrf_gpio_pin_clear(cs_low); adc_sts_flag = 2; break; case 2: if(nrf_gpio_pin_read(MISO) == 1) { adc_sts_flag = 3; } break; case 3: if(nrf_gpio_pin_read(MISO) == 0) { nrf_drv_spi_transfer(&spi, m_tx_rx_buf1, m_length_rx, m_rx_buf1, m_length_rx); nrf_drv_spi_transfer(&spi, m_tx_rx_buf1, m_length_rx, m_rx_buf2, m_length_rx); nrf_drv_spi_transfer(&spi, m_tx_rx_buf1, m_length_rx, m_rx_buf3, m_length_rx); adc.byte_cnt[3] = 0; adc.byte_cnt[2] = m_rx_buf1; adc.byte_cnt[1] = m_rx_buf2; adc.byte_cnt[0] = m_rx_buf3; adc_sts_flag = 4; nrf_gpio_pin_set(cs_low); } break; case 4: ti = (mav_sample_indx-1)&(MAV_SAMPLE_WINDOW_MASK); temp = mav_samples[ti]-adc.full_cnt; mav_samples[mav_sample_indx] = adc.full_cnt; if(mav_sample_indx>=MAV_SAMPLE_WINDOW_MASK)mav_sample_ready = true; mav_sample_indx = (mav_sample_indx+1)&(MAV_SAMPLE_WINDOW_MASK); if(mav_sample_ready==false)break; //avg samples temp = 0; for(uint8_t i=0;i<MAV_SAMPLE_WINDOW_SIZE;i++) { temp = (unsigned long)(temp + mav_samples[i]); } temp/= MAV_SAMPLE_WINDOW_SIZE; adcv_volt_f = ((6800*(float)temp/(2097152-temp))-100)/0.385;//calculate /*//unit conversion eMBRegHoldingCB(&temp_buf[0], UNIT_ADD, 1, MB_REG_READ); switch(temp_buf[1]) { case 'F': adcv_volt_f = (adcv_volt_f * 1.8) + 32; break; case 'K': adcv_volt_f = adcv_volt_f + 273; break; case 'C': default: break; }*/ //avg mav_temperature[mav_temperature_indx] = adcv_volt_f; if(mav_temperature_indx>=MAV_TEMPER_WINDOW_MASK)mav_temperature_ready = true; mav_temperature_indx = (mav_temperature_indx+1)&(MAV_TEMPER_WINDOW_MASK); if(mav_temperature_ready==false)break; //avg temperature adcv_volt_f = 0; for(uint8_t i=0;i<MAV_TEMPER_WINDOW_SIZE;i++) { adcv_volt_f += mav_temperature[i]; } adcv_volt_f = adcv_volt_f/MAV_TEMPER_WINDOW_SIZE; RTD_TEMPERATURE = adcv_volt_f; //process_resolution(adcv_volt_f); adc_sts_flag = 0xFF; adc_read_tim_out_cnt = 0; break; default: adc_sts_flag = 1; break; } } int main(void) { u.ui32 = NRF_FICR->DEVICEID[0]; itoa(u.ui32,buffer,16); uint8_t PIN_SENSE1[1],PIN_SENSE2[1]; uint16_t value1,value2,value3,value4,value5,value6,value7,value8,value9,value10,value11,value12; uint16_t dlen,dlen1,dlen2,dlen3,dlen4,dlen5,dlen6,dlen7,dlen8,dlen9; uint8_t CMD0; uint8_t CMD1[8]; uint8_t CMD2[8]; uint8_t CMD3[8]; uint16_t len=1; uint16_t lenn=9; uint16_t leng=12; uint16_t lengg=16; uint16_t lengt=5; uint16_t le=4; unsigned char DUMMY_BYTE[5] = "0x00"; CMD0 = strtol(DUMMY_BYTE, NULL, 16); unsigned char FUEL0[5] = "0x28"; unsigned char FUEL1[5] = "0x03"; unsigned char FUEL2[5] = "0x07"; unsigned char FUEL3[5] = "0xD3"; unsigned char FUEL4[5] = "0x00"; unsigned char FUEL5[5] = "0x02"; unsigned char FUEL6[5] = "0x33"; unsigned char FUEL7[5] = "0x7F"; unsigned char BAT0[5] = "0x28"; unsigned char BAT1[5] = "0x03"; unsigned char BAT2[5] = "0x07"; unsigned char BAT3[5] = "0xD7"; unsigned char BAT4[5] = "0x00"; unsigned char BAT5[5] = "0x02"; unsigned char BAT6[5] = "0x72"; unsigned char BAT7[5] = "0xBE"; unsigned char TEMP0[5] = "0x0F"; unsigned char TEMP1[5] = "0x03"; unsigned char TEMP2[5] = "0x08"; unsigned char TEMP3[5] = "0x03"; unsigned char TEMP4[5] = "0x00"; unsigned char TEMP5[5] = "0x02"; unsigned char TEMP6[5] = "0x37"; unsigned char TEMP7[5] = "0x45"; CMD1[0] = strtol(FUEL0, NULL, 16); CMD1[1] = strtol(FUEL1, NULL, 16); CMD1[2] = strtol(FUEL2, NULL, 16); CMD1[3] = strtol(FUEL3, NULL, 16); CMD1[4] = strtol(FUEL4, NULL, 16); CMD1[5] = strtol(FUEL5, NULL, 16); CMD1[6] = strtol(FUEL6, NULL, 16); CMD1[7] = strtol(FUEL7, NULL, 16); CMD2[0] = strtol(BAT0, NULL, 16); CMD2[1] = strtol(BAT1, NULL, 16); CMD2[2] = strtol(BAT2, NULL, 16); CMD2[3] = strtol(BAT3, NULL, 16); CMD2[4] = strtol(BAT4, NULL, 16); CMD2[5] = strtol(BAT5, NULL, 16); CMD2[6] = strtol(BAT6, NULL, 16); CMD2[7] = strtol(BAT7, NULL, 16); CMD3[0] = strtol(TEMP0, NULL, 16); CMD3[1] = strtol(TEMP1, NULL, 16); CMD3[2] = strtol(TEMP2, NULL, 16); CMD3[3] = strtol(TEMP3, NULL, 16); CMD3[4] = strtol(TEMP4, NULL, 16); CMD3[5] = strtol(TEMP5, NULL, 16); CMD3[6] = strtol(TEMP6, NULL, 16); CMD3[7] = strtol(TEMP7, NULL, 16); nrf_gpio_cfg_output(TX_D); nrf_gpio_cfg_output(PAIR_LED); nrf_gpio_cfg_output(cs_low); nrf_gpio_cfg_output(GPIO_1); nrf_gpio_pin_clear(GPIO_1); nrf_gpio_cfg_output(GPIO_2); nrf_gpio_pin_clear(GPIO_2); nrf_gpio_cfg_sense_input(IN1,NRF_GPIO_PIN_PULLUP, NRF_GPIO_PIN_SENSE_HIGH); nrf_gpio_cfg_sense_input(IN2,NRF_GPIO_PIN_PULLUP, NRF_GPIO_PIN_SENSE_HIGH); nrf_gpio_cfg_sense_input(MISO,NRF_GPIO_PIN_PULLUP, NRF_GPIO_PIN_SENSE_HIGH); bool erase_bonds; ret_code_t err_code; uint16_t length; // Initialize. uart_init(); spi_init(); log_init(); timers_init(); buttons_leds_init(&erase_bonds); power_management_init(); ble_stack_init(); gap_params_init(); gatt_init(); services_init(); advertising_init(); conn_params_init(); wdt_init(); // Start execution. // printf("\r\nUART started.\r\n"); NRF_LOG_INFO("Debug logging for UART over RTT started."); advertising_start(); tx_power_set(); for (;;) { idle_state_handle(); nrf_gpio_pin_clear(GPIO_1); nrf_gpio_pin_clear(GPIO_2); NRF_WDT->RR[0] = WDT_RR_RR_Reload; nrf_gpio_pin_set(TX_D); for(int jj=0;jj<6;jj++) { for(int ii=0;ii<8;ii++) {app_uart_put(CMD0);} } nrf_delay_ms(1000); nrf_gpio_pin_set(TX_D); for(int ii=0;ii<8;ii++) {app_uart_put(CMD1[ii]);} nrf_delay_ms(2000); nrf_gpio_pin_set(TX_D); for(int ii=0;ii<8;ii++) {app_uart_put(CMD2[ii]);} nrf_delay_ms(2000); nrf_gpio_pin_set(TX_D); for(int ii=0;ii<8;ii++) {app_uart_put(CMD3[ii]);} nrf_delay_ms(2000); FUEL_HEIGHT[0] = data_array[4]; FUEL_HEIGHT[1] = data_array[3]; FUEL_HEIGHT[2] = data_array[6]; FUEL_HEIGHT[3] = data_array[5]; BAT_VOLTAGE[0] = data_array[13]; BAT_VOLTAGE[1] = data_array[12]; BAT_VOLTAGE[2] = data_array[15]; BAT_VOLTAGE[3] = data_array[14]; TEMPERATURE[0] = data_array[22]; TEMPERATURE[1] = data_array[21]; TEMPERATURE[2] = data_array[24]; TEMPERATURE[3] = data_array[23]; num = ((FUEL_HEIGHT[0] << 24)|(FUEL_HEIGHT[1] << 16)|(FUEL_HEIGHT[2] << 8)|(FUEL_HEIGHT[3])); F_HEIGHT = *((float*)&num); num1 = ((BAT_VOLTAGE[0] << 24)|(BAT_VOLTAGE[1] << 16)|(BAT_VOLTAGE[2] << 8)|(BAT_VOLTAGE[3])); B_VOLTAGE = *((float*)&num1); num2 = ((TEMPERATURE[0] << 24)|(TEMPERATURE[1] << 16)|(TEMPERATURE[2] << 8)|(TEMPERATURE[3])); TEMP = *((float*)&num2); ftoa(F_HEIGHT, buffer1, 6); ftoa(B_VOLTAGE, buffer2, 2); ftoa(TEMP, buffer3, 3); /*ble_nus_data_send(&m_nus, &SLAVE_ID[0], &lenn, m_conn_handle); ble_nus_data_send(&m_nus, &buffer[0], &len, m_conn_handle); ble_nus_data_send(&m_nus, &SPACE[0], &le, m_conn_handle); ble_nus_data_send(&m_nus, &NAME1[0], &leng, m_conn_handle); ble_nus_data_send(&m_nus, &buffer1[0], &lengt, m_conn_handle); ble_nus_data_send(&m_nus, &SPACE[0], &le, m_conn_handle); ble_nus_data_send(&m_nus, &NAME2[0], &lengg, m_conn_handle); ble_nus_data_send(&m_nus, &buffer2[0], &lengt, m_conn_handle); ble_nus_data_send(&m_nus, &SPACE[0], &le, m_conn_handle); ble_nus_data_send(&m_nus, &NAME3[0], &leng, m_conn_handle); ble_nus_data_send(&m_nus, &buffer3[0], &lengt, m_conn_handle); ble_nus_data_send(&m_nus, &NEW_LINE[0], &le, m_conn_handle);*/ value1 = sizeof(SLAVE_ID); value2 = sizeof(buffer); value3 = sizeof(SPACE); value4 = sizeof(NAME1); value5 = sizeof(buffer1); value6 = sizeof(SPACE); value7 = sizeof(NAME2); value8 = sizeof(buffer2); value9 = sizeof(SPACE); value10 = sizeof(NAME3); value11 = sizeof(buffer3); value12 = sizeof(NEW_LINE); dlen = value1+value2; dlen1 = dlen+value3; dlen2 = dlen1+value4; dlen3 = dlen2+value5; dlen4 = dlen3+value6; dlen5 = dlen4+value7; dlen6 = dlen5+value8; dlen7 = dlen6+value9; dlen8 = dlen7+value10; dlen9 = dlen8+value11; //dlen10 = dlen9+value12; for(int ii=0;ii < value1; ii++) {DATA_PACKECT[ii] = SLAVE_ID[ii];} for(int ii=0;ii < value2; ii++) {DATA_PACKECT[(value1 + ii)] = buffer[ii];} for(int ii=0;ii < value3; ii++) {DATA_PACKECT[(dlen + ii)] = SPACE[ii];} for(int ii=0;ii < value4; ii++) {DATA_PACKECT[(dlen1 + ii)] = NAME1[ii];} for(int ii=0;ii < value5; ii++) {DATA_PACKECT[(dlen2 + ii)] = buffer1[ii];} for(int ii=0;ii < value6; ii++) {DATA_PACKECT[(dlen3 + ii)] = SPACE[ii];} for(int ii=0;ii < value7; ii++) {DATA_PACKECT[(dlen4 + ii)] = NAME2[ii];} for(int ii=0;ii < value8; ii++) {DATA_PACKECT[(dlen5 + ii)] = buffer2[ii];} for(int ii=0;ii < value9; ii++) {DATA_PACKECT[(dlen6 + ii)] = SPACE[ii];} for(int ii=0;ii < value10; ii++) {DATA_PACKECT[(dlen7 + ii)] = NAME3[ii];} for(int ii=0;ii < value11; ii++) {DATA_PACKECT[(dlen8 + ii)] = buffer3[ii];} for(int ii=0;ii < value12; ii++) {DATA_PACKECT[(dlen9 + ii)] = NEW_LINE[ii];} length = sizeof(DATA_PACKECT); ble_nus_data_send(&m_nus, &DATA_PACKECT[0], &length, m_conn_handle); if(nrf_gpio_pin_read(IN1) == 1) {PIN_SENSE1[0]='1';} else {PIN_SENSE1[0]='0';} ble_nus_data_send(&m_nus, &PIN_SENSE1[0],&len, m_conn_handle); if(nrf_gpio_pin_read(IN2) == 1) {PIN_SENSE2[0]='1';} else {PIN_SENSE2[0]='0';} ble_nus_data_send(&m_nus, &PIN_SENSE2[0], &len, m_conn_handle); temp_spi(); ftoa(RTD_TEMPERATURE, buffer4, 1); ble_nus_data_send(&m_nus, &buffer4[0], &le, m_conn_handle); /* if(uartIndex != 0) { // Delay(130); // delay to capture all byte about 1K Delay(100); // NRF_LOG_DEBUG("Ready to send data over BLE NUS"); // NRF_LOG_HEXDUMP_DEBUG(data_array, uartIndex); uartSubIdx =0; do { do { if(uartIndex < BLE_UART_LIMIT) length = (uint16_t)uartIndex; else length = BLE_UART_LIMIT; err_code = ble_nus_data_send(&m_nus, &data_array[uartSubIdx], &length, m_conn_handle); if ((err_code != NRF_ERROR_INVALID_STATE) && (err_code != NRF_ERROR_RESOURCES) && (err_code != NRF_ERROR_NOT_FOUND)) { APP_ERROR_CHECK(err_code); } } while (err_code == NRF_ERROR_RESOURCES); if(uartIndex < BLE_UART_LIMIT) uartIndex = 0; else { uartIndex = uartIndex - BLE_UART_LIMIT; uartSubIdx = uartSubIdx + BLE_UART_LIMIT; } } while (uartIndex > 0); } uartIndex = 0;*/ } } /** * @} */
regards,
jagadeesh