This post is older than 2 years and might not be relevant anymore
More Info: Consider searching for newer posts

Doing NRF52832 periodical data sending over ble. Is nus necessary or possibly other way?

I have developed ble periphleral device to send 20byte long at every five seconds to the central. Because connecting to serial to PC, I didn't realize the device cannot not advertise due to GATT error 133 until removed the serial connection.Temporarily I interconnected Tx and Rx of the module to fix. But the uart shall be used for debugging at the field. I think data send & receive over BLE will be done, however examples and materials use NUS mostly for similar cases. Hopefully to know what the real problem in my codes.. Here comes with my codes for advisor's convenience. I'm super beginner in NRF....just 2 weeks.

/**
* Copyright (c) 2014 - 2019, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/** @file
*
* @defgroup ble_sdk_uart_over_ble_main main.c
* @{
* @ingroup ble_sdk_app_nus_eval
* @brief UART over BLE application main file.
*
* This file contains the source code for a sample application that uses the Nordic UART service.
* This application uses the @ref srvlib_conn_params module.
*/

#define DEBUG 1 // debug mode 1 : non-debug 0


////////// oncoDev 0.9 released on Aug 11 2019 by Kyongho Lee /////////////////////////////////////

#include <stdint.h>
#include <string.h>
#include "nordic_common.h"
#include "nrf.h"
#include "ble_hci.h"
#include "ble_advdata.h"
#include "ble_advertising.h"
#include "ble_conn_params.h"

#include "nrf_sdh.h"
#include "nrf_sdh_soc.h"
#include "nrf_sdh_ble.h"
#include "nrf_ble_gatt.h"
#include "nrf_ble_qwr.h"
#include "app_timer.h"
#include "ble_nus.h"
#include "app_uart.h"
#include "app_util_platform.h"
#include "bsp_btn_ble.h"
#include "nrf_pwr_mgmt.h"
#include "nrfx_timer.h"

#include "nrf_saadc.h" //
#include "nrf_drv_saadc.h" // saadc ====
#include "nrf_drv_timer.h"
#include "nrf_drv_ppi.h" //

#if defined (UART_PRESENT)
#include "nrf_uart.h"
#endif
#if defined (UARTE_PRESENT)
#include "nrf_uarte.h"
#endif

#include "nrf_log.h"
#include "nrf_log_ctrl.h"
#include "nrf_log_default_backends.h"

#define APP_BLE_CONN_CFG_TAG 1 /**< A tag identifying the SoftDevice BLE configuration. */

#define DEVICE_NAME "oncoDevice" /**< Name of device. Will be included in the advertising data. */
#define NUS_SERVICE_UUID_TYPE BLE_UUID_TYPE_VENDOR_BEGIN /**< UUID type for the Nordic UART Service (vendor specific). */

#define APP_BLE_OBSERVER_PRIO 3 /**< Application's BLE observer priority. You shouldn't need to modify this value. */

#define APP_ADV_INTERVAL 64 /**< The advertising interval (in units of 0.625 ms. This value corresponds to 40 ms). */

#define APP_ADV_DURATION 18000 /**< The advertising duration (180 seconds) in units of 10 milliseconds. */

#define MIN_CONN_INTERVAL MSEC_TO_UNITS(20, UNIT_1_25_MS) /**< Minimum acceptable connection interval (20 ms), Connection interval uses 1.25 ms units. */
#define MAX_CONN_INTERVAL MSEC_TO_UNITS(75, UNIT_1_25_MS) /**< Maximum acceptable connection interval (75 ms), Connection interval uses 1.25 ms units. */
#define SLAVE_LATENCY 0 /**< Slave latency. */
#define CONN_SUP_TIMEOUT MSEC_TO_UNITS(4000, UNIT_10_MS) /**< Connection supervisory timeout (4 seconds), Supervision Timeout uses 10 ms units. */
#define FIRST_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(5000) /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */
#define NEXT_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(30000) /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */
#define MAX_CONN_PARAMS_UPDATE_COUNT 3 /**< Number of attempts before giving up the connection parameter negotiation. */

#define DEAD_BEEF 0xDEADBEEF /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */

#define UART_TX_BUF_SIZE 256 /**< UART TX buffer size. */
#define UART_RX_BUF_SIZE 256 /**< UART RX buffer size. */

#define SAMPLES_IN_BUFFER 5 // number of channels to be send with SAADC
#define SAMPLING_INTERVAL 3000 // 3000milli-seconds
#define LED_WORK 7
#define SHDN_GPIO_PIN 13 // 0 : shdn, 1 : working

#define LED_BLINK_INTERVAL300 300 // 300 milli-seconds
#define LED_BLINK_INTERVAL500 500 // 500 milli-seconds

// communication mode between host and client
#define COMMAND 0x11
#define REPLY 0x21 // answering from device against the command by host system
#define DATA 0x41 // data sending mode by device

// command from Host
#define START 0x12
#define STOP 0x14
#define CALIB 0x1b

// REPLY from device
#define ACK 0x22
#define SEND 0x24
#define RESEND 0x28
#define ERR_MSG 0x2A

#define PACKET_START 0x5E
#define PACKET_END 0x0A

#define PACKETLEN (1 + 1 + 1 + 1 + 2 + 1 + (2*SAMPLES_IN_BUFFER) + 1 + 1 + 1)

#define HOST_ID 0x0F
#define DEV_ID 0xFF // "0xFF" is for prototype device. DK for 0x00.
// commercial device start from 0x01.

typedef union {
uint8_t oncoData [PACKETLEN];
struct {
uint8_t strt; // 0x5E;
uint8_t mode; // COMMAND, REPLY, DATA
uint8_t host_id; // host ID that manages devices
uint8_t device_id; // unique ID of device
uint16_t pCounter; // packet counter
uint8_t msg; // START, STOP, CALIB, ACK, RESEND, ERR_MSG
uint16_t value [SAMPLES_IN_BUFFER]; // overhead : 7 bytes , data [10 bytes]
uint8_t chksum; // low byte of sum of value array
uint8_t stp; // = 0x0A;
};
} bleDialog_t;

bleDialog_t bleRxBuf;

static float adc_coeff = 3.0/16384.0; // VALUE RANGE : 0X00 ~ 0X3FFF


static const nrf_drv_timer_t m_timer = NRF_DRV_TIMER_INSTANCE(3);
static const nrf_drv_timer_t led_timer = NRF_DRV_TIMER_INSTANCE(4);


static nrf_saadc_value_t m_buffer_pool[SAMPLES_IN_BUFFER]; //16 bit integer
static nrf_ppi_channel_t m_ppi_channel;
static uint32_t m_adc_evt_counter;
static uint8_t m_adc_channel_enabled;
bool led_state = false;
bool led_link_indication = false; // false : BLE not connected, true : connected
static uint8_t tickCount = 0;

BLE_NUS_DEF(m_nus, NRF_SDH_BLE_TOTAL_LINK_COUNT); /**< BLE NUS service instance. */
NRF_BLE_GATT_DEF(m_gatt); /**< GATT module instance. */
NRF_BLE_QWR_DEF(m_qwr); /**< Context for the Queued Write module.*/
BLE_ADVERTISING_DEF(m_advertising); /**< Advertising module instance. */

static uint16_t m_conn_handle = BLE_CONN_HANDLE_INVALID; /**< Handle of the current connection. */
static uint16_t m_ble_nus_max_data_len = BLE_GATT_ATT_MTU_DEFAULT - 3; /**< Maximum length of data (in bytes) that can be transmitted to the peer by the Nordic UART service module. */
static ble_uuid_t m_adv_uuids[] = /**< Universally unique service identifier. */
{
{BLE_UUID_NUS_SERVICE, NUS_SERVICE_UUID_TYPE}
};


/**@brief Function for assert macro callback.
*
* @details This function will be called in case of an assert in the SoftDevice.
*
* @warning This handler is an example only and does not fit a final product. You need to analyse
* how your product is supposed to react in case of Assert.
* @warning On assert from the SoftDevice, the system can only recover on reset.
*
* @param[in] line_num Line number of the failing ASSERT call.
* @param[in] p_file_name File name of the failing ASSERT call.
*/

//////////////////////////////////////////////////////////////////////////////////////////////////

void blePacketMake (bleDialog_t* packet,
uint16_t counter)
{

int i;

// data sending mode
packet-> strt = PACKET_START;
packet-> mode = DATA;
packet-> host_id = HOST_ID;
packet-> device_id = DEV_ID;
packet-> pCounter = counter;
packet-> msg = SEND;
packet-> stp = PACKET_END;

union {
uint16_t sum;
struct {
uint8_t loByte;
uint8_t hiByte;
};
} int2byte;

int2byte.sum = 0;

for (i = 1; i < PACKETLEN - 2; i++ ) { // chksum excludes strt, stp, and chksum itself
int2byte.sum += packet-> oncoData[i];
}

packet-> chksum = int2byte.loByte & 0xff;

}

//////////////////////////////////////////////////

void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name)
{
app_error_handler(DEAD_BEEF, line_num, p_file_name);
}

/**@brief Function for initializing the timer module.
*/
/*
void led_timer_handler () {

if (!led_mode) {
nrf_gpio_pin_write (LED_WORK, led_state);
led_state = !led_state;
} else {
nrf_gpio_pin_write (LED_WORK, 0); // LED ON
}

}
*/
/////////////////////////////////////////////////

static void timers_init(void) // app timer 32.768KHz timer
{

ret_code_t err_code = app_timer_init();
APP_ERROR_CHECK(err_code);

}

/**@brief Function for the GAP initialization.
*
* @details This function will set up all the necessary GAP (Generic Access Profile) parameters of
* the device. It also sets the permissions and appearance.
*/
static void gap_params_init(void)
{
uint32_t err_code;
ble_gap_conn_params_t gap_conn_params;
ble_gap_conn_sec_mode_t sec_mode;

BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode);

err_code = sd_ble_gap_device_name_set(&sec_mode,
(const uint8_t *) DEVICE_NAME,
strlen(DEVICE_NAME));
APP_ERROR_CHECK(err_code);

memset(&gap_conn_params, 0, sizeof(gap_conn_params));

gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL;
gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL;
gap_conn_params.slave_latency = SLAVE_LATENCY;
gap_conn_params.conn_sup_timeout = CONN_SUP_TIMEOUT;

err_code = sd_ble_gap_ppcp_set(&gap_conn_params);
APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling Queued Write Module errors.
*
* @details A pointer to this function will be passed to each service which may need to inform the
* application about an error.
*
* @param[in] nrf_error Error code containing information about what went wrong.
*/
static void nrf_qwr_error_handler(uint32_t nrf_error)
{
APP_ERROR_HANDLER(nrf_error);
}


/**@brief Function for handling the data from the Nordic UART Service.
*
* @details This function will process the data received from the Nordic UART BLE Service and send
* it to the UART module.
*
* @param[in] p_evt Nordic UART Service event.
*/
/**@snippet [Handling the data received over BLE] */
#if DEBUG
static void nus_data_handler(ble_nus_evt_t * p_evt)
{

if (p_evt->type == BLE_NUS_EVT_RX_DATA)
{
uint32_t err_code;

NRF_LOG_DEBUG("Received data from BLE NUS. Writing data on UART.");
NRF_LOG_HEXDUMP_DEBUG(p_evt->params.rx_data.p_data, p_evt->params.rx_data.length);

for (uint32_t i = 0; i < p_evt->params.rx_data.length; i++)
{
do
{
err_code = app_uart_put(p_evt->params.rx_data.p_data[i]);
if ((err_code != NRF_SUCCESS) && (err_code != NRF_ERROR_BUSY))
{
NRF_LOG_ERROR("Failed receiving NUS message. Error 0x%x. ", err_code);
APP_ERROR_CHECK(err_code);
}
} while (err_code == NRF_ERROR_BUSY);
}
if (p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 1] == '\r')
{
while (app_uart_put('\n') == NRF_ERROR_BUSY);
}
}

}
#endif

/**@snippet [Handling the data received over BLE] */


/**@brief Function for initializing services that will be used by the application.
*/
static void services_init(void)
{
uint32_t err_code;
ble_nus_init_t nus_init;
nrf_ble_qwr_init_t qwr_init = {0};

// Initialize Queued Write Module.
qwr_init.error_handler = nrf_qwr_error_handler;

err_code = nrf_ble_qwr_init(&m_qwr, &qwr_init);
APP_ERROR_CHECK(err_code);

// Initialize NUS.
#if DEBUG
memset(&nus_init, 0, sizeof(nus_init));

nus_init.data_handler = nus_data_handler;
err_code = ble_nus_init(&m_nus, &nus_init);
APP_ERROR_CHECK(err_code);
#endif

}


/**@brief Function for handling an event from the Connection Parameters Module.
*
* @details This function will be called for all events in the Connection Parameters Module
* which are passed to the application.
*
* @note All this function does is to disconnect. This could have been done by simply setting
* the disconnect_on_fail config parameter, but instead we use the event handler
* mechanism to demonstrate its use.
*
* @param[in] p_evt Event received from the Connection Parameters Module.
*/
static void on_conn_params_evt(ble_conn_params_evt_t * p_evt)
{
uint32_t err_code;

if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED)
{
err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE);
APP_ERROR_CHECK(err_code);
}
}


/**@brief Function for handling errors from the Connection Parameters module.
*
* @param[in] nrf_error Error code containing information about what went wrong.
*/
static void conn_params_error_handler(uint32_t nrf_error)
{
APP_ERROR_HANDLER(nrf_error);
}


/**@brief Function for initializing the Connection Parameters module.
*/
static void conn_params_init(void)
{
uint32_t err_code;
ble_conn_params_init_t cp_init;

memset(&cp_init, 0, sizeof(cp_init));

cp_init.p_conn_params = NULL;
cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY;
cp_init.next_conn_params_update_delay = NEXT_CONN_PARAMS_UPDATE_DELAY;
cp_init.max_conn_params_update_count = MAX_CONN_PARAMS_UPDATE_COUNT;
cp_init.start_on_notify_cccd_handle = BLE_GATT_HANDLE_INVALID;
cp_init.disconnect_on_fail = false;
cp_init.evt_handler = on_conn_params_evt;
cp_init.error_handler = conn_params_error_handler;

err_code = ble_conn_params_init(&cp_init);
APP_ERROR_CHECK(err_code);
}


/**@brief Function for putting the chip into sleep mode.
*
* @note This function will not return.
*/
static void sleep_mode_enter(void)
{
uint32_t err_code = bsp_indication_set(BSP_INDICATE_IDLE);
APP_ERROR_CHECK(err_code);

// Prepare wakeup buttons.
err_code = bsp_btn_ble_sleep_mode_prepare();
APP_ERROR_CHECK(err_code);

// Go to system-off mode (this function will not return; wakeup will cause a reset).
err_code = sd_power_system_off();
APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling advertising events.
*
* @details This function will be called for advertising events which are passed to the application.
*
* @param[in] ble_adv_evt Advertising event.
*/
static void on_adv_evt(ble_adv_evt_t ble_adv_evt)
{
uint32_t err_code;

switch (ble_adv_evt)
{
case BLE_ADV_EVT_FAST:
err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING);
APP_ERROR_CHECK(err_code);
break;
case BLE_ADV_EVT_IDLE:
sleep_mode_enter();
break;
default:
break;
}
}


/**@brief Function for handling BLE events.
*
* @param[in] p_ble_evt Bluetooth stack event.
* @param[in] p_context Unused.
*/
static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context)
{
uint32_t err_code;

switch (p_ble_evt->header.evt_id)
{
case BLE_GAP_EVT_CONNECTED:
NRF_LOG_INFO("Connected");

// err_code = bsp_indication_set(BSP_INDICATE_CONNECTED);
// APP_ERROR_CHECK(err_code);

m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle;
err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr, m_conn_handle);
APP_ERROR_CHECK(err_code);
led_link_indication = true;
break;

case BLE_GAP_EVT_DISCONNECTED:
NRF_LOG_INFO("Disconnected");
// LED indication will be changed when advertising starts.
m_conn_handle = BLE_CONN_HANDLE_INVALID;
led_link_indication = false;
break;

case BLE_GAP_EVT_PHY_UPDATE_REQUEST:
{
NRF_LOG_DEBUG("PHY update request.");
ble_gap_phys_t const phys =
{
.rx_phys = BLE_GAP_PHY_AUTO,
.tx_phys = BLE_GAP_PHY_AUTO,
};
err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys);
APP_ERROR_CHECK(err_code);
} break;

case BLE_GAP_EVT_SEC_PARAMS_REQUEST:
// Pairing not supported
err_code = sd_ble_gap_sec_params_reply(m_conn_handle,
BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP,
NULL,
NULL);
APP_ERROR_CHECK(err_code);
break;

case BLE_GATTS_EVT_SYS_ATTR_MISSING:
// No system attributes have been stored.
err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0, 0);
APP_ERROR_CHECK(err_code);
break;

case BLE_GATTC_EVT_TIMEOUT:
// Disconnect on GATT Client timeout event.
err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle,
BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
APP_ERROR_CHECK(err_code);
break;

case BLE_GATTS_EVT_TIMEOUT:
// Disconnect on GATT Server timeout event.
err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle,
BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
APP_ERROR_CHECK(err_code);
break;

default:
// No implementation needed.
break;
}
}


/**@brief Function for the SoftDevice initialization.
*
* @details This function initializes the SoftDevice and the BLE event interrupt.
*/
static void ble_stack_init(void)
{
ret_code_t err_code;

err_code = nrf_sdh_enable_request();
APP_ERROR_CHECK(err_code);

// Configure the BLE stack using the default settings.
// Fetch the start address of the application RAM.
uint32_t ram_start = 0;
err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start);
APP_ERROR_CHECK(err_code);

// Enable BLE stack.
err_code = nrf_sdh_ble_enable(&ram_start);
APP_ERROR_CHECK(err_code);

// Register a handler for BLE events.
NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL);
}


/**@brief Function for handling events from the GATT library. */
#if DEBUG
void gatt_evt_handler(nrf_ble_gatt_t * p_gatt, nrf_ble_gatt_evt_t const * p_evt)
{
if ((m_conn_handle == p_evt->conn_handle) && (p_evt->evt_id == NRF_BLE_GATT_EVT_ATT_MTU_UPDATED))
{
m_ble_nus_max_data_len = p_evt->params.att_mtu_effective - OPCODE_LENGTH - HANDLE_LENGTH;
NRF_LOG_INFO("Data len is set to 0x%X(%d)", m_ble_nus_max_data_len, m_ble_nus_max_data_len);
}
NRF_LOG_DEBUG("ATT MTU exchange completed. central 0x%x peripheral 0x%x",
p_gatt->att_mtu_desired_central,
p_gatt->att_mtu_desired_periph);
}
#endif

/**@brief Function for initializing the GATT library. */
void gatt_init(void)
{
ret_code_t err_code;

err_code = nrf_ble_gatt_init(&m_gatt,
#if DEBUG
gatt_evt_handler
#else
NULL
#endif
);
APP_ERROR_CHECK(err_code);
#if DEBUG
err_code = nrf_ble_gatt_att_mtu_periph_set(&m_gatt, NRF_SDH_BLE_GATT_MAX_MTU_SIZE);
APP_ERROR_CHECK(err_code);
#endif
}


/**@brief Function for handling events from the BSP module.
*
* @param[in] event Event generated by button press.
*/
void bsp_event_handler(bsp_event_t event)
{
uint32_t err_code;
switch (event)
{
case BSP_EVENT_SLEEP:
sleep_mode_enter();
break;

case BSP_EVENT_DISCONNECT:
err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
if (err_code != NRF_ERROR_INVALID_STATE)
{
APP_ERROR_CHECK(err_code);
}
break;

case BSP_EVENT_WHITELIST_OFF:
if (m_conn_handle == BLE_CONN_HANDLE_INVALID)
{
err_code = ble_advertising_restart_without_whitelist(&m_advertising);
if (err_code != NRF_ERROR_INVALID_STATE)
{
APP_ERROR_CHECK(err_code);
}
}
break;

default:
break;
}
}


/**@brief Function for handling app_uart events.
*
* @details This function will receive a single character from the app_uart module and append it to
* a string. The string will be be sent over BLE when the last character received was a
* 'new line' '\n' (hex 0x0A) or if the string has reached the maximum data length.
*/
/**@snippet [Handling the data received over UART] */
#if DEBUG
void uart_event_handle(app_uart_evt_t * p_event)
{
static uint8_t data_array[BLE_NUS_MAX_DATA_LEN];
static uint16_t index = 0;
uint32_t err_code;

switch (p_event->evt_type)
{
case APP_UART_DATA_READY:
UNUSED_VARIABLE(app_uart_get(&data_array[index]));
index++;

if ((data_array[index - 1] == '\n') ||
(data_array[index - 1] == '\r') ||
(index >= m_ble_nus_max_data_len))
{
if (index > 1)
{
NRF_LOG_DEBUG("Ready to send data over BLE NUS");
NRF_LOG_HEXDUMP_DEBUG(data_array, index);

do
{
uint16_t length = (uint16_t)index;
err_code = ble_nus_data_send(&m_nus, data_array, &length, m_conn_handle);
if ((err_code != NRF_ERROR_INVALID_STATE) &&
(err_code != NRF_ERROR_RESOURCES) &&
(err_code != NRF_ERROR_NOT_FOUND))
{
APP_ERROR_CHECK(err_code);
}
} while (err_code == NRF_ERROR_RESOURCES);
}

index = 0;
}
break;

case APP_UART_COMMUNICATION_ERROR:
APP_ERROR_HANDLER(p_event->data.error_communication);
break;

case APP_UART_FIFO_ERROR:
APP_ERROR_HANDLER(p_event->data.error_code);
break;

default:
break;
}
}
#endif
/**@snippet [Handling the data received over UART] */


/**@brief Function for initializing the UART module.
*/
/**@snippet [UART Initialization] */
#if DEBUG
static void uart_init(void)
{
uint32_t err_code;
app_uart_comm_params_t const comm_params =
{
.rx_pin_no = RX_PIN_NUMBER,
.tx_pin_no = TX_PIN_NUMBER,
.rts_pin_no = RTS_PIN_NUMBER,
.cts_pin_no = CTS_PIN_NUMBER,
.flow_control = APP_UART_FLOW_CONTROL_DISABLED,
.use_parity = false,
#if defined (UART_PRESENT)
.baud_rate = NRF_UART_BAUDRATE_115200
#else
.baud_rate = NRF_UARTE_BAUDRATE_115200
#endif
};

APP_UART_FIFO_INIT(&comm_params,
UART_RX_BUF_SIZE,
UART_TX_BUF_SIZE,
uart_event_handle,
APP_IRQ_PRIORITY_LOWEST,
err_code);
APP_ERROR_CHECK(err_code);
}
#endif
/**@snippet [UART Initialization] */


/**@brief Function for initializing the Advertising functionality.
*/
static void advertising_init(void)
{
uint32_t err_code;
ble_advertising_init_t init;

memset(&init, 0, sizeof(init));

init.advdata.name_type = BLE_ADVDATA_FULL_NAME;
init.advdata.include_appearance = false;
init.advdata.flags = BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE;

init.srdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]);
init.srdata.uuids_complete.p_uuids = m_adv_uuids;

init.config.ble_adv_fast_enabled = true;
init.config.ble_adv_fast_interval = APP_ADV_INTERVAL;
init.config.ble_adv_fast_timeout = APP_ADV_DURATION;
init.evt_handler = on_adv_evt;

err_code = ble_advertising_init(&m_advertising, &init);
APP_ERROR_CHECK(err_code);

ble_advertising_conn_cfg_tag_set(&m_advertising, APP_BLE_CONN_CFG_TAG);
}


/**@brief Function for initializing buttons and leds.
*
* @param[out] p_erase_bonds Will be true if the clear bonding button was pressed to wake the application up.
*/
static void buttons_leds_init(bool * p_erase_bonds)
{
bsp_event_t startup_event;

uint32_t err_code = bsp_init(BSP_INIT_LEDS | BSP_INIT_BUTTONS, bsp_event_handler);
APP_ERROR_CHECK(err_code);

err_code = bsp_btn_ble_init(NULL, &startup_event);
APP_ERROR_CHECK(err_code);

*p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA);
}


/**@brief Function for initializing the nrf log module.
*/
static void log_init(void)
{
ret_code_t err_code = NRF_LOG_INIT(NULL);
APP_ERROR_CHECK(err_code);

NRF_LOG_DEFAULT_BACKENDS_INIT();
}


/**@brief Function for initializing power management.
*/
static void power_management_init(void)
{
ret_code_t err_code;
err_code = nrf_pwr_mgmt_init();
APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling the idle state (main loop).
*
* @details If there is no pending log operation, then sleep until next the next event occurs.
*/
static void idle_state_handle(void)
{
if (NRF_LOG_PROCESS() == false)
{
nrf_pwr_mgmt_run();
}
}


/**@brief Function for starting advertising.
*/
static void advertising_start(void)
{
uint32_t err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST);
APP_ERROR_CHECK(err_code);
}

//////////////// SAADC ////////////////////////////////////////////////////////////////////////////////////////

void led_timer_handler (nrf_timer_event_t event_type, void* p_context)
{

switch (event_type)
{
case NRF_TIMER_EVENT_COMPARE1:
break;
default :
break;
}

if(led_link_indication == false) {
nrf_gpio_pin_write (LED_WORK, led_state);
led_state = !led_state;
}
else {
nrf_gpio_pin_write (LED_WORK, true); // connected
}

}

/////////////////////////////////////////////////////

void led_init (void)
{
ret_code_t err_code;

nrf_gpio_cfg_output(LED_WORK);
led_link_indication = false;

nrf_drv_timer_config_t led_timer_cfg = NRF_DRV_TIMER_DEFAULT_CONFIG;
led_timer_cfg.bit_width = NRF_TIMER_BIT_WIDTH_32;
err_code = nrf_drv_timer_init(&led_timer, &led_timer_cfg, led_timer_handler);
APP_ERROR_CHECK(err_code);

/* setup m_timer for compare event every SAMPLING_INTERVAL, 3000 milli seconds */
uint32_t ticks = nrf_drv_timer_ms_to_ticks(&led_timer, LED_BLINK_INTERVAL300);

nrf_drv_timer_extended_compare(&led_timer,
NRF_TIMER_CC_CHANNEL1,
ticks,
NRF_TIMER_SHORT_COMPARE1_CLEAR_MASK,
true); // TRUE means interrupt enabled, otherwise disabled
nrf_drv_timer_enable(&led_timer);

uint32_t timer_compare_event_addr = nrf_drv_timer_compare_event_address_get(&led_timer, NRF_TIMER_CC_CHANNEL1);
// uint32_t led_sample_task_addr = nrf_drv_saadc_sample_task_get();

}

//////////////// SAADC ////////////////////////////////////////////////////////////////////////////////////////

void SAADC_timer_handler(nrf_timer_event_t event_type, void * p_context)
{

static uint32_t i;
// uint32_t led_to_invert = ((i++) % LEDS_NUMBER);


// tickCount ++;

switch (event_type)
{
case NRF_TIMER_EVENT_COMPARE0:
// if (tickCount >= 1) {
// tickCount = 0;
// }

// bsp_board_led_invert(led_to_invert);
break;

default:
//Do nothing.
break;
}

}

//////////////////////////////////////////////////////

void saadc_sampling_event_init(void)
{
ret_code_t err_code;

err_code = nrf_drv_ppi_init();
APP_ERROR_CHECK(err_code);

// timer 2 init
nrf_drv_timer_config_t timer_cfg = NRF_DRV_TIMER_DEFAULT_CONFIG;
timer_cfg.bit_width = NRF_TIMER_BIT_WIDTH_32;
err_code = nrf_drv_timer_init(&m_timer, &timer_cfg, SAADC_timer_handler);
APP_ERROR_CHECK(err_code);

/* setup m_timer for compare event every SAMPLING_INTERVAL, 3000 milli seconds */
uint32_t ticks = nrf_drv_timer_ms_to_ticks(&m_timer, SAMPLING_INTERVAL);

nrf_drv_timer_extended_compare(&m_timer,
NRF_TIMER_CC_CHANNEL0,
ticks,
NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK,
true); // TRUE means interrupt enabled, otherwise disabled
nrf_drv_timer_enable(&m_timer);

uint32_t timer_compare_event_addr = nrf_drv_timer_compare_event_address_get(&m_timer, NRF_TIMER_CC_CHANNEL0);
uint32_t saadc_sample_task_addr = nrf_drv_saadc_sample_task_get();

/* setup ppi channel so that timer compare event is triggering sample task in SAADC */
err_code = nrf_drv_ppi_channel_alloc(&m_ppi_channel);
APP_ERROR_CHECK(err_code);

err_code = nrf_drv_ppi_channel_assign(m_ppi_channel,
timer_compare_event_addr,
saadc_sample_task_addr);
APP_ERROR_CHECK(err_code);
}

/////////////////////////////////////////

void saadc_sampling_event_enable(void)
{
ret_code_t err_code = nrf_drv_ppi_channel_enable(m_ppi_channel);

APP_ERROR_CHECK(err_code);
}

////////////////////////////////////////

void saadc_callback(nrf_drv_saadc_evt_t const * p_event)
{

if (p_event->type == NRF_DRV_SAADC_EVT_DONE)
{

ret_code_t err_code;
uint16_t adc_value;
uint8_t value[SAMPLES_IN_BUFFER*2+1];
uint16_t bytes_to_send;

err_code = nrf_drv_saadc_buffer_convert(p_event->data.done.p_buffer, SAMPLES_IN_BUFFER);
APP_ERROR_CHECK(err_code);

int i;
bleDialog_t bleTxBuf;
#if DEBUG
NRF_LOG_INFO ("ID = %d, ADC counter %d\n", (int)bleTxBuf.device_id, (int)m_adc_evt_counter);
#endif
for (i = 0; i < SAMPLES_IN_BUFFER; i++)
{
bleTxBuf.value[i] = p_event->data.done.p_buffer[i];
adc_value = bleTxBuf.value[i];

#if DEBUG
if ((adc_value & 0xC000) != 0) {
NRF_LOG_INFO ("ch%d : %x = %f \n", i, bleTxBuf.value[i], (((bleTxBuf.value[i]^0xffff)+0x0001) * adc_coeff * (-1)));
} else {
NRF_LOG_INFO ("ch%d : %x = %f \n", i, bleTxBuf.value[i], bleTxBuf.value[i] * adc_coeff);
}
#endif
}


// SEND DATA over BLE via NUS. the max packet size is 20 bytes of data.....datarates less than 20Kbps

bytes_to_send = PACKETLEN;
blePacketMake (&bleTxBuf, m_adc_evt_counter);
#if DEBUG
NRF_LOG_INFO("ble data sending :");

for (i = 0; i < PACKETLEN; i++) {
NRF_LOG_INFO (" %x ",bleTxBuf.oncoData[i]);
}
NRF_LOG_INFO("\n");

err_code = ble_nus_data_send (&m_nus, bleTxBuf.oncoData, &bytes_to_send, m_conn_handle);

if(err_code != NRF_ERROR_INVALID_STATE) {
APP_ERROR_CHECK(err_code);
}
#else


#endif
m_adc_evt_counter++;
}

}


void saadc_init(void)
{
ret_code_t err_code;

nrf_saadc_channel_config_t ch0_config = NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(NRF_SAADC_INPUT_AIN0);
nrf_saadc_channel_config_t ch1_config = NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(NRF_SAADC_INPUT_AIN1);
nrf_saadc_channel_config_t ch2_config = NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(NRF_SAADC_INPUT_AIN2);
nrf_saadc_channel_config_t ch3_config = NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(NRF_SAADC_INPUT_AIN3);
nrf_saadc_channel_config_t ch4_config = NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(NRF_SAADC_INPUT_AIN4);

ch0_config.acq_time = NRF_SAADC_ACQTIME_20US;
ch1_config.acq_time = NRF_SAADC_ACQTIME_20US;
ch2_config.acq_time = NRF_SAADC_ACQTIME_20US;
ch3_config.acq_time = NRF_SAADC_ACQTIME_20US;
ch4_config.acq_time = NRF_SAADC_ACQTIME_20US;

ch0_config.gain = NRF_SAADC_GAIN1_4;
ch1_config.gain = NRF_SAADC_GAIN1_4;
ch2_config.gain = NRF_SAADC_GAIN1_4;
ch3_config.gain = NRF_SAADC_GAIN1_4;
ch4_config.gain = NRF_SAADC_GAIN1_4;

ch0_config.reference = NRF_SAADC_REFERENCE_VDD4;
ch1_config.reference = NRF_SAADC_REFERENCE_VDD4;
ch2_config.reference = NRF_SAADC_REFERENCE_VDD4;
ch3_config.reference = NRF_SAADC_REFERENCE_VDD4;
ch4_config.reference = NRF_SAADC_REFERENCE_VDD4;


nrfx_saadc_config_t saddc_config = NRFX_SAADC_DEFAULT_CONFIG;
saddc_config.resolution = NRF_SAADC_RESOLUTION_14BIT;

err_code = nrf_drv_saadc_init(&saddc_config, saadc_callback);

APP_ERROR_CHECK(err_code);


ch0_config.pin_p = NRF_SAADC_INPUT_AIN0;
err_code = nrf_drv_saadc_channel_init(0, &ch0_config);
APP_ERROR_CHECK(err_code);

ch1_config.pin_p = NRF_SAADC_INPUT_AIN1;
err_code = nrf_drv_saadc_channel_init(1, &ch1_config);
APP_ERROR_CHECK(err_code);

ch2_config.pin_p = NRF_SAADC_INPUT_AIN2;
err_code = nrf_drv_saadc_channel_init(2, &ch2_config);
APP_ERROR_CHECK(err_code);

ch3_config.pin_p = NRF_SAADC_INPUT_AIN3;
err_code = nrf_drv_saadc_channel_init(3, &ch3_config);
APP_ERROR_CHECK(err_code);

ch4_config.pin_p = NRF_SAADC_INPUT_AIN4;
err_code = nrf_drv_saadc_channel_init(4, &ch4_config);
APP_ERROR_CHECK(err_code);


err_code = nrf_drv_saadc_buffer_convert(m_buffer_pool, SAMPLES_IN_BUFFER);
APP_ERROR_CHECK(err_code);

m_adc_channel_enabled = 0;

}

//////////////// SAADC /////////////////////////////////////////////////////////////////////////////////////////////

/**@brief Application main function.
*/

void Init () {

bool erase_bonds;


nrf_gpio_cfg_output(SHDN_GPIO_PIN);
nrf_gpio_pin_write(SHDN_GPIO_PIN, true); // non-shdn
led_init ();

#if DEBUG
uart_init();
#endif

log_init();
timers_init();
// buttons_leds_init(&erase_bonds);
power_management_init();
ble_stack_init();
gap_params_init();
gatt_init();
#if DEBUG
services_init();
#endif
advertising_init();
conn_params_init();

// Start execution.
NRF_LOG_INFO("\r\nHello KH's great World~!. We're trying to connect ~!! \r\n");
NRF_LOG_INFO("Debug logging for UART over RTT started.");
advertising_start();

saadc_sampling_event_init();
saadc_init();
saadc_sampling_event_enable ();


}

////////////////////////////

int main(void)
{

Init ();

// Enter main loop.
for (;;)
{
idle_state_handle();
}
}


/**
* @}
*/

Parents Reply Children
No Data
Related