This post is older than 2 years and might not be relevant anymore
More Info: Consider searching for newer posts

SPI INIT

HI,

i have initialised spi, getting errors.

/**
 * Copyright (c) 2014 - 2019, Nordic Semiconductor ASA
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form, except as embedded into a Nordic
 *    Semiconductor ASA integrated circuit in a product or a software update for
 *    such product, must reproduce the above copyright notice, this list of
 *    conditions and the following disclaimer in the documentation and/or other
 *    materials provided with the distribution.
 *
 * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
 *    contributors may be used to endorse or promote products derived from this
 *    software without specific prior written permission.
 *
 * 4. This software, with or without modification, must only be used with a
 *    Nordic Semiconductor ASA integrated circuit.
 *
 * 5. Any software provided in binary form under this license must not be reverse
 *    engineered, decompiled, modified and/or disassembled.
 *
 * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 */
/** @file
 *
 * @defgroup ble_sdk_uart_over_ble_main main.c
 * @{
 * @ingroup  ble_sdk_app_nus_eval
 * @brief    UART over BLE application main file.
 *
 * This file contains the source code for a sample application that uses the Nordic UART service.
 * This application uses the @ref srvlib_conn_params module.
 */

#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <stdbool.h> 
#include <stddef.h> 
#include <ctype.h> 
#include <math.h>
#include "nordic_common.h"
#include "nrf.h"
#include "ble_hci.h"
#include "ble_advdata.h"
#include "ble_advertising.h"
#include "ble_conn_params.h"
#include "nrf_sdh.h"
#include "nrf_sdh_soc.h"
#include "nrf_sdh_ble.h"
#include "nrf_ble_gatt.h"
#include "nrf_ble_qwr.h"
#include "app_timer.h"
#include "ble_nus.h"
#include "app_uart.h"
#include "app_util_platform.h"
#include "bsp_btn_ble.h"
#include "nrf_pwr_mgmt.h"
#include "nrf_drv_clock.h"
#include "nrf_drv_power.h"
#include "app_error.h"
#include "app_util.h"
#include "boards.h"

#if defined (UART_PRESENT)
#include "nrf_uart.h"
#endif
#if defined (UARTE_PRESENT)
#include "nrf_uarte.h"
#endif

#include "nrf_log.h"
#include "nrf_log_ctrl.h"
#include "nrf_log_default_backends.h"
#include "nrf_delay.h"
#include "nrf.h"
#include "nrf_drv_timer.h"
#include "bsp.h"
#include "nrf_wdt.h"
#include "sdk_common.h"
#include "nrf_drv_spi.h"

#define APP_BLE_CONN_CFG_TAG            1                                           /**< A tag identifying the SoftDevice BLE configuration. */

#define DEVICE_NAME                     "Nordic_UART"                               /**< Name of device. Will be included in the advertising data. */
#define NUS_SERVICE_UUID_TYPE           BLE_UUID_TYPE_VENDOR_BEGIN                  /**< UUID type for the Nordic UART Service (vendor specific). */

#define APP_BLE_OBSERVER_PRIO           3                                           /**< Application's BLE observer priority. You shouldn't need to modify this value. */

#define APP_ADV_INTERVAL                32                                          /**< The advertising interval (in units of 0.625 ms. This value corresponds to 40 ms). */

#define APP_ADV_DURATION                18000                                       /**< The advertising duration (180 seconds) in units of 10 milliseconds. */

#define MIN_CONN_INTERVAL               MSEC_TO_UNITS(20, UNIT_1_25_MS)             /**< Minimum acceptable connection interval (20 ms), Connection interval uses 1.25 ms units. */
#define MAX_CONN_INTERVAL               MSEC_TO_UNITS(75, UNIT_1_25_MS)             /**< Maximum acceptable connection interval (75 ms), Connection interval uses 1.25 ms units. */
#define SLAVE_LATENCY                   0                                           /**< Slave latency. */
#define CONN_SUP_TIMEOUT                MSEC_TO_UNITS(4000, UNIT_10_MS)             /**< Connection supervisory timeout (4 seconds), Supervision Timeout uses 10 ms units. */
#define FIRST_CONN_PARAMS_UPDATE_DELAY  APP_TIMER_TICKS(5000)                       /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */
#define NEXT_CONN_PARAMS_UPDATE_DELAY   APP_TIMER_TICKS(30000)                      /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */
#define MAX_CONN_PARAMS_UPDATE_COUNT    3                                           /**< Number of attempts before giving up the connection parameter negotiation. */
#define BLE_UART_LIMIT 			240 	// size of UART sub packet


#define DEAD_BEEF                       0xDEADBEEF                                  /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */

#define UART_TX_BUF_SIZE                256                                         /**< UART TX buffer size. */
#define UART_RX_BUF_SIZE                256                                         /**< UART RX buffer size. */

#define TX_POWER_LEVEL  8

#define cs_low         NRF_GPIO_PIN_MAP(0,31)
#define MISO           NRF_GPIO_PIN_MAP(0,30)

BLE_NUS_DEF(m_nus, NRF_SDH_BLE_TOTAL_LINK_COUNT);                                   /**< BLE NUS service instance. */
NRF_BLE_GATT_DEF(m_gatt);                                                           /**< GATT module instance. */
NRF_BLE_QWR_DEF(m_qwr);                                                             /**< Context for the Queued Write module.*/
BLE_ADVERTISING_DEF(m_advertising);                                                 /**< Advertising module instance. */

static uint16_t   m_conn_handle          = BLE_CONN_HANDLE_INVALID;                 /**< Handle of the current connection. */
static uint16_t   m_ble_nus_max_data_len = BLE_GATT_ATT_MTU_DEFAULT - 3;            /**< Maximum length of data (in bytes) that can be transmitted to the peer by the Nordic UART service module. */
static ble_uuid_t m_adv_uuids[]          =                                          /**< Universally unique service identifier. */
{
    {BLE_UUID_NUS_SERVICE, NUS_SERVICE_UUID_TYPE}
};

uint8_t DATA_PACKECT[82];
uint8_t data_array[512];
uint16_t uartIndex = 0;
uint16_t uartSubIdx;

uint8_t SLAVE_ID[9] ="SLAVE_ID:";
uint8_t NAME1[12] ="FUEL_HEIGHT:";
uint8_t NAME2[16] ="BATTERY_VOLTAGE:";
uint8_t NAME3[12] ="TEMPERATURE:";
uint8_t SPACE[2] = "  ";
uint8_t NEW_LINE[2] = "\r\n";

uint8_t UID[4];
uint8_t buffer[8];
uint8_t buffer1[7];
uint8_t buffer2[5];
uint8_t buffer3[5];
uint8_t buffer4[4];

uint8_t FUEL_HEIGHT[4];
uint8_t BAT_VOLTAGE[4];
uint8_t TEMPERATURE[4];

float F_HEIGHT;
float B_VOLTAGE;
float TEMP;

    uint32_t num;
    uint32_t num1;
    uint32_t num2;

    union ui32_to_ui8 {
    uint32_t ui32;
    uint8_t ui8[4];
}u;

float RTD_TEMPERATURE;

#define SPI_INSTANCE  0 /**< SPI instance index. */
static const nrf_drv_spi_t spi = NRF_DRV_SPI_INSTANCE(SPI_INSTANCE);  /**< SPI instance. */
static volatile bool spi_xfer_done;  /**< Flag used to indicate that SPI instance completed the transfer. */
static volatile bool config_done = false;

#define MAV_SAMPLE_WINDOW_SIZE	4
#define MAV_TEMPER_WINDOW_SIZE	4
#define	MAV_SAMPLE_WINDOW_MASK	(MAV_SAMPLE_WINDOW_SIZE-1)
#define	MAV_TEMPER_WINDOW_MASK	(MAV_TEMPER_WINDOW_SIZE-1)

uint8_t adc_read_tim_out_cnt = 0, adc_sts_flag = 0;
uint8_t temp_buf[2];


union cnt
{
	unsigned char byte_cnt[4];
	long full_cnt;	
}adc;

//unsigned char REGDATA[2];

long		mav_samples[MAV_SAMPLE_WINDOW_SIZE] = {0,0,0,0};
float		mav_temperature[MAV_TEMPER_WINDOW_SIZE] = {0,0,0,0};
uint8_t		mav_sample_indx = 0;
uint8_t		mav_temperature_indx = 0;
uint8_t		mav_sample_ready = false;
uint8_t		mav_temperature_ready = false;

/**@brief Function for assert macro callback.
 *
 * @details This function will be called in case of an assert in the SoftDevice.
 *
 * @warning This handler is an example only and does not fit a final product. You need to analyse
 *          how your product is supposed to react in case of Assert.
 * @warning On assert from the SoftDevice, the system can only recover on reset.
 *
 * @param[in] line_num    Line number of the failing ASSERT call.
 * @param[in] p_file_name File name of the failing ASSERT call.
 */
void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name)
{
    app_error_handler(DEAD_BEEF, line_num, p_file_name);
}

/**@brief Function for initializing the timer module.
 */
static void timers_init(void)
{
    ret_code_t err_code = app_timer_init();
    APP_ERROR_CHECK(err_code);
}

/**@brief Function for the GAP initialization.
 *
 * @details This function will set up all the necessary GAP (Generic Access Profile) parameters of
 *          the device. It also sets the permissions and appearance.
 */
static void gap_params_init(void)
{
    uint32_t                err_code;
    ble_gap_conn_params_t   gap_conn_params;
    ble_gap_conn_sec_mode_t sec_mode;

    BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode);

    err_code = sd_ble_gap_device_name_set(&sec_mode,
                                          (const uint8_t *) DEVICE_NAME,
                                          strlen(DEVICE_NAME));
    APP_ERROR_CHECK(err_code);

    memset(&gap_conn_params, 0, sizeof(gap_conn_params));

    gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL;
    gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL;
    gap_conn_params.slave_latency     = SLAVE_LATENCY;
    gap_conn_params.conn_sup_timeout  = CONN_SUP_TIMEOUT;

    err_code = sd_ble_gap_ppcp_set(&gap_conn_params);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling Queued Write Module errors.
 *
 * @details A pointer to this function will be passed to each service which may need to inform the
 *          application about an error.
 *
 * @param[in]   nrf_error   Error code containing information about what went wrong.
 */
static void nrf_qwr_error_handler(uint32_t nrf_error)
{
    APP_ERROR_HANDLER(nrf_error);
}

/*********************************************************************************/

/**@brief Function for handling the data from the Nordic UART Service.
 *
 * @details This function will process the data received from the Nordic UART BLE Service and send
 *          it to the UART module.
 *
 * @param[in] p_evt       Nordic UART Service event.
 */
/**@snippet [Handling the data received over BLE] */
static void nus_data_handler(ble_nus_evt_t * p_evt)
{

    if (p_evt->type == BLE_NUS_EVT_RX_DATA)
    {
        uint32_t err_code;
        uint32_t i;
        uint32_t DATA_LENGTH;

        NRF_LOG_DEBUG("Received data from BLE NUS. Writing data on UART.");
        NRF_LOG_HEXDUMP_DEBUG(p_evt->params.rx_data.p_data, p_evt->params.rx_data.length);

        NRF_UART_TASK_STARTTX;
        nrf_gpio_pin_set(TX_D);
              
    //     nrf_gpio_cfg_output(TX_D);
  /* if(p_evt->params.rx_data.p_data[0]=='0' || p_evt->params.rx_data.p_data[0]=='1' || p_evt->params.rx_data.p_data[0]=='4'
         || p_evt->params.rx_data.p_data[0]=='5' || p_evt->params.rx_data.p_data[0]=='B' ||p_evt->params.rx_data.p_data[0]=='7'
         || p_evt->params.rx_data.p_data[0]=='F'|| p_evt->params.rx_data.p_data[0]=='6'|| p_evt->params.rx_data.p_data[0]==' ') 
    {*/
        for ( i = 0; i < p_evt->params.rx_data.length; i++)
        {   
            do
            {
                err_code = app_uart_put(p_evt->params.rx_data.p_data[i]);
                if ((err_code != NRF_SUCCESS) && (err_code != NRF_ERROR_BUSY))
                {
                    NRF_LOG_ERROR("Failed receiving NUS message. Error 0x%x. ", err_code);
                    APP_ERROR_CHECK(err_code);
                }
         
            } while (err_code == NRF_ERROR_BUSY);
     //   inc++;
        }
    /*}
    else {
    printf("\r\nCOMMAND DATA MISMATCHED \r\n");
    inc = 0;
          }

      if(inc ==14)
     {
     printf("\r\nCOMMAND RECIEVED\r\n");
     ble_nus_data_send(&m_nus, &txdata[ii], &len, m_conn_handle);
     inc=0;
     }
*/
    }
}
/**@snippet [Handling the data received over BLE] */


/**@brief Function for initializing services that will be used by the application.
 */
static void services_init(void)
{
    uint32_t           err_code;
    ble_nus_init_t     nus_init;
    nrf_ble_qwr_init_t qwr_init = {0};

    // Initialize Queued Write Module.
    qwr_init.error_handler = nrf_qwr_error_handler;

    err_code = nrf_ble_qwr_init(&m_qwr, &qwr_init);
    APP_ERROR_CHECK(err_code);

    // Initialize NUS.
    memset(&nus_init, 0, sizeof(nus_init));

    nus_init.data_handler = nus_data_handler;

    err_code = ble_nus_init(&m_nus, &nus_init);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling an event from the Connection Parameters Module.
 *
 * @details This function will be called for all events in the Connection Parameters Module
 *          which are passed to the application.
 *
 * @note All this function does is to disconnect. This could have been done by simply setting
 *       the disconnect_on_fail config parameter, but instead we use the event handler
 *       mechanism to demonstrate its use.
 *
 * @param[in] p_evt  Event received from the Connection Parameters Module.
 */
static void on_conn_params_evt(ble_conn_params_evt_t * p_evt)
{
    uint32_t err_code;

    if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED)
    {
        err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE);
        APP_ERROR_CHECK(err_code);
    }
}


/**@brief Function for handling errors from the Connection Parameters module.
 *
 * @param[in] nrf_error  Error code containing information about what went wrong.
 */
static void conn_params_error_handler(uint32_t nrf_error)
{
    APP_ERROR_HANDLER(nrf_error);
}


/**@brief Function for initializing the Connection Parameters module.
 */
static void conn_params_init(void)
{
    uint32_t               err_code;
    ble_conn_params_init_t cp_init;

    memset(&cp_init, 0, sizeof(cp_init));

    cp_init.p_conn_params                  = NULL;
    cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY;
    cp_init.next_conn_params_update_delay  = NEXT_CONN_PARAMS_UPDATE_DELAY;
    cp_init.max_conn_params_update_count   = MAX_CONN_PARAMS_UPDATE_COUNT;
    cp_init.start_on_notify_cccd_handle    = BLE_GATT_HANDLE_INVALID;
    cp_init.disconnect_on_fail             = false;
    cp_init.evt_handler                    = on_conn_params_evt;
    cp_init.error_handler                  = conn_params_error_handler;

    err_code = ble_conn_params_init(&cp_init);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for putting the chip into sleep mode.
 *
 * @note This function will not return.
 */
static void sleep_mode_enter(void)
{
    uint32_t err_code = bsp_indication_set(BSP_INDICATE_IDLE);
    APP_ERROR_CHECK(err_code);

    // Prepare wakeup buttons.
    err_code = bsp_btn_ble_sleep_mode_prepare();
    APP_ERROR_CHECK(err_code);

    // Go to system-off mode (this function will not return; wakeup will cause a reset).
    err_code = sd_power_system_off();
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling advertising events.
 *
 * @details This function will be called for advertising events which are passed to the application.
 *
 * @param[in] ble_adv_evt  Advertising event.
 */
static void on_adv_evt(ble_adv_evt_t ble_adv_evt)
{
    uint32_t err_code;

    switch (ble_adv_evt)
    {
        case BLE_ADV_EVT_FAST:
            err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING);
            APP_ERROR_CHECK(err_code);
            break;
        case BLE_ADV_EVT_IDLE:
            sleep_mode_enter();
            break;
        default:
            break;
    }
}


/**@brief Function for handling BLE events.
 *
 * @param[in]   p_ble_evt   Bluetooth stack event.
 * @param[in]   p_context   Unused.
 */
static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context)
{
    uint32_t err_code;

    switch (p_ble_evt->header.evt_id)
    {
        case BLE_GAP_EVT_CONNECTED:
            NRF_LOG_INFO("Connected");
            nrf_gpio_pin_set(PAIR_LED);
            err_code = bsp_indication_set(BSP_INDICATE_CONNECTED);
            APP_ERROR_CHECK(err_code);
            m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle;
            err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr, m_conn_handle);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_GAP_EVT_DISCONNECTED:
            NRF_LOG_INFO("Disconnected");
            nrf_gpio_pin_clear(PAIR_LED);
            // LED indication will be changed when advertising starts.
            m_conn_handle = BLE_CONN_HANDLE_INVALID;
            break;

        case BLE_GAP_EVT_PHY_UPDATE_REQUEST:
        {
            NRF_LOG_DEBUG("PHY update request.");
            ble_gap_phys_t const phys =
            {
                .rx_phys = BLE_GAP_PHY_AUTO,
                .tx_phys = BLE_GAP_PHY_AUTO,
            };
            err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys);
            APP_ERROR_CHECK(err_code);
        } break;

        case BLE_GAP_EVT_SEC_PARAMS_REQUEST:
            // Pairing not supported
           /* err_code = sd_ble_gap_sec_params_reply(m_conn_handle, BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL);
            APP_ERROR_CHECK(err_code);*/
            break;

        case BLE_GATTS_EVT_SYS_ATTR_MISSING:
            // No system attributes have been stored.
            err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0, 0);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_GATTC_EVT_TIMEOUT:
            // Disconnect on GATT Client timeout event.
            err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle,
                                             BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_GATTS_EVT_TIMEOUT:
            // Disconnect on GATT Server timeout event.
            err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle,
                                             BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
            APP_ERROR_CHECK(err_code);
            break;

        default:
            // No implementation needed.
            break;
    }
}


/**@brief Function for the SoftDevice initialization.
 *
 * @details This function initializes the SoftDevice and the BLE event interrupt.
 */
static void ble_stack_init(void)
{
    ret_code_t err_code;

    err_code = nrf_sdh_enable_request();
    APP_ERROR_CHECK(err_code);

    // Configure the BLE stack using the default settings.
    // Fetch the start address of the application RAM.
    uint32_t ram_start = 0;
    err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start);
    APP_ERROR_CHECK(err_code);

    // Enable BLE stack.
    err_code = nrf_sdh_ble_enable(&ram_start);
    APP_ERROR_CHECK(err_code);

    // Register a handler for BLE events.
    NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL);
}


/**@brief Function for handling events from the GATT library. */
void gatt_evt_handler(nrf_ble_gatt_t * p_gatt, nrf_ble_gatt_evt_t const * p_evt)
{
    if ((m_conn_handle == p_evt->conn_handle) && (p_evt->evt_id == NRF_BLE_GATT_EVT_ATT_MTU_UPDATED))
    {
        m_ble_nus_max_data_len = p_evt->params.att_mtu_effective - OPCODE_LENGTH - HANDLE_LENGTH;
        NRF_LOG_INFO("Data len is set to 0x%X(%d)", m_ble_nus_max_data_len, m_ble_nus_max_data_len);
    }
    NRF_LOG_DEBUG("ATT MTU exchange completed. central 0x%x peripheral 0x%x",
                  p_gatt->att_mtu_desired_central,
                  p_gatt->att_mtu_desired_periph);
}


/**@brief Function for initializing the GATT library. */
void gatt_init(void)
{
    ret_code_t err_code;

    err_code = nrf_ble_gatt_init(&m_gatt, gatt_evt_handler);
    APP_ERROR_CHECK(err_code);

    err_code = nrf_ble_gatt_att_mtu_periph_set(&m_gatt, NRF_SDH_BLE_GATT_MAX_MTU_SIZE);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling events from the BSP module.
 *
 * @param[in]   event   Event generated by button press.
 */
void bsp_event_handler(bsp_event_t event)
{
    uint32_t err_code;
    switch (event)
    {
        case BSP_EVENT_SLEEP:
            sleep_mode_enter();
            break;

        case BSP_EVENT_DISCONNECT:
            err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
            if (err_code != NRF_ERROR_INVALID_STATE)
            {
                APP_ERROR_CHECK(err_code);
            }
            break;

        case BSP_EVENT_WHITELIST_OFF:
            if (m_conn_handle == BLE_CONN_HANDLE_INVALID)
            {
                err_code = ble_advertising_restart_without_whitelist(&m_advertising);
                if (err_code != NRF_ERROR_INVALID_STATE)
                {
                    APP_ERROR_CHECK(err_code);
                }
            }
            break;

        default:
            break;
    }
}


/**@brief   Function for handling app_uart events.
 *
 * @details This function will receive a single character from the app_uart module and append it to
 *          a string. The string will be be sent over BLE when the last character received was a
 *          'new line' '\n' (hex 0x0A) or if the string has reached the maximum data length.
 */
/**@snippet [Handling the data received over UART] */
#if 0
void uart_event_handle(app_uart_evt_t * p_event)
{
    static uint8_t data_array[BLE_NUS_MAX_DATA_LEN];
    static uint8_t index = 0;
    uint32_t       err_code;

    switch (p_event->evt_type)
    {

        case APP_UART_DATA_READY:
           
         //  if(rs485_communication2 == 0)

         //  {
            nrf_gpio_pin_clear(TX_D);
            UNUSED_VARIABLE(app_uart_get(&data_array[index]));
            index++;         
            //rs485_communication2 = 1;
         //   }


 
          /*  if ((data_array[index - 1] == '\n') ||
                (data_array[index - 1] == '\r') ||
                (index >= m_ble_nus_max_data_len))
            {*/
        //  if(rs485_communication2 == 1)
         // {
             //   if (index > 0)
             //   {
                    NRF_LOG_DEBUG("Ready to send data over BLE NUS");
                    NRF_LOG_HEXDUMP_DEBUG(data_array, index);

                    do
                    {
                        uint16_t length = (uint16_t)index;
                        err_code = ble_nus_data_send(&m_nus, data_array, &length, m_conn_handle);
                        if ((err_code != NRF_ERROR_INVALID_STATE) &&
                            (err_code != NRF_ERROR_RESOURCES) &&
                            (err_code != NRF_ERROR_NOT_FOUND))
                        {
                            APP_ERROR_CHECK(err_code);
                        }
                    } while (err_code == NRF_ERROR_RESOURCES);
                 index = 0;
             //   }
          
        //   rs485_communication2 = 0;
         //  }
           //  nrf_gpio_pin_clear(TX_D);
            
           // }
            
            break;

        case APP_UART_COMMUNICATION_ERROR:
            APP_ERROR_HANDLER(p_event->data.error_communication);
            break;

        case APP_UART_FIFO_ERROR:
            APP_ERROR_HANDLER(p_event->data.error_code);
            break;

        case APP_UART_TX_EMPTY:
        nrf_gpio_pin_clear(TX_D);
        NRF_UART_TASK_STOPTX;
        break;

        default:
            break;
    }
}
#endif

void uart_event_handle(app_uart_evt_t * p_event)
{

    switch (p_event->evt_type)
    {
        case APP_UART_DATA_READY:
            UNUSED_VARIABLE(app_uart_get(&data_array[uartIndex]));
            uartIndex++;
            break;

        case APP_UART_COMMUNICATION_ERROR:
            APP_ERROR_HANDLER(p_event->data.error_communication);
            break;

        case APP_UART_FIFO_ERROR:
            APP_ERROR_HANDLER(p_event->data.error_code);
            break;

        case APP_UART_TX_EMPTY:
        nrf_gpio_pin_clear(TX_D);
        NRF_UART_TASK_STOPTX;
        break;

        default:
            break;
    }
}

/**@snippet [Handling the data received over UART] */


/**@brief  Function for initializing the UART module.
 */
/**@snippet [UART Initialization] */
static void uart_init(void)
{
    uint32_t                     err_code;
    app_uart_comm_params_t const comm_params =
    {
        .rx_pin_no    = RX_PIN_NUMBER,
        .tx_pin_no    = TX_PIN_NUMBER,
        .rts_pin_no   = RTS_PIN_NUMBER,
        .cts_pin_no   = CTS_PIN_NUMBER,
        .flow_control = APP_UART_FLOW_CONTROL_DISABLED,
        .use_parity   = false,
#if defined (UART_PRESENT)
        .baud_rate    = NRF_UARTE_BAUDRATE_9600
#else
        .baud_rate    = NRF_UARTE_BAUDRATE_115200
#endif
    };

    APP_UART_FIFO_INIT(&comm_params,
                       UART_RX_BUF_SIZE,
                       UART_TX_BUF_SIZE,
                       uart_event_handle,
                       APP_IRQ_PRIORITY_LOWEST,
                       err_code);
    APP_ERROR_CHECK(err_code);
}
/**@snippet [UART Initialization] */


/**@brief Function for initializing the Advertising functionality.
 */
static void advertising_init(void)
{
    uint32_t               err_code;
    ble_advertising_init_t init;

    memset(&init, 0, sizeof(init));

    init.advdata.name_type          = BLE_ADVDATA_FULL_NAME;
    init.advdata.include_appearance = false;
    init.advdata.flags              = BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE;

    init.srdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]);
    init.srdata.uuids_complete.p_uuids  = m_adv_uuids;

    init.config.ble_adv_fast_enabled  = true;
    init.config.ble_adv_fast_interval = APP_ADV_INTERVAL;
    init.config.ble_adv_fast_timeout  = APP_ADV_DURATION;
    init.evt_handler = on_adv_evt;

    err_code = ble_advertising_init(&m_advertising, &init);
    APP_ERROR_CHECK(err_code);

    ble_advertising_conn_cfg_tag_set(&m_advertising, APP_BLE_CONN_CFG_TAG);
}


/**@brief Function for initializing buttons and leds.
 *
 * @param[out] p_erase_bonds  Will be true if the clear bonding button was pressed to wake the application up.
 */
static void buttons_leds_init(bool * p_erase_bonds)
{
    bsp_event_t startup_event;

    uint32_t err_code = bsp_init(BSP_INIT_LEDS | BSP_INIT_BUTTONS, bsp_event_handler);
    APP_ERROR_CHECK(err_code);

    err_code = bsp_btn_ble_init(NULL, &startup_event);
    APP_ERROR_CHECK(err_code);

    *p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA);
}


/**@brief Function for initializing the nrf log module.
 */
static void log_init(void)
{
    ret_code_t err_code = NRF_LOG_INIT(NULL);
    APP_ERROR_CHECK(err_code);

    NRF_LOG_DEFAULT_BACKENDS_INIT();
}


/**@brief Function for initializing power management.
 */
static void power_management_init(void)
{
    ret_code_t err_code;
    err_code = nrf_pwr_mgmt_init();
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling the idle state (main loop).
 *
 * @details If there is no pending log operation, then sleep until next the next event occurs.
 */
static void idle_state_handle(void)
{
    if (NRF_LOG_PROCESS() == false)
    {
        nrf_pwr_mgmt_run();
    }
}


/**@brief Function for starting advertising.
 */
static void advertising_start(void)
{
    uint32_t err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST);
    APP_ERROR_CHECK(err_code);
}

static void tx_power_set(void)
{
    ret_code_t err_code = sd_ble_gap_tx_power_set(BLE_GAP_TX_POWER_ROLE_ADV, m_advertising.adv_handle, TX_POWER_LEVEL);
    APP_ERROR_CHECK(err_code);
}

void Delay(uint16_t count)
{
	uint16_t ii,jj;
	
	for(ii=0;ii<count;ii++) 
		for(jj=0;jj<10000;jj++);
}

void reverse(char *str, int len) 
{ 
    int i=0, j=len-1, temp; 
    while (i<j) 
    { 
        temp = str[i]; 
        str[i] = str[j]; 
        str[j] = temp; 
        i++; j--; 
    } 
} 

int intToStr(int x, char str[], int d) 
{ 
    int i = 0; 
    while (x) 
    { 
        str[i++] = (x%10) + '0'; 
        x = x/10; 
    } 
  
    // If number of digits required is more, then 
    // add 0s at the beginning 
    while (i < d) 
        str[i++] = '0'; 
  
    reverse(str, i); 
    str[i] = '\0'; 
    return i; 
} 

void ftoa(float n, char *res, int afterpoint) 
{ 
    // Extract integer part 
    int ipart = (int)n; 
  
    // Extract floating part 
    float fpart = n - (float)ipart; 
  
    // convert integer part to string 
    int i = intToStr(ipart, res, 0); 
  
    // check for display option after point 
    if (afterpoint != 0) 
    { 
        res[i] = '.';  // add dot 
  
        // Get the value of fraction part upto given no. 
        // of points after dot. The third parameter is needed 
        // to handle cases like 233.007 
        fpart = fpart * pow(10, afterpoint); 
  
        intToStr((int)fpart, res + i + 1, afterpoint); 
    } 
} 

/**@brief Application main function.
 */
void wdt_init(void)
{
NRF_WDT->CONFIG = (WDT_CONFIG_HALT_Pause << WDT_CONFIG_HALT_Pos) | ( WDT_CONFIG_SLEEP_Run << WDT_CONFIG_SLEEP_Pos); 
NRF_WDT->CRV = 9*32768; 
NRF_WDT->RREN |= WDT_RREN_RR0_Msk; 
NRF_WDT-> RR [0] = 0x6E524635UL;
NRF_WDT->TASKS_START = 1; 
}

void spi_init(void)
{
    nrf_drv_spi_config_t spi_config = NRF_DRV_SPI_DEFAULT_CONFIG;
    spi_config.ss_pin   = SPI_SS_PIN;
    spi_config.miso_pin = SPI_MISO_PIN;
    spi_config.sck_pin  = SPI_SCK_PIN;
    APP_ERROR_CHECK(nrf_drv_spi_init(&spi, &spi_config,NULL, NULL));

}

void temp_spi(void)
{
float adcv_volt_f;
long temp = 0;
uint8_t ti;

uint8_t       m_tx_rx_buf1[] = {((uint8_t)0x00)};
uint8_t       m_tx_rx_buf2[] = {((uint8_t)0x00)};
uint8_t       m_tx_rx_buf3[] = {((uint8_t)0x00)};

uint8_t       m_rx_buf1[1];   
uint8_t       m_rx_buf2[1];
uint8_t       m_rx_buf3[1];
uint8_t m_length_rx = 1;    
      

	switch(adc_sts_flag)
	{
		case 1:						
			nrf_gpio_pin_clear(cs_low);
			adc_sts_flag = 2;
		break;

		case 2:						
			if(nrf_gpio_pin_read(MISO) == 1)
			{
				adc_sts_flag = 3;
			}
		break;

		case 3:					
			if(nrf_gpio_pin_read(MISO) == 0)
			{
                        
                        nrf_drv_spi_transfer(&spi, m_tx_rx_buf1, m_length_rx, m_rx_buf1, m_length_rx);
                        nrf_drv_spi_transfer(&spi, m_tx_rx_buf1, m_length_rx, m_rx_buf2, m_length_rx);
                        nrf_drv_spi_transfer(&spi, m_tx_rx_buf1, m_length_rx, m_rx_buf3, m_length_rx);
				adc.byte_cnt[3] = 0;
				adc.byte_cnt[2] = m_rx_buf1;
				adc.byte_cnt[1] = m_rx_buf2;
				adc.byte_cnt[0] = m_rx_buf3;
				adc_sts_flag = 4;
				nrf_gpio_pin_set(cs_low);	
			}
		break;

		case 4:
			ti = (mav_sample_indx-1)&(MAV_SAMPLE_WINDOW_MASK);
			temp = mav_samples[ti]-adc.full_cnt;

			mav_samples[mav_sample_indx] = adc.full_cnt;
			if(mav_sample_indx>=MAV_SAMPLE_WINDOW_MASK)mav_sample_ready = true;
			mav_sample_indx = (mav_sample_indx+1)&(MAV_SAMPLE_WINDOW_MASK);
			if(mav_sample_ready==false)break;

//avg samples	
			temp = 0;
			for(uint8_t i=0;i<MAV_SAMPLE_WINDOW_SIZE;i++)
			{
			temp = (unsigned long)(temp + mav_samples[i]);
			}
			temp/= MAV_SAMPLE_WINDOW_SIZE;

			adcv_volt_f = ((6800*(float)temp/(2097152-temp))-100)/0.385;//calculate

			/*//unit conversion
			eMBRegHoldingCB(&temp_buf[0], UNIT_ADD, 1, MB_REG_READ);
			switch(temp_buf[1])
				{
					case 'F':
						adcv_volt_f = (adcv_volt_f * 1.8) + 32;
					break;

					case 'K':
						adcv_volt_f = adcv_volt_f + 273;
					break;

					case 'C':
					default:
					break;
				}*/

			//avg
			mav_temperature[mav_temperature_indx] = adcv_volt_f;
			if(mav_temperature_indx>=MAV_TEMPER_WINDOW_MASK)mav_temperature_ready = true;
			mav_temperature_indx = (mav_temperature_indx+1)&(MAV_TEMPER_WINDOW_MASK);
			if(mav_temperature_ready==false)break;

//avg temperature	
			adcv_volt_f = 0;
			for(uint8_t i=0;i<MAV_TEMPER_WINDOW_SIZE;i++)
			{
				adcv_volt_f += mav_temperature[i];	
			}
			adcv_volt_f = adcv_volt_f/MAV_TEMPER_WINDOW_SIZE;
                        RTD_TEMPERATURE = adcv_volt_f;
			//process_resolution(adcv_volt_f);

			adc_sts_flag = 0xFF;
			adc_read_tim_out_cnt = 0;

		break;

		default:
			adc_sts_flag = 1;
		break;		
} 
}
int main(void)
{
u.ui32 = NRF_FICR->DEVICEID[0];
itoa(u.ui32,buffer,16);
uint8_t PIN_SENSE1[1],PIN_SENSE2[1];
uint16_t value1,value2,value3,value4,value5,value6,value7,value8,value9,value10,value11,value12;
uint16_t dlen,dlen1,dlen2,dlen3,dlen4,dlen5,dlen6,dlen7,dlen8,dlen9;
uint8_t CMD0;
uint8_t CMD1[8];
uint8_t CMD2[8];
uint8_t CMD3[8];

    uint16_t len=1;
    uint16_t lenn=9;
    uint16_t leng=12;
    uint16_t lengg=16;
    uint16_t lengt=5;
    uint16_t le=4;

unsigned char DUMMY_BYTE[5] = "0x00";
CMD0 = strtol(DUMMY_BYTE, NULL, 16);

unsigned char FUEL0[5] = "0x28";
unsigned char FUEL1[5] = "0x03";
unsigned char FUEL2[5] = "0x07";
unsigned char FUEL3[5] = "0xD3";
unsigned char FUEL4[5] = "0x00";
unsigned char FUEL5[5] = "0x02";
unsigned char FUEL6[5] = "0x33";
unsigned char FUEL7[5] = "0x7F";

unsigned char BAT0[5] = "0x28";
unsigned char BAT1[5] = "0x03";
unsigned char BAT2[5] = "0x07";
unsigned char BAT3[5] = "0xD7";
unsigned char BAT4[5] = "0x00";
unsigned char BAT5[5] = "0x02";
unsigned char BAT6[5] = "0x72";
unsigned char BAT7[5] = "0xBE";

unsigned char TEMP0[5] = "0x0F";
unsigned char TEMP1[5] = "0x03";
unsigned char TEMP2[5] = "0x08";
unsigned char TEMP3[5] = "0x03";
unsigned char TEMP4[5] = "0x00";
unsigned char TEMP5[5] = "0x02";
unsigned char TEMP6[5] = "0x37";
unsigned char TEMP7[5] = "0x45";

CMD1[0] = strtol(FUEL0, NULL, 16);
CMD1[1] = strtol(FUEL1, NULL, 16);
CMD1[2] = strtol(FUEL2, NULL, 16);
CMD1[3] = strtol(FUEL3, NULL, 16);
CMD1[4] = strtol(FUEL4, NULL, 16);
CMD1[5] = strtol(FUEL5, NULL, 16);
CMD1[6] = strtol(FUEL6, NULL, 16);
CMD1[7] = strtol(FUEL7, NULL, 16);

CMD2[0] = strtol(BAT0, NULL, 16);
CMD2[1] = strtol(BAT1, NULL, 16);
CMD2[2] = strtol(BAT2, NULL, 16);
CMD2[3] = strtol(BAT3, NULL, 16);
CMD2[4] = strtol(BAT4, NULL, 16);
CMD2[5] = strtol(BAT5, NULL, 16);
CMD2[6] = strtol(BAT6, NULL, 16);
CMD2[7] = strtol(BAT7, NULL, 16);

CMD3[0] = strtol(TEMP0, NULL, 16);
CMD3[1] = strtol(TEMP1, NULL, 16);
CMD3[2] = strtol(TEMP2, NULL, 16);
CMD3[3] = strtol(TEMP3, NULL, 16);
CMD3[4] = strtol(TEMP4, NULL, 16);
CMD3[5] = strtol(TEMP5, NULL, 16);
CMD3[6] = strtol(TEMP6, NULL, 16);
CMD3[7] = strtol(TEMP7, NULL, 16);

  nrf_gpio_cfg_output(TX_D);
  nrf_gpio_cfg_output(PAIR_LED);
  nrf_gpio_cfg_output(cs_low);
  nrf_gpio_cfg_output(GPIO_1);
  nrf_gpio_pin_clear(GPIO_1);
  nrf_gpio_cfg_output(GPIO_2);
  nrf_gpio_pin_clear(GPIO_2);
  nrf_gpio_cfg_sense_input(IN1,NRF_GPIO_PIN_PULLUP, NRF_GPIO_PIN_SENSE_HIGH);
  nrf_gpio_cfg_sense_input(IN2,NRF_GPIO_PIN_PULLUP, NRF_GPIO_PIN_SENSE_HIGH);
  nrf_gpio_cfg_sense_input(MISO,NRF_GPIO_PIN_PULLUP, NRF_GPIO_PIN_SENSE_HIGH);

    bool erase_bonds;
    ret_code_t err_code;
    uint16_t length;

    // Initialize.
    uart_init();
    spi_init();
    log_init();
    timers_init();
    buttons_leds_init(&erase_bonds);
    power_management_init();
    ble_stack_init();
    gap_params_init();
    gatt_init();
    services_init();
    advertising_init();
    conn_params_init();
    wdt_init();

    // Start execution.
  //  printf("\r\nUART started.\r\n");
    NRF_LOG_INFO("Debug logging for UART over RTT started.");
    advertising_start();
    tx_power_set();
    
    for (;;) {
             idle_state_handle();
nrf_gpio_pin_clear(GPIO_1);
nrf_gpio_pin_clear(GPIO_2);
NRF_WDT->RR[0] = WDT_RR_RR_Reload;    

nrf_gpio_pin_set(TX_D);
for(int jj=0;jj<6;jj++)
{
for(int ii=0;ii<8;ii++)
{app_uart_put(CMD0);}
}
nrf_delay_ms(1000);
nrf_gpio_pin_set(TX_D);
for(int ii=0;ii<8;ii++)
{app_uart_put(CMD1[ii]);}
nrf_delay_ms(2000);
nrf_gpio_pin_set(TX_D);
for(int ii=0;ii<8;ii++)
{app_uart_put(CMD2[ii]);}
nrf_delay_ms(2000);
nrf_gpio_pin_set(TX_D);
for(int ii=0;ii<8;ii++)
{app_uart_put(CMD3[ii]);}
nrf_delay_ms(2000);

FUEL_HEIGHT[0] = data_array[4];
FUEL_HEIGHT[1] = data_array[3];
FUEL_HEIGHT[2] = data_array[6];
FUEL_HEIGHT[3] = data_array[5];

BAT_VOLTAGE[0]  = data_array[13];
BAT_VOLTAGE[1]  = data_array[12];
BAT_VOLTAGE[2]  = data_array[15];
BAT_VOLTAGE[3]  = data_array[14];

TEMPERATURE[0]  = data_array[22];
TEMPERATURE[1]  = data_array[21];
TEMPERATURE[2]  = data_array[24];
TEMPERATURE[3]  = data_array[23];

num = ((FUEL_HEIGHT[0] << 24)|(FUEL_HEIGHT[1] << 16)|(FUEL_HEIGHT[2] << 8)|(FUEL_HEIGHT[3]));
F_HEIGHT = *((float*)&num);
num1 = ((BAT_VOLTAGE[0] << 24)|(BAT_VOLTAGE[1] << 16)|(BAT_VOLTAGE[2] << 8)|(BAT_VOLTAGE[3]));
B_VOLTAGE = *((float*)&num1);
num2 = ((TEMPERATURE[0] << 24)|(TEMPERATURE[1] << 16)|(TEMPERATURE[2] << 8)|(TEMPERATURE[3]));
TEMP = *((float*)&num2);

ftoa(F_HEIGHT, buffer1, 6); 
ftoa(B_VOLTAGE, buffer2, 2);
ftoa(TEMP, buffer3, 3);

/*ble_nus_data_send(&m_nus, &SLAVE_ID[0], &lenn, m_conn_handle);
ble_nus_data_send(&m_nus, &buffer[0], &len, m_conn_handle);
ble_nus_data_send(&m_nus, &SPACE[0], &le, m_conn_handle);
ble_nus_data_send(&m_nus, &NAME1[0], &leng, m_conn_handle);
ble_nus_data_send(&m_nus, &buffer1[0], &lengt, m_conn_handle);
ble_nus_data_send(&m_nus, &SPACE[0], &le, m_conn_handle);
ble_nus_data_send(&m_nus, &NAME2[0], &lengg, m_conn_handle);
ble_nus_data_send(&m_nus, &buffer2[0], &lengt, m_conn_handle);
ble_nus_data_send(&m_nus, &SPACE[0], &le, m_conn_handle);
ble_nus_data_send(&m_nus, &NAME3[0], &leng, m_conn_handle);
ble_nus_data_send(&m_nus, &buffer3[0], &lengt, m_conn_handle);
ble_nus_data_send(&m_nus, &NEW_LINE[0], &le, m_conn_handle);*/

value1 = sizeof(SLAVE_ID);
value2 = sizeof(buffer);
value3 = sizeof(SPACE);
value4 = sizeof(NAME1);
value5 = sizeof(buffer1);
value6 = sizeof(SPACE);
value7 = sizeof(NAME2);
value8 = sizeof(buffer2);
value9 = sizeof(SPACE);
value10 = sizeof(NAME3);
value11 = sizeof(buffer3);
value12 = sizeof(NEW_LINE);

dlen = value1+value2;
dlen1 = dlen+value3;
dlen2 = dlen1+value4;
dlen3 = dlen2+value5;
dlen4 = dlen3+value6;
dlen5 = dlen4+value7;
dlen6 = dlen5+value8;
dlen7 = dlen6+value9;
dlen8 = dlen7+value10;
dlen9 = dlen8+value11;
//dlen10 = dlen9+value12;

for(int ii=0;ii < value1; ii++)
{DATA_PACKECT[ii] = SLAVE_ID[ii];}
for(int ii=0;ii < value2; ii++)
{DATA_PACKECT[(value1 + ii)] = buffer[ii];}
for(int ii=0;ii < value3; ii++)
{DATA_PACKECT[(dlen + ii)] = SPACE[ii];}
for(int ii=0;ii < value4; ii++)
{DATA_PACKECT[(dlen1 + ii)] = NAME1[ii];}
for(int ii=0;ii < value5; ii++)
{DATA_PACKECT[(dlen2 + ii)] = buffer1[ii];}
for(int ii=0;ii < value6; ii++)
{DATA_PACKECT[(dlen3 + ii)] = SPACE[ii];}
for(int ii=0;ii < value7; ii++)
{DATA_PACKECT[(dlen4 + ii)] = NAME2[ii];}
for(int ii=0;ii < value8; ii++)
{DATA_PACKECT[(dlen5 + ii)] = buffer2[ii];}
for(int ii=0;ii < value9; ii++)
{DATA_PACKECT[(dlen6 + ii)] = SPACE[ii];}
for(int ii=0;ii < value10; ii++)
{DATA_PACKECT[(dlen7 + ii)] = NAME3[ii];}
for(int ii=0;ii < value11; ii++)
{DATA_PACKECT[(dlen8 + ii)] = buffer3[ii];}
for(int ii=0;ii < value12; ii++)
{DATA_PACKECT[(dlen9 + ii)] = NEW_LINE[ii];}
length = sizeof(DATA_PACKECT);
ble_nus_data_send(&m_nus, &DATA_PACKECT[0], &length, m_conn_handle);

    if(nrf_gpio_pin_read(IN1) == 1)
     {PIN_SENSE1[0]='1';}
     else
     {PIN_SENSE1[0]='0';}
ble_nus_data_send(&m_nus, &PIN_SENSE1[0],&len, m_conn_handle);
     if(nrf_gpio_pin_read(IN2) == 1)
     {PIN_SENSE2[0]='1';}
     else
     {PIN_SENSE2[0]='0';}
ble_nus_data_send(&m_nus, &PIN_SENSE2[0], &len, m_conn_handle);
temp_spi();
ftoa(RTD_TEMPERATURE, buffer4, 1);
ble_nus_data_send(&m_nus, &buffer4[0], &le, m_conn_handle);



        /*     if(uartIndex != 0) {
                   // Delay(130); // delay to capture all byte about 1K
                    Delay(100);
 //                   NRF_LOG_DEBUG("Ready to send data over BLE NUS");
 //                   NRF_LOG_HEXDUMP_DEBUG(data_array, uartIndex);
                    uartSubIdx =0;
                    do {
                          do	{
                                if(uartIndex < BLE_UART_LIMIT) length = (uint16_t)uartIndex;
                                else length = BLE_UART_LIMIT;
                                err_code = ble_nus_data_send(&m_nus, &data_array[uartSubIdx], &length, m_conn_handle);
                                if ((err_code != NRF_ERROR_INVALID_STATE) &&
                                        (err_code != NRF_ERROR_RESOURCES) &&
                                        (err_code != NRF_ERROR_NOT_FOUND))	{
                                                      APP_ERROR_CHECK(err_code);
                                 }
                            } while (err_code == NRF_ERROR_RESOURCES);
                            if(uartIndex < BLE_UART_LIMIT) uartIndex = 0;
                            else {
                                  uartIndex = uartIndex - BLE_UART_LIMIT;
                                  uartSubIdx = uartSubIdx + BLE_UART_LIMIT;
                            }
                        } while (uartIndex > 0);
                }
                uartIndex = 0;*/
          }
          
}


/**
 * @}
 */
 

regards,

jagadeesh

  • hi,

    The above error is sloved. a spi based temperature sensor is connected to ble. for this sensor we have only miso pin here for sensor.  if miso pin is low then we can read the data from sensor. i am not able to read the data from the sensor. please check my code if there is any wrong initialization. i am using ble peripheral code.also found that clock is not generating.

    Regards,

    jagadeesh

  • Hi

    Have you checked with the debugger if the nrf_drv_spi_transfer(..) call is ever reached in the code?

    How did you notice that the clock is not generating? Are you probing the lines with a scope?

    I would recommend trying to get the temperature sensor working in a more simple example. Once you have this example working and the sensor is responding properly you can put the sensor code into a small library that you can then include in the BLE example. 

    Best regards
    Torbjørn

  • hi ovrebeek,

    yes i probed the lines with scope. i wrote a switch case in the below function where in first case chip select will be cleared and jumps to case 2 ,in case miso pin is sensed ,if miso pin is high it jumps to case3 ,in case3 miso pin is sensed if it is low , the 0x00 will be transferred and four bytes of data will be received.

    i have debugged the it is not jumping to the case2 . 

    void temp_spi(void)
    {
    float adcv_volt_f;
    long temp = 0;
    uint8_t ti;
    uint8_t Tdata[4];
    uint32_t num;

    uint8_t m_tx_rx_buf1[] = {((uint8_t)0x00)};
    uint8_t m_tx_rx_buf2[] = {((uint8_t)0x00)};
    uint8_t m_tx_rx_buf3[] = {((uint8_t)0x00)};

    uint8_t m_rx_buf1[1];
    uint8_t m_rx_buf2[1];
    uint8_t m_rx_buf3[1];
    uint16_t m_length_rx = 1;

    uint8_t PIN_SENSE1[1],PIN_SENSE2[1];

    adc_sts_flag=1;
    switch(adc_sts_flag)
    {
    case 1:
    nrf_gpio_pin_clear(cs_low);
    adc_sts_flag = 2;
    ble_nus_data_send(&m_nus, &CASE1[0], &CL, m_conn_handle);

    break;

    case 2:
    nrf_gpio_cfg_sense_input(MISO,NRF_GPIO_PIN_NOPULL, NRF_GPIO_PIN_SENSE_HIGH);
    if(nrf_gpio_pin_read(MISO) == 1)
    {PIN_SENSE1[0]='1';}
    else
    {PIN_SENSE1[0]='0';}
    ble_nus_data_send(&m_nus, &PIN_SENSE1[0],&m_length_rx, m_conn_handle);
    if(nrf_gpio_pin_read(MISO) == 1)
    {
    adc_sts_flag = 3;
    ble_nus_data_send(&m_nus, &CASE2[0], &CL, m_conn_handle);
    }
    break;

    case 3:
    nrf_gpio_cfg_sense_input(MISO,NRF_GPIO_PIN_NOPULL, NRF_GPIO_PIN_SENSE_HIGH);
    if(nrf_gpio_pin_read(MISO) == 0)
    {
    ble_nus_data_send(&m_nus, &CASE3[0], &CL, m_conn_handle);

    Tdata[3]=0;
    nrf_drv_spi_transfer(&spi, m_tx_rx_buf1, m_length_rx, &Tdata[2] , m_length_rx);
    nrf_drv_spi_transfer(&spi, m_tx_rx_buf1, m_length_rx, &Tdata[1] , m_length_rx);
    nrf_drv_spi_transfer(&spi, m_tx_rx_buf1, m_length_rx, &Tdata[0] , m_length_rx);
    num = ((Tdata[0] << 24)|(Tdata[1] << 16)|(Tdata[2] << 8)|(Tdata[3]));
    /*adc.byte_cnt[3] = 0;
    adc.byte_cnt[2] = m_rx_buf1;
    adc.byte_cnt[1] = m_rx_buf2;
    adc.byte_cnt[0] = m_rx_buf3;*/
    adc_sts_flag = 4;
    nrf_gpio_pin_set(cs_low);
    }
    break;

    case 4:

    ble_nus_data_send(&m_nus, &CASE4[0], &CL, m_conn_handle);
    ti = (mav_sample_indx-1)&(MAV_SAMPLE_WINDOW_MASK);
    //temp = mav_samples[ti]-adc.full_cnt;
    temp = mav_samples[ti] - num;

    //mav_samples[mav_sample_indx] = adc.full_cnt;
    mav_samples[mav_sample_indx] = num;
    if(mav_sample_indx>=MAV_SAMPLE_WINDOW_MASK)mav_sample_ready = true;
    mav_sample_indx = (mav_sample_indx+1)&(MAV_SAMPLE_WINDOW_MASK);
    if(mav_sample_ready==false)break;

    //avg samples
    temp = 0;
    for(uint8_t i=0;i<MAV_SAMPLE_WINDOW_SIZE;i++)
    {
    temp = (unsigned long)(temp + mav_samples[i]);
    }
    temp/= MAV_SAMPLE_WINDOW_SIZE;

    adcv_volt_f = ((6800*(float)temp/(2097152-temp))-100)/0.385;//calculate

    /*//unit conversion
    eMBRegHoldingCB(&temp_buf[0], UNIT_ADD, 1, MB_REG_READ);
    switch(temp_buf[1])
    {
    case 'F':
    adcv_volt_f = (adcv_volt_f * 1.8) + 32;
    break;

    case 'K':
    adcv_volt_f = adcv_volt_f + 273;
    break;

    case 'C':
    default:
    break;
    }*/

    //avg
    mav_temperature[mav_temperature_indx] = adcv_volt_f;
    if(mav_temperature_indx>=MAV_TEMPER_WINDOW_MASK)mav_temperature_ready = true;
    mav_temperature_indx = (mav_temperature_indx+1)&(MAV_TEMPER_WINDOW_MASK);
    if(mav_temperature_ready==false)break;

    //avg temperature
    adcv_volt_f = 0;
    for(uint8_t i=0;i<MAV_TEMPER_WINDOW_SIZE;i++)
    {
    adcv_volt_f += mav_temperature[i];
    }
    adcv_volt_f = adcv_volt_f/MAV_TEMPER_WINDOW_SIZE;
    RTD_TEMPERATURE = adcv_volt_f;
    //process_resolution(adcv_volt_f);

    adc_sts_flag = 0xFF;
    adc_read_tim_out_cnt = 0;

    break;

    default:
    adc_sts_flag = 1;
    break;
    }
    }

    Regards,

    jagadeesh

  • Hi 

    Have you confirmed with the scope that the MISO line is set low by the sensor?

    Best regards
    Torbjørn

  • hi,

    miso line is always high.

    nrf_gpio_cfg_sense_input(MISO,NRF_GPIO_PIN_NOPULL, NRF_GPIO_PIN_SENSE_HIGH);
    nrf_gpio_cfg(SPI_SCK_PIN,NRF_GPIO_PIN_DIR_OUTPUT,NRF_GPIO_PIN_INPUT_CONNECT ,NRF_GPIO_PIN_NOPULL ,
    NRF_GPIO_PIN_H0H1, NRF_GPIO_PIN_SENSE_HIGH );

    nrf_gpio_cfg(SPI_MISO_PIN,NRF_GPIO_PIN_DIR_INPUT,NRF_GPIO_PIN_INPUT_CONNECT ,NRF_GPIO_PIN_NOPULL ,
    NRF_GPIO_PIN_H0H1, NRF_GPIO_PIN_SENSE_HIGH );

    nrf_gpio_cfg(SPI_SS_PIN,NRF_GPIO_PIN_DIR_OUTPUT,NRF_GPIO_PIN_INPUT_CONNECT ,NRF_GPIO_PIN_NOPULL ,
    NRF_GPIO_PIN_H0H1, NRF_GPIO_PIN_SENSE_HIGH );

    void spi_init(void)
    {

    nrf_drv_spi_config_t spi_config = NRF_DRV_SPI_DEFAULT_CONFIG;
    spi_config.ss_pin = SPI_SS_PIN;
    spi_config.miso_pin = SPI_MISO_PIN;
    spi_config.sck_pin = SPI_SCK_PIN;
    APP_ERROR_CHECK(nrf_drv_spi_init(&spi, &spi_config,NULL, NULL));

    }

    #define NRF_DRV_SPI_DEFAULT_CONFIG \
    { \
    .sck_pin = NRF_DRV_SPI_PIN_NOT_USED, \
    .mosi_pin = NRF_DRV_SPI_PIN_NOT_USED, \
    .miso_pin = NRF_DRV_SPI_PIN_NOT_USED, \
    .ss_pin = NRF_DRV_SPI_PIN_NOT_USED, \
    .irq_priority = SPI_DEFAULT_CONFIG_IRQ_PRIORITY, \
    .orc = 0xFF, \
    .frequency = SPI_FREQUENCY_FREQUENCY_K250, \
    .mode = NRF_DRV_SPI_MODE_3, \
    .bit_order = NRF_DRV_SPI_BIT_ORDER_MSB_FIRST, \
    }

    // <o> SPI_SCK_PIN - Pin number

    #ifndef SPI_SCK_PIN
    #define SPI_SCK_PIN 26
    #endif

    // <o> SPI_MISO_PIN - Pin number

    #ifndef SPI_MISO_PIN
    #define SPI_MISO_PIN 30
    #endif

    // <o> SPI_SS_PIN - Pin number

    #ifndef SPI_SS_PIN
    #define SPI_SS_PIN 31
    #endif

    this is my spi initialization. i am not getting clock.

    Regards,

    jagadeesh

Related