This post is older than 2 years and might not be relevant anymore
More Info: Consider searching for newer posts

I am facing error code 4 : transaction not scheduled repeatedly while using nrf_twi_sensor_reg_read function in my private function

Hi, I'm a beginner of Firmware Engineering and facing an issue on programming of sensor module.

I am using a sensor as IIS2DLPC made by STM, and board is nrf52840 dk board.

I'm using twi SDK as 15.3.0 version

This is what I'm using as function to get data from sensor

static int32_t platform_read(void *handle, uint8_t reg, uint8_t *bufp, uint16_t len)
{
 nrf_twi_sensor_reg_read(&m_nrf_twi_sensor, II_ADDR, reg, NULL, bufp, len);
      NRF_LOG_INFO("TWI event number: %d", (int)m_twi_evt_counter);
      m_twi_evt_counter++;
 return 0;
}

and while I'm using this function in sensor initializing, it works well

void platform_init(void)
{
  ret_code_t err_code;

  iis2dlpc_device_id_get(&dev_ctx, &whoamI);
//  do {
//    if(whoamI != IIS2DLPC_ID){
//      printf("\r\ndevice_id_get failed\r\n");
//      }
//    nrf_delay_ms(400);
//    iis2dlpc_device_id_get(&dev_ctx, &whoamI);
//  } while(whoamI != IIS2DLPC_ID);
  iis2dlpc_reset_set(&dev_ctx, PROPERTY_ENABLE);
  do {
    iis2dlpc_reset_get(&dev_ctx, &rst);
  } while (rst);
  iis2dlpc_block_data_update_set(&dev_ctx, PROPERTY_ENABLE);
  iis2dlpc_full_scale_set(&dev_ctx, IIS2DLPC_16g);
  iis2dlpc_filter_path_set(&dev_ctx, IIS2DLPC_LPF_ON_OUT);
  iis2dlpc_filter_bandwidth_set(&dev_ctx, IIS2DLPC_ODR_DIV_10);
  iis2dlpc_power_mode_set(&dev_ctx, IIS2DLPC_HIGH_PERFORMANCE_LOW_NOISE);
  iis2dlpc_data_rate_set(&dev_ctx, IIS2DLPC_XL_ODR_100Hz);
  printf("\r\nall settings are completed\r\n");

  err_code = app_timer_create(&m_timer_II, APP_TIMER_MODE_REPEATED, timer_handler_II);
  APP_ERROR_CHECK(err_code);

  err_code = app_timer_start(m_timer_II, APP_TIMER_TICKS(400), NULL);
  APP_ERROR_CHECK(err_code);
}

but when I use it with app_timer function, it goes to error which I explained on the subject of this ticket.

following code is call_back function of timer

void timer_handler_II(void * p_context)
{ 
  uint8_t reg_init;

  iis2dlpc_flag_data_ready_get(&dev_ctx, &reg_init);
  if(reg_init)
  {
    memset(data_raw_acceleration[0].u8bit, 0x00, 3 * sizeof(int16_t));
    memset(data_raw_acceleration[1].u8bit, 0x00, 3 * sizeof(int16_t));
    memset(data_raw_acceleration[2].u8bit, 0x00, 3 * sizeof(int16_t));

    iis2dlpc_acceleration_raw_get(&dev_ctx, data_raw_acceleration[0].u8bit);
    iis2dlpc_acceleration_rawY_get(&dev_ctx, data_raw_acceleration[1].u8bit);
    iis2dlpc_acceleration_rawZ_get(&dev_ctx, data_raw_acceleration[2].u8bit);
	  	  
    acceleration_mg[0] = iis2dlpc_from_fs16_lp1_to_mg(data_raw_acceleration[0].i16bit[0]);
    acceleration_mg[1] = iis2dlpc_from_fs16_lp1_to_mg(data_raw_acceleration[1].i16bit[0]);
    acceleration_mg[2] = iis2dlpc_from_fs16_lp1_to_mg(data_raw_acceleration[2].i16bit[0]);
    
	current_value[0] = (int)(acceleration_mg[0]);
	current_value[1] = (int)(acceleration_mg[1]);
	current_value[2] = (int)(acceleration_mg[2]);

    strcpy(difference0,dto62(current_value[0]-previous_value[0]));
    strcpy(difference1,dto62(current_value[1]-previous_value[1]));
    strcpy(difference2,dto62(current_value[2]-previous_value[2]));
    sprintf(m_buffer, "%s %s %s", difference0, difference1, difference2);
    printf("%s\r\n",m_buffer);
  }
  else
  {
  printf("can't read reg data\r\n");
  }
  for(int i=0; i<3; i++)
  {
    previous_value[i] = current_value[i];
  }
}

and this is the error code on J-LINK RTT viewer

and can't get data at all (0 0 0)

(above data are from GPIO pins with another timer)

If you need more specific information to solve my issue, let me know what should I show you.

hope I can solve this issue asap. Thanks for reading my ticket.

Parents
  • I think I should show you all of my code

    /**
     * Copyright (c) 2014 - 2019, Nordic Semiconductor ASA
     *
     * All rights reserved.
     *
     * Redistribution and use in source and binary forms, with or without modification,
     * are permitted provided that the following conditions are met:
     *
     * 1. Redistributions of source code must retain the above copyright notice, this
     *    list of conditions and the following disclaimer.
     *
     * 2. Redistributions in binary form, except as embedded into a Nordic
     *    Semiconductor ASA integrated circuit in a product or a software update for
     *    such product, must reproduce the above copyright notice, this list of
     *    conditions and the following disclaimer in the documentation and/or other
     *    materials provided with the distribution.
     *
     * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
     *    contributors may be used to endorse or promote products derived from this
     *    software without specific prior written permission.
     *
     * 4. This software, with or without modification, must only be used with a
     *    Nordic Semiconductor ASA integrated circuit.
     *
     * 5. Any software provided in binary form under this license must not be reverse
     *    engineered, decompiled, modified and/or disassembled.
     *
     * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
     * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
     * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
     * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
     * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     *
     */
    /** @file
     *
     * @defgroup ble_sdk_uart_over_ble_main main.c
     * @{
     * @ingroup  ble_sdk_app_nus_eval
     * @brief    UART over BLE application main file.
     *
     * This file contains the source code for a sample application that uses the Nordic UART service.
     * This application uses the @ref srvlib_conn_params module.
     */
    
    #include <stdbool.h>
    #include <stdio.h>
    
    #include <stdint.h>
    #include <string.h>
    #include "nordic_common.h"
    #include "nrf.h"
    #include "ble_hci.h"
    #include "ble_advdata.h"
    #include "ble_advertising.h"
    #include "ble_conn_params.h"
    #include "nrf_sdh.h"
    
          #include "nrf_drv_twi.h"
          #include "nrf_drv_clock.h"
          #include "compiler_abstraction.h"
          #include "nrf_twi_sensor.h"
          #include "nrf_twi_mngr.h"
          #include "nrf_twi.h"
          #include "nrf_delay.h"
          #include "reg.h"
    
    #include "nrf_sdh_soc.h"
    #include "nrf_sdh_ble.h"
    #include "nrf_ble_gatt.h"
    #include "nrf_ble_qwr.h"
    #include "app_timer.h"
    #include "ble_nus.h"
    #include "app_uart.h"
    #include "app_util_platform.h"
    #include "bsp_btn_ble.h"
    #include "nrf_pwr_mgmt.h"
    
    #include "nrf_delay.h"
    
    #if defined (UART_PRESENT)
    #include "nrf_uart.h"
    #endif
    #if defined (UARTE_PRESENT)
    #include "nrf_uarte.h"
    #endif
    
    #include "nrf_log.h"
    #include "nrf_log_ctrl.h"
    #include "nrf_log_default_backends.h"
    #include "nrf_drv_saadc.h"
    #include "nrf_drv_ppi.h"
    #include "nrf_drv_timer.h"
    #include "boards.h"
    #include "app_error.h"
    #include "app_util.h"
    
    #define APP_BLE_CONN_CFG_TAG            1                                           /**< A tag identifying the SoftDevice BLE configuration. */
    
    #define DEVICE_NAME                     "Nordic_Blinky"                               /**< Name of device. Will be included in the advertising data. */
    #define NUS_SERVICE_UUID_TYPE           BLE_UUID_TYPE_VENDOR_BEGIN                  /**< UUID type for the Nordic UART Service (vendor specific). */
    
    #define APP_BLE_OBSERVER_PRIO           3                                           /**< Application's BLE observer priority. You shouldn't need to modify this value. */
    
    #define APP_ADV_INTERVAL                64                                          /**< The advertising interval (in units of 0.625 ms. This value corresponds to 40 ms). */
    
    #define APP_ADV_DURATION                BLE_GAP_ADV_TIMEOUT_GENERAL_UNLIMITED       /**< The advertising duration (180 seconds) in units of 10 milliseconds. */
    
    #define MIN_CONN_INTERVAL               MSEC_TO_UNITS(100, UNIT_1_25_MS)             /**< Minimum acceptable connection interval (20 ms), Connection interval uses 1.25 ms units. */
    #define MAX_CONN_INTERVAL               MSEC_TO_UNITS(200, UNIT_1_25_MS)             /**< Maximum acceptable connection interval (75 ms), Connection interval uses 1.25 ms units. */
    #define SLAVE_LATENCY                   0                                           /**< Slave latency. */
    #define CONN_SUP_TIMEOUT                MSEC_TO_UNITS(4000, UNIT_10_MS)             /**< Connection supervisory timeout (4 seconds), Supervision Timeout uses 10 ms units. */
    #define FIRST_CONN_PARAMS_UPDATE_DELAY  APP_TIMER_TICKS(20000)                       /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */
    #define NEXT_CONN_PARAMS_UPDATE_DELAY   APP_TIMER_TICKS(5000)                      /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */
    #define MAX_CONN_PARAMS_UPDATE_COUNT    3                                           /**< Number of attempts before giving up the connection parameter negotiation. */
    
    #define DEAD_BEEF                       0xDEADBEEF                                  /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */
    
    #define UART_TX_BUF_SIZE                256                                         /**< UART TX buffer size. */
    #define UART_RX_BUF_SIZE                256                                         /**< UART RX buffer size. */
    
          #define BYTES 6
          #define II_ADDR (0x33U >>1)
          #define MAX_PENDING_TRANSACTIONS    6
    
    
    #define FLAME_PIN NRF_SAADC_INPUT_AIN0
    #define SOUND_PIN NRF_SAADC_INPUT_AIN1
    #define HUMID_PIN NRF_SAADC_INPUT_AIN2
    #define BAT_PIN NRF_SAADC_INPUT_VDD
    
    #define FLAME_CHANNEL 0
    #define SOUND_CHANNEL 1
    #define HUMID_CHANNEL 2
    #define BAT_CHANNEL 3
    
    #define ADC_REF_VOLTAGE_IN_MILLIVOLTS   600                                     /**< Reference voltage (in milli volts) used by ADC while doing conversion. */
    #define ADC_PRE_SCALING_COMPENSATION    6                                       /**< The ADC is configured to use VDD with 1/3 prescaling as input. And hence the result of conversion is to be multiplied by 3 to get the actual value of the battery voltage.*/
    #define DIODE_FWD_VOLT_DROP_MILLIVOLTS  270                                     /**< Typical forward voltage drop of the diode . */
    #define ADC_RES_10BIT                   1024                                    /**< Maximum digital value for 10-bit ADC conversion. */
    
    #define ADC_RESULT_IN_MILLI_VOLTS(ADC_VALUE)\
            ((((ADC_VALUE) * ADC_REF_VOLTAGE_IN_MILLIVOLTS) / ADC_RES_10BIT) * ADC_PRE_SCALING_COMPENSATION)
    
    static nrf_saadc_channel_config_t ch_config_flame = NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(FLAME_PIN);
    static nrf_saadc_channel_config_t ch_config_sound = NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(SOUND_PIN);
    static nrf_saadc_channel_config_t ch_config_humid = NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(HUMID_PIN);
    static nrf_saadc_channel_config_t ch_config_bat = NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(BAT_PIN);
    
    static const nrf_drv_timer_t m_timer = NRF_DRV_TIMER_INSTANCE(2);
          APP_TIMER_DEF(m_timer_II);
          static const nrf_drv_twi_t m_twi = NRF_DRV_TWI_INSTANCE(0);
    
    static nrf_saadc_value_t m_buffer_pool[4];
    
    static nrf_saadc_value_t flame_raw, sound_raw, humid_raw, bat_raw;
    
    static nrf_ppi_channel_t     m_ppi_channel;
    static uint32_t              m_adc_evt_counter;
          static uint32_t              m_twi_evt_counter;
    
          static axis3bit16_t          data_raw_acceleration[3];
          static iis2dlpc_ctx_t        dev_ctx;
          static uint8_t               whoamI, rst;
          static float acceleration_mg[3];
          static int SIZE;
          static int current_value[3];
          static int previous_value[3] = {0};
          static char difference0[3]; // X
          static char difference1[3]; // Y
          static char difference2[3]; // Z
          static char m_buffer[9];
    
    BLE_NUS_DEF(m_nus, NRF_SDH_BLE_TOTAL_LINK_COUNT);                                   /**< BLE NUS service instance. */
    NRF_BLE_GATT_DEF(m_gatt);                                                           /**< GATT module instance. */
    NRF_BLE_QWR_DEF(m_qwr);                                                             /**< Context for the Queued Write module.*/
    BLE_ADVERTISING_DEF(m_advertising);  
          NRF_TWI_MNGR_DEF(m_nrf_twi_mngr, MAX_PENDING_TRANSACTIONS, 0);
          NRF_TWI_SENSOR_DEF(m_nrf_twi_sensor, &m_nrf_twi_mngr, NRF_TWI_SENSOR_SEND_BUF_SIZE);
                                                   /**< Advertising module instance. */
    
    static uint16_t   m_conn_handle          = BLE_CONN_HANDLE_INVALID;                 /**< Handle of the current connection. */
    static uint16_t   m_ble_nus_max_data_len = BLE_GATT_ATT_MTU_DEFAULT - 3;            /**< Maximum length of data (in bytes) that can be transmitted to the peer by the Nordic UART service module. */
    
    //static ble_uuid_t m_adv_uuids[]          =                                          /**< Universally unique service identifier. */
    //{
     //   {BLE_UUID_NUS_SERVICE, NUS_SERVICE_UUID_TYPE}
    //};
    
    static ble_uuid_t m_adv_uuids[] =                                               /**< Universally unique service identifiers. */
    {
        {BLE_UUID_DEVICE_INFORMATION_SERVICE, BLE_UUID_TYPE_BLE}
    };
    
    /**@brief Function for assert macro callback.
     *
     * @details This function will be called in case of an assert in the SoftDevice.
     *
     * @warning This handler is an example only and does not fit a final product. You need to analyse
     *          how your product is supposed to react in case of Assert.
     * @warning On assert from the SoftDevice, the system can only recover on reset.
     *
     * @param[in] line_num    Line number of the failing ASSERT call.
     * @param[in] p_file_name File name of the failing ASSERT call.
     */
    void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name)
    {
        app_error_handler(DEAD_BEEF, line_num, p_file_name);
    }
    
    /**@brief Function for initializing the timer module.
     */
    static void timers_init(void)
    {
        ret_code_t err_code = app_timer_init();
        APP_ERROR_CHECK(err_code);
    }
    
    static void lfclk_config(void)
    {
        uint32_t err_code;
    
        err_code = nrf_drv_clock_init();
        APP_ERROR_CHECK(err_code);
    
        nrf_drv_clock_lfclk_request(NULL);
    }
    /**@brief Function for the GAP initialization.
     *
     * @details This function will set up all the necessary GAP (Generic Access Profile) parameters of
     *          the device. It also sets the permissions and appearance.
     */
    static void gap_params_init(void)
    {
        uint32_t                err_code;
        ble_gap_conn_params_t   gap_conn_params;
        ble_gap_conn_sec_mode_t sec_mode;
    
        BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode);
    
        err_code = sd_ble_gap_device_name_set(&sec_mode,
                                              (const uint8_t *) DEVICE_NAME,
                                              strlen(DEVICE_NAME));
        APP_ERROR_CHECK(err_code);
    
        sd_ble_gap_appearance_set(BLE_APPEARANCE_HID_KEYBOARD);
    
        memset(&gap_conn_params, 0, sizeof(gap_conn_params));
    
        gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL;
        gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL;
        gap_conn_params.slave_latency     = SLAVE_LATENCY;
        gap_conn_params.conn_sup_timeout  = CONN_SUP_TIMEOUT;
    
        err_code = sd_ble_gap_ppcp_set(&gap_conn_params);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling Queued Write Module errors.
     *
     * @details A pointer to this function will be passed to each service which may need to inform the
     *          application about an error.
     *
     * @param[in]   nrf_error   Error code containing information about what went wrong.
     */
    static void nrf_qwr_error_handler(uint32_t nrf_error)
    {
        APP_ERROR_HANDLER(nrf_error);
    }
    
    
    /**@brief Function for handling the data from the Nordic UART Service.
     *
     * @details This function will process the data received from the Nordic UART BLE Service and send
     *          it to the UART module.
     *
     * @param[in] p_evt       Nordic UART Service event.
     */
    /**@snippet [Handling the data received over BLE] */
    static void nus_data_handler(ble_nus_evt_t * p_evt)
    {
    
        if (p_evt->type == BLE_NUS_EVT_RX_DATA)
        {
            uint32_t err_code;
    
            NRF_LOG_DEBUG("Received data from BLE NUS. Writing data on UART.");
            NRF_LOG_HEXDUMP_DEBUG(p_evt->params.rx_data.p_data, p_evt->params.rx_data.length);
    
            for (uint32_t i = 0; i < p_evt->params.rx_data.length; i++)
            {
                do
                {
                    err_code = app_uart_put(p_evt->params.rx_data.p_data[i]);
                    if ((err_code != NRF_SUCCESS) && (err_code != NRF_ERROR_BUSY))
                    {
                        NRF_LOG_ERROR("Failed receiving NUS message. Error 0x%x. ", err_code);
                        APP_ERROR_CHECK(err_code);
                    }
                } while (err_code == NRF_ERROR_BUSY);
            }
            if (p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 1] == '\r')
            {
                while (app_uart_put('\n') == NRF_ERROR_BUSY);
            }
        }
    
    }
    /**@snippet [Handling the data received over BLE] */
    
    
    /**@brief Function for initializing services that will be used by the application.
     */
    static void services_init(void)
    {
        uint32_t           err_code;
        ble_nus_init_t     nus_init;
        nrf_ble_qwr_init_t qwr_init = {0};
    
        // Initialize Queued Write Module.
        qwr_init.error_handler = nrf_qwr_error_handler;
    
        err_code = nrf_ble_qwr_init(&m_qwr, &qwr_init);
        APP_ERROR_CHECK(err_code);
    
        // Initialize NUS.
        memset(&nus_init, 0, sizeof(nus_init));
    
        nus_init.data_handler = nus_data_handler;
    
        err_code = ble_nus_init(&m_nus, &nus_init);
        APP_ERROR_CHECK(err_code);
    }
    
    
    
    
    /**@brief Function for handling an event from the Connection Parameters Module.
     *
     * @details This function will be called for all events in the Connection Parameters Module
     *          which are passed to the application.
     *
     * @note All this function does is to disconnect. This could have been done by simply setting
     *       the disconnect_on_fail config parameter, but instead we use the event handler
     *       mechanism to demonstrate its use.
     *
     * @param[in] p_evt  Event received from the Connection Parameters Module.
     */
    static void on_conn_params_evt(ble_conn_params_evt_t * p_evt)
    {
        uint32_t err_code;
    
        if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED)
        {
            err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE);
            APP_ERROR_CHECK(err_code);
        }
    }
    
    
    /**@brief Function for handling errors from the Connection Parameters module.
     *
     * @param[in] nrf_error  Error code containing information about what went wrong.
     */
    static void conn_params_error_handler(uint32_t nrf_error)
    {
        APP_ERROR_HANDLER(nrf_error);
    }
    
    
    /**@brief Function for initializing the Connection Parameters module.
     */
    static void conn_params_init(void)
    {
        uint32_t               err_code;
        ble_conn_params_init_t cp_init;
    
        memset(&cp_init, 0, sizeof(cp_init));
    
        cp_init.p_conn_params                  = NULL;
        cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY;
        cp_init.next_conn_params_update_delay  = NEXT_CONN_PARAMS_UPDATE_DELAY;
        cp_init.max_conn_params_update_count   = MAX_CONN_PARAMS_UPDATE_COUNT;
        cp_init.start_on_notify_cccd_handle    = BLE_GATT_HANDLE_INVALID;
        cp_init.disconnect_on_fail             = false;
        cp_init.evt_handler                    = on_conn_params_evt;
        cp_init.error_handler                  = conn_params_error_handler;
    
        err_code = ble_conn_params_init(&cp_init);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for putting the chip into sleep mode.
     *
     * @note This function will not return.
     */
    static void sleep_mode_enter(void)
    {
        uint32_t err_code = bsp_indication_set(BSP_INDICATE_IDLE);
        APP_ERROR_CHECK(err_code);
    
        // Prepare wakeup buttons.
        err_code = bsp_btn_ble_sleep_mode_prepare();
        APP_ERROR_CHECK(err_code);
    
        // Go to system-off mode (this function will not return; wakeup will cause a reset).
        err_code = sd_power_system_off();
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling advertising events.
     *
     * @details This function will be called for advertising events which are passed to the application.
     *
     * @param[in] ble_adv_evt  Advertising event.
     */
    static void on_adv_evt(ble_adv_evt_t ble_adv_evt)
    {
        uint32_t err_code;
    
        switch (ble_adv_evt)
        {
            case BLE_ADV_EVT_FAST:
                err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING);
                APP_ERROR_CHECK(err_code);
                break;
            case BLE_ADV_EVT_IDLE:
                sleep_mode_enter();
                break;
            default:
                break;
        }
    }
    
    /**@brief Function for starting advertising.
     */
    static void advertising_start(void)
    {
        uint32_t err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST);
        APP_ERROR_CHECK(err_code);
    }
    
    /**@brief Function for handling BLE events.
     *
     * @param[in]   p_ble_evt   Bluetooth stack event.
     * @param[in]   p_context   Unused.
     */
    static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context)
    {
        uint32_t err_code;
    
        switch (p_ble_evt->header.evt_id)
        {
            case BLE_GAP_EVT_CONNECTED:
                NRF_LOG_INFO("Connected");
                err_code = bsp_indication_set(BSP_INDICATE_CONNECTED);
                APP_ERROR_CHECK(err_code);
                m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle;
                err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr, m_conn_handle);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GAP_EVT_DISCONNECTED:
                NRF_LOG_INFO("Disconnected");
                err_code = bsp_indication_set(BSP_INDICATE_CONNECTED);
                APP_ERROR_CHECK(err_code);
                // LED indication will be changed when advertising starts.
                m_conn_handle = BLE_CONN_HANDLE_INVALID;
                advertising_start();
                break;
    
            case BLE_GAP_EVT_PHY_UPDATE_REQUEST:
            {
                NRF_LOG_DEBUG("PHY update request.");
                ble_gap_phys_t const phys =
                {
                    .rx_phys = BLE_GAP_PHY_AUTO,
                    .tx_phys = BLE_GAP_PHY_AUTO,
                };
                err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys);
                APP_ERROR_CHECK(err_code);
            } break;
    
            case BLE_GAP_EVT_SEC_PARAMS_REQUEST:
                // Pairing not supported
                err_code = sd_ble_gap_sec_params_reply(m_conn_handle, BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GATTS_EVT_SYS_ATTR_MISSING:
                // No system attributes have been stored.
                err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0, 0);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GATTC_EVT_TIMEOUT:
                // Disconnect on GATT Client timeout event.
                err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle,
                                                 BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GATTS_EVT_TIMEOUT:
                // Disconnect on GATT Server timeout event.
                err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle,
                                                 BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
                APP_ERROR_CHECK(err_code);
                break;
    
            default:
                // No implementation needed.
                break;
        }
    }
    
    
    /**@brief Function for the SoftDevice initialization.
     *
     * @details This function initializes the SoftDevice and the BLE event interrupt.
     */
    static void ble_stack_init(void)
    {
        ret_code_t err_code;
    
        err_code = nrf_sdh_enable_request();
        APP_ERROR_CHECK(err_code);
    
        // Configure the BLE stack using the default settings.
        // Fetch the start address of the application RAM.
        uint32_t ram_start = 0;
        err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start);
        APP_ERROR_CHECK(err_code);
    
        // Enable BLE stack.
        err_code = nrf_sdh_ble_enable(&ram_start);
        APP_ERROR_CHECK(err_code);
    
        // Register a handler for BLE events.
        NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL);
    }
    
    
    /**@brief Function for handling events from the GATT library. */
    void gatt_evt_handler(nrf_ble_gatt_t * p_gatt, nrf_ble_gatt_evt_t const * p_evt)
    {
        if ((m_conn_handle == p_evt->conn_handle) && (p_evt->evt_id == NRF_BLE_GATT_EVT_ATT_MTU_UPDATED))
        {
            m_ble_nus_max_data_len = p_evt->params.att_mtu_effective - OPCODE_LENGTH - HANDLE_LENGTH;
            NRF_LOG_INFO("Data len is set to 0x%X(%d)", m_ble_nus_max_data_len, m_ble_nus_max_data_len);
        }
        NRF_LOG_DEBUG("ATT MTU exchange completed. central 0x%x peripheral 0x%x",
                      p_gatt->att_mtu_desired_central,
                      p_gatt->att_mtu_desired_periph);
    }
    
    
    /**@brief Function for initializing the GATT library. */
    void gatt_init(void)
    {
        ret_code_t err_code;
    
        err_code = nrf_ble_gatt_init(&m_gatt, gatt_evt_handler);
        APP_ERROR_CHECK(err_code);
    
        err_code = nrf_ble_gatt_att_mtu_periph_set(&m_gatt, NRF_SDH_BLE_GATT_MAX_MTU_SIZE);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling events from the BSP module.
     *
     * @param[in]   event   Event generated by button press.
     */
    void bsp_event_handler(bsp_event_t event)
    {
        uint32_t err_code;
        switch (event)
        {
            case BSP_EVENT_SLEEP:
                sleep_mode_enter();
                break;
    
            case BSP_EVENT_DISCONNECT:
                err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
                if (err_code != NRF_ERROR_INVALID_STATE)
                {
                    APP_ERROR_CHECK(err_code);
                }
                break;
    
            case BSP_EVENT_WHITELIST_OFF:
                if (m_conn_handle == BLE_CONN_HANDLE_INVALID)
                {
                    err_code = ble_advertising_restart_without_whitelist(&m_advertising);
                    if (err_code != NRF_ERROR_INVALID_STATE)
                    {
                        APP_ERROR_CHECK(err_code);
                    }
                }
                break;
    
            default:
                break;
        }
    }
    
    
    /**@brief   Function for handling app_uart events.
     *
     * @details This function will receive a single character from the app_uart module and append it to
     *          a string. The string will be be sent over BLE when the last character received was a
     *          'new line' '\n' (hex 0x0A) or if the string has reached the maximum data length.
     */
    /**@snippet [Handling the data received over UART] */
    void uart_event_handle(app_uart_evt_t * p_event)
    {
        static uint8_t data_array[10] = {0x70,0x5A,0x25,'\r','\n'};
        static uint8_t index= 6;
    
        //static uint8_t index = 0;
        uint32_t       err_code;
    
        uint16_t length = (uint16_t)index;
        uint32_t delaytime = 1000;
        ble_nus_data_send(&m_nus, data_array, &length, m_conn_handle);
        nrf_delay_ms(delaytime);
    }
    /**@snippet [Handling the data received over UART] */
    
    /**@brief  Function for initializing the UART module.
     */
    /**@snippet [UART Initialization] */
    static void uart_init(void)
    {
        uint32_t                     err_code;
        app_uart_comm_params_t const comm_params =
        {
            .rx_pin_no    = RX_PIN_NUMBER,
            .tx_pin_no    = TX_PIN_NUMBER,
            .rts_pin_no   = RTS_PIN_NUMBER,
            .cts_pin_no   = CTS_PIN_NUMBER,
            .flow_control = APP_UART_FLOW_CONTROL_DISABLED,
            .use_parity   = false,
    #if defined (UART_PRESENT)
            .baud_rate    = NRF_UART_BAUDRATE_115200
    #else
            .baud_rate    = NRF_UARTE_BAUDRATE_115200
    #endif
        };
    
        APP_UART_FIFO_INIT(&comm_params,
                           UART_RX_BUF_SIZE,
                           UART_TX_BUF_SIZE,
                           uart_event_handle,
                           APP_IRQ_PRIORITY_LOWEST,
                           err_code);
        APP_ERROR_CHECK(err_code);
    }
    /**@snippet [UART Initialization] */
    
    
    /**@brief Function for initializing the Advertising functionality.
     */
    static void advertising_init(void)
    {
        ret_code_t  err_code;
        ble_advertising_init_t init;
        memset(&init, 0, sizeof(init));
    
        uint8_t data[] = "SomeData!";
    
        ble_advdata_manuf_data_t manuf_data;
        manuf_data.company_identifier = 0x0059;
        manuf_data.data.p_data = data;
        manuf_data.data.size = sizeof(data);
        init.advdata.p_manuf_specific_data = &manuf_data;
    
        init.advdata.name_type          = BLE_ADVDATA_SHORT_NAME;
        init.advdata.short_name_len     = true;
        init.advdata.include_appearance = true;
        init.advdata.flags              = BLE_GAP_ADV_FLAGS_LE_ONLY_GENERAL_DISC_MODE;
        init.srdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]);
        init.srdata.uuids_complete.p_uuids  = m_adv_uuids;
        int8_t tx_power_level = -4;
        init.advdata.p_tx_power_level = &tx_power_level;
    
        ble_advdata_manuf_data_t manuf_data_response;
        uint8_t data_response[]="Many_bytes_of_data";
        manuf_data_response.company_identifier=0x0059;
        manuf_data_response.data.p_data=data_response;
        manuf_data_response.data.size=sizeof(data_response);
        init.srdata.name_type = BLE_ADVDATA_NO_NAME;
        init.srdata.p_manuf_specific_data=&manuf_data_response;
    
        init.config.ble_adv_fast_enabled  = true;
        init.config.ble_adv_fast_interval = APP_ADV_INTERVAL;
        init.config.ble_adv_fast_timeout  = APP_ADV_DURATION;
    
        init.evt_handler = on_adv_evt;
    
        err_code = ble_advertising_init(&m_advertising, &init);
        APP_ERROR_CHECK(err_code);
    
        ble_advertising_conn_cfg_tag_set(&m_advertising, APP_BLE_CONN_CFG_TAG);
    }
    
    
    /**@brief Function for initializing buttons and leds.
     *
     * @param[out] p_erase_bonds  Will be true if the clear bonding button was pressed to wake the application up.
     */
    static void buttons_leds_init(bool * p_erase_bonds)
    {
        bsp_event_t startup_event;
    
        uint32_t err_code = bsp_init(BSP_INIT_LEDS | BSP_INIT_BUTTONS, bsp_event_handler);
        APP_ERROR_CHECK(err_code);
    
        err_code = bsp_btn_ble_init(NULL, &startup_event);
        APP_ERROR_CHECK(err_code);
    
        *p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA);
    }
    
    
    /**@brief Function for initializing the nrf log module.
     */
    static void log_init(void)
    {
        ret_code_t err_code = NRF_LOG_INIT(NULL);
        APP_ERROR_CHECK(err_code);
    
        NRF_LOG_DEFAULT_BACKENDS_INIT();
    }
    
    
    /**@brief Function for initializing power management.
     */
    static void power_management_init(void)
    {
        ret_code_t err_code;
        err_code = nrf_pwr_mgmt_init();
        APP_ERROR_CHECK(err_code);
    }
    
    
    
    /**@brief Application main function.
     */
    void timer_handler(nrf_timer_event_t event_type, void * p_context)
    {
    
    }
    
    
    void saadc_sampling_event_init(void)
    {
        ret_code_t err_code;
    
        err_code = nrf_drv_ppi_init();
        APP_ERROR_CHECK(err_code);
    
        nrf_drv_timer_config_t timer_cfg = NRF_DRV_TIMER_DEFAULT_CONFIG;
        timer_cfg.bit_width = NRF_TIMER_BIT_WIDTH_32;
        err_code = nrf_drv_timer_init(&m_timer, &timer_cfg, timer_handler);
        APP_ERROR_CHECK(err_code);
    
        /* setup m_timer for compare event every 400ms */
        uint32_t ticks = nrf_drv_timer_ms_to_ticks(&m_timer, 400);
        nrf_drv_timer_extended_compare(&m_timer,
                                       NRF_TIMER_CC_CHANNEL2,
                                       ticks,
                                       NRF_TIMER_SHORT_COMPARE2_CLEAR_MASK,
                                       false);
        nrf_drv_timer_enable(&m_timer);
    
        uint32_t timer_compare_event_addr = nrf_drv_timer_compare_event_address_get(&m_timer,
                                                                                    NRF_TIMER_CC_CHANNEL2);
        uint32_t saadc_sample_task_addr   = nrf_drv_saadc_sample_task_get();
    
    
        /* setup ppi channel so that timer compare event is triggering sample task in SAADC */
        err_code = nrf_drv_ppi_channel_alloc(&m_ppi_channel);
        APP_ERROR_CHECK(err_code);
    
        err_code = nrf_drv_ppi_channel_assign(m_ppi_channel,
                                              timer_compare_event_addr,
                                              saadc_sample_task_addr);
        APP_ERROR_CHECK(err_code);
    }
    
    void saadc_sampling_event_enable(void)
    {
        ret_code_t err_code = nrf_drv_ppi_channel_enable(m_ppi_channel);
    
        APP_ERROR_CHECK(err_code);
    }
    
    
    void saadc_callback(nrf_drv_saadc_evt_t const * p_event)
    {
        if (p_event->type == NRF_DRV_SAADC_EVT_DONE)
        {
            ret_code_t err_code;
            nrf_saadc_value_t bat_result;
            uint16_t          batt_lvl_in_milli_volts;
            uint8_t           percentage_batt_lvl;
            char  temp[20];
            static uint8_t data_array[20];
            uint8_t temp2;
    
            err_code = nrf_drv_saadc_buffer_convert(p_event->data.done.p_buffer, sizeof(m_buffer_pool)/sizeof(nrf_saadc_value_t));
            APP_ERROR_CHECK(err_code);
    
            int i;
            NRF_LOG_INFO("ADC event number: %d", (int)m_adc_evt_counter);
    
            m_adc_evt_counter++;
    
            bat_result = p_event->data.done.p_buffer[BAT_CHANNEL];
    
            batt_lvl_in_milli_volts = ADC_RESULT_IN_MILLI_VOLTS(bat_result) +
                                      DIODE_FWD_VOLT_DROP_MILLIVOLTS;
            percentage_batt_lvl = battery_level_in_percent(batt_lvl_in_milli_volts);
    
            sprintf(temp, "%X %X %X %X", p_event->data.done.p_buffer[FLAME_CHANNEL], p_event->data.done.p_buffer[SOUND_CHANNEL], p_event->data.done.p_buffer[HUMID_CHANNEL], percentage_batt_lvl);
            printf("%s\n", temp);
       }
    }
    
    void saadc_init(void)
    {
        ret_code_t err_code;
    
        ch_config_flame.gain = NRF_SAADC_GAIN1;
        ch_config_sound.gain = NRF_SAADC_GAIN1;
        ch_config_humid.gain = NRF_SAADC_GAIN1;
        ch_config_bat.gain = NRF_SAADC_GAIN1_4;
    
    
        err_code = nrf_drv_saadc_init(NULL, saadc_callback);
        APP_ERROR_CHECK(err_code);
    
        err_code = nrf_drv_saadc_channel_init(FLAME_CHANNEL, &ch_config_flame);
        APP_ERROR_CHECK(err_code);
    
        err_code = nrf_drv_saadc_channel_init(SOUND_CHANNEL, &ch_config_sound);
        APP_ERROR_CHECK(err_code);
    
        err_code = nrf_drv_saadc_channel_init(HUMID_CHANNEL, &ch_config_humid);
        APP_ERROR_CHECK(err_code);
    
        err_code = nrf_drv_saadc_channel_init(BAT_CHANNEL, &ch_config_bat);
        APP_ERROR_CHECK(err_code);
    
        err_code = nrfx_saadc_buffer_convert(m_buffer_pool, sizeof(m_buffer_pool)/sizeof(nrf_saadc_value_t));
        APP_ERROR_CHECK(err_code);
    
        nrfx_saadc_sample();
    }
    
    
    
    
    
    static int32_t platform_read(void *handle, uint8_t reg, uint8_t *bufp, uint16_t len)
    {
      nrf_twi_sensor_reg_read(&m_nrf_twi_sensor, II_ADDR, reg, NULL, bufp, len);
      NRF_LOG_INFO("TWI event number: %d", (int)m_twi_evt_counter);
      m_twi_evt_counter++;
      return 0;
    }
    
    
    static int32_t platform_write(void *handle, uint8_t reg, uint8_t *bufp, uint16_t len)
    {
      nrf_twi_sensor_reg_write(&m_nrf_twi_sensor, II_ADDR, reg, bufp, len);  
      NRF_LOG_INFO("TWI event number: %d", (int)m_twi_evt_counter);
      m_twi_evt_counter++;
      return 0;
    }
    
    static void twi_init(void)
    {
        uint32_t err_code;
        dev_ctx.write_reg = platform_write;
        dev_ctx.read_reg = platform_read;
        dev_ctx.handle = NULL;
    
        const nrf_drv_twi_config_t ii_config = {
           .scl                = ARDUINO_SCL_PIN,
           .sda                = ARDUINO_SDA_PIN,
           .frequency          = NRF_DRV_TWI_FREQ_100K,
           .interrupt_priority = APP_IRQ_PRIORITY_LOWEST,
           .clear_bus_init     = false
        };
    
        err_code = nrf_twi_mngr_init(&m_nrf_twi_mngr, &ii_config);
        APP_ERROR_CHECK(err_code);
    
        err_code = nrf_twi_sensor_init(&m_nrf_twi_sensor);
        APP_ERROR_CHECK(err_code);
    }
    
    char* dto62(int decimal)
    {
    static char hexabindecimal[20] = {0, };
    static char minus_hexabindecimal[20];
    int position = 0;
    int minus_flag = 0;
        while (1)
            {
              if(decimal<0)
                {
                 minus_flag=1;
                 decimal=decimal*-1;
                }
                int mod = decimal % 62; 
                if (mod < 10)
                {
                   hexabindecimal[position] = 48 + mod;
                }
                else if(mod < 36)
                {
                   hexabindecimal[position] = 65 + (mod - 10);
                }
                else
                {
                   hexabindecimal[position] = 97 + (mod - 36);
                }
    
                decimal = decimal / 62;
    
                position++;
    
                if (decimal == 0)
                    break;
            }
    
      reverseString(hexabindecimal);
    
      if(minus_flag==1)
      {
        sprintf(minus_hexabindecimal,"-%s",hexabindecimal);
        return minus_hexabindecimal;
      }
      return hexabindecimal;
    }
    /*
    void iirun(void)
    {  
        memset(data_raw_acceleration[0].u8bit, 0x00, 3 * sizeof(int16_t));
        memset(data_raw_acceleration[1].u8bit, 0x00, 3 * sizeof(int16_t));
        memset(data_raw_acceleration[2].u8bit, 0x00, 3 * sizeof(int16_t));
    	  
        iis2dlpc_acceleration_raw_get(&dev_ctx, data_raw_acceleration[0].u8bit);
        iis2dlpc_acceleration_rawY_get(&dev_ctx, data_raw_acceleration[1].u8bit);
        iis2dlpc_acceleration_rawZ_get(&dev_ctx, data_raw_acceleration[2].u8bit);
    	  	  
        acceleration_mg[0] = iis2dlpc_from_fs16_lp1_to_mg(data_raw_acceleration[0].i16bit[0]);
        acceleration_mg[1] = iis2dlpc_from_fs16_lp1_to_mg(data_raw_acceleration[1].i16bit[0]);
        acceleration_mg[2] = iis2dlpc_from_fs16_lp1_to_mg(data_raw_acceleration[2].i16bit[0]);
        
    	current_value[0] = (int)(acceleration_mg[0]);
    	current_value[1] = (int)(acceleration_mg[1]);
    	current_value[2] = (int)(acceleration_mg[2]);
    
            strcpy(difference0,dto62(current_value[0]-previous_value[0]));
            strcpy(difference1,dto62(current_value[1]-previous_value[1]));
            strcpy(difference2,dto62(current_value[2]-previous_value[2]));
            sprintf(m_buffer, "%s %s %s", difference0, difference1, difference2);
            printf("%s\r\n",m_buffer);
      
      for(int i=0; i<3; i++)
      {
        previous_value[i] = current_value[i];
      }
    
    }
    */
    
    void timer_handler_II(void * p_context)
    {
    //    iirun();
      uint8_t reg_init;
    
      iis2dlpc_flag_data_ready_get(&dev_ctx, &reg_init);
      if(reg_init)
      {
        memset(data_raw_acceleration[0].u8bit, 0x00, 3 * sizeof(int16_t));
        memset(data_raw_acceleration[1].u8bit, 0x00, 3 * sizeof(int16_t));
        memset(data_raw_acceleration[2].u8bit, 0x00, 3 * sizeof(int16_t));
    	  
    //    iis2dlpc_read_reg(ctx, IIS2DLPC_OUT_X_L, buff, 6);
    //    iis2dlpc_read_reg(ctx, IIS2DLPC_OUT_Y_L, buff, 6);
    //    iis2dlpc_read_reg(ctx, IIS2DLPC_OUT_Z_L, buff, 6);
    
        iis2dlpc_acceleration_raw_get(&dev_ctx, data_raw_acceleration[0].u8bit);
        iis2dlpc_acceleration_rawY_get(&dev_ctx, data_raw_acceleration[1].u8bit);
        iis2dlpc_acceleration_rawZ_get(&dev_ctx, data_raw_acceleration[2].u8bit);
    	  	  
        acceleration_mg[0] = iis2dlpc_from_fs16_lp1_to_mg(data_raw_acceleration[0].i16bit[0]);
        acceleration_mg[1] = iis2dlpc_from_fs16_lp1_to_mg(data_raw_acceleration[1].i16bit[0]);
        acceleration_mg[2] = iis2dlpc_from_fs16_lp1_to_mg(data_raw_acceleration[2].i16bit[0]);
        
    	current_value[0] = (int)(acceleration_mg[0]);
    	current_value[1] = (int)(acceleration_mg[1]);
    	current_value[2] = (int)(acceleration_mg[2]);
    
            strcpy(difference0,dto62(current_value[0]-previous_value[0]));
            strcpy(difference1,dto62(current_value[1]-previous_value[1]));
            strcpy(difference2,dto62(current_value[2]-previous_value[2]));
            sprintf(m_buffer, "%s %s %s", difference0, difference1, difference2);
            printf("%s\r\n",m_buffer);
      }
      else
      {
      printf("can't read reg data\r\n");
      }
      for(int i=0; i<3; i++)
      {
        previous_value[i] = current_value[i];
      }
    }
    
    
    
     void platform_init(void)
    {
      ret_code_t err_code;
    
      iis2dlpc_device_id_get(&dev_ctx, &whoamI);
    //  do {
    //    if(whoamI != IIS2DLPC_ID){
    //      printf("\r\ndevice_id_get failed\r\n");
    //      }
    //    nrf_delay_ms(400);
    //    iis2dlpc_device_id_get(&dev_ctx, &whoamI);
    //  } while(whoamI != IIS2DLPC_ID);
      iis2dlpc_reset_set(&dev_ctx, PROPERTY_ENABLE);
      do {
        iis2dlpc_reset_get(&dev_ctx, &rst);
      } while (rst);
      iis2dlpc_block_data_update_set(&dev_ctx, PROPERTY_ENABLE);
      iis2dlpc_full_scale_set(&dev_ctx, IIS2DLPC_16g);
      iis2dlpc_filter_path_set(&dev_ctx, IIS2DLPC_LPF_ON_OUT);
      iis2dlpc_filter_bandwidth_set(&dev_ctx, IIS2DLPC_ODR_DIV_10);
      iis2dlpc_power_mode_set(&dev_ctx, IIS2DLPC_HIGH_PERFORMANCE_LOW_NOISE);
      iis2dlpc_data_rate_set(&dev_ctx, IIS2DLPC_XL_ODR_100Hz);
      printf("\r\nall settings are completed\r\n");
    
      err_code = app_timer_create(&m_timer_II, APP_TIMER_MODE_REPEATED, timer_handler_II);
      APP_ERROR_CHECK(err_code);
    
      err_code = app_timer_start(m_timer_II, APP_TIMER_TICKS(400), NULL);
      APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling the idle state (main loop).
     *
     * @details If there is no pending log operation, then sleep until next the next event occurs.
     */
    void idle_state_handle(void)
    {
        if (NRF_LOG_PROCESS() == false)
        {
            nrf_pwr_mgmt_run();
        }
    }
    
    
    int main(void)
    {
        bool erase_bonds;
    
        // Initialize.
        log_init();
        lfclk_config();
        timers_init();
        uart_init();
        twi_init();
        buttons_leds_init(&erase_bonds);
        power_management_init();
        ble_stack_init();
        gap_params_init();
        gatt_init();
    
    //    twi_sensor_init(); //*
        platform_init();
    
    //    advertising_init(); //*
        services_init();
        advertising_init();
        conn_params_init();
    //    peer_manger_init(); //*
        saadc_init();
        saadc_sampling_event_init();
        saadc_sampling_event_enable();    
       
        // Start execution.
        printf("\r\nUART started.\r\n");
        NRF_LOG_INFO("Debug logging for UART over RTT started.");
        advertising_start();
    
        // Enter main loop.
        for (;;)
        {
            idle_state_handle();
        }
    }
    
    
    /**
     * @}
     */
    

    and you can get reference of reg.c, reg.h in below url

    https://github.com/STMicroelectronics/STMems_Standard_C_drivers/blob/master/iis2dlpc_STdC/driver/iis2dlpc_reg.h

    I coded platform_read/write/init function with example of below url

    https://github.com/STMicroelectronics/STMems_Standard_C_drivers/blob/master/iis2dlpc_STdC/example/read_data_simple.c

Reply
  • I think I should show you all of my code

    /**
     * Copyright (c) 2014 - 2019, Nordic Semiconductor ASA
     *
     * All rights reserved.
     *
     * Redistribution and use in source and binary forms, with or without modification,
     * are permitted provided that the following conditions are met:
     *
     * 1. Redistributions of source code must retain the above copyright notice, this
     *    list of conditions and the following disclaimer.
     *
     * 2. Redistributions in binary form, except as embedded into a Nordic
     *    Semiconductor ASA integrated circuit in a product or a software update for
     *    such product, must reproduce the above copyright notice, this list of
     *    conditions and the following disclaimer in the documentation and/or other
     *    materials provided with the distribution.
     *
     * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
     *    contributors may be used to endorse or promote products derived from this
     *    software without specific prior written permission.
     *
     * 4. This software, with or without modification, must only be used with a
     *    Nordic Semiconductor ASA integrated circuit.
     *
     * 5. Any software provided in binary form under this license must not be reverse
     *    engineered, decompiled, modified and/or disassembled.
     *
     * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
     * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
     * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
     * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
     * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     *
     */
    /** @file
     *
     * @defgroup ble_sdk_uart_over_ble_main main.c
     * @{
     * @ingroup  ble_sdk_app_nus_eval
     * @brief    UART over BLE application main file.
     *
     * This file contains the source code for a sample application that uses the Nordic UART service.
     * This application uses the @ref srvlib_conn_params module.
     */
    
    #include <stdbool.h>
    #include <stdio.h>
    
    #include <stdint.h>
    #include <string.h>
    #include "nordic_common.h"
    #include "nrf.h"
    #include "ble_hci.h"
    #include "ble_advdata.h"
    #include "ble_advertising.h"
    #include "ble_conn_params.h"
    #include "nrf_sdh.h"
    
          #include "nrf_drv_twi.h"
          #include "nrf_drv_clock.h"
          #include "compiler_abstraction.h"
          #include "nrf_twi_sensor.h"
          #include "nrf_twi_mngr.h"
          #include "nrf_twi.h"
          #include "nrf_delay.h"
          #include "reg.h"
    
    #include "nrf_sdh_soc.h"
    #include "nrf_sdh_ble.h"
    #include "nrf_ble_gatt.h"
    #include "nrf_ble_qwr.h"
    #include "app_timer.h"
    #include "ble_nus.h"
    #include "app_uart.h"
    #include "app_util_platform.h"
    #include "bsp_btn_ble.h"
    #include "nrf_pwr_mgmt.h"
    
    #include "nrf_delay.h"
    
    #if defined (UART_PRESENT)
    #include "nrf_uart.h"
    #endif
    #if defined (UARTE_PRESENT)
    #include "nrf_uarte.h"
    #endif
    
    #include "nrf_log.h"
    #include "nrf_log_ctrl.h"
    #include "nrf_log_default_backends.h"
    #include "nrf_drv_saadc.h"
    #include "nrf_drv_ppi.h"
    #include "nrf_drv_timer.h"
    #include "boards.h"
    #include "app_error.h"
    #include "app_util.h"
    
    #define APP_BLE_CONN_CFG_TAG            1                                           /**< A tag identifying the SoftDevice BLE configuration. */
    
    #define DEVICE_NAME                     "Nordic_Blinky"                               /**< Name of device. Will be included in the advertising data. */
    #define NUS_SERVICE_UUID_TYPE           BLE_UUID_TYPE_VENDOR_BEGIN                  /**< UUID type for the Nordic UART Service (vendor specific). */
    
    #define APP_BLE_OBSERVER_PRIO           3                                           /**< Application's BLE observer priority. You shouldn't need to modify this value. */
    
    #define APP_ADV_INTERVAL                64                                          /**< The advertising interval (in units of 0.625 ms. This value corresponds to 40 ms). */
    
    #define APP_ADV_DURATION                BLE_GAP_ADV_TIMEOUT_GENERAL_UNLIMITED       /**< The advertising duration (180 seconds) in units of 10 milliseconds. */
    
    #define MIN_CONN_INTERVAL               MSEC_TO_UNITS(100, UNIT_1_25_MS)             /**< Minimum acceptable connection interval (20 ms), Connection interval uses 1.25 ms units. */
    #define MAX_CONN_INTERVAL               MSEC_TO_UNITS(200, UNIT_1_25_MS)             /**< Maximum acceptable connection interval (75 ms), Connection interval uses 1.25 ms units. */
    #define SLAVE_LATENCY                   0                                           /**< Slave latency. */
    #define CONN_SUP_TIMEOUT                MSEC_TO_UNITS(4000, UNIT_10_MS)             /**< Connection supervisory timeout (4 seconds), Supervision Timeout uses 10 ms units. */
    #define FIRST_CONN_PARAMS_UPDATE_DELAY  APP_TIMER_TICKS(20000)                       /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */
    #define NEXT_CONN_PARAMS_UPDATE_DELAY   APP_TIMER_TICKS(5000)                      /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */
    #define MAX_CONN_PARAMS_UPDATE_COUNT    3                                           /**< Number of attempts before giving up the connection parameter negotiation. */
    
    #define DEAD_BEEF                       0xDEADBEEF                                  /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */
    
    #define UART_TX_BUF_SIZE                256                                         /**< UART TX buffer size. */
    #define UART_RX_BUF_SIZE                256                                         /**< UART RX buffer size. */
    
          #define BYTES 6
          #define II_ADDR (0x33U >>1)
          #define MAX_PENDING_TRANSACTIONS    6
    
    
    #define FLAME_PIN NRF_SAADC_INPUT_AIN0
    #define SOUND_PIN NRF_SAADC_INPUT_AIN1
    #define HUMID_PIN NRF_SAADC_INPUT_AIN2
    #define BAT_PIN NRF_SAADC_INPUT_VDD
    
    #define FLAME_CHANNEL 0
    #define SOUND_CHANNEL 1
    #define HUMID_CHANNEL 2
    #define BAT_CHANNEL 3
    
    #define ADC_REF_VOLTAGE_IN_MILLIVOLTS   600                                     /**< Reference voltage (in milli volts) used by ADC while doing conversion. */
    #define ADC_PRE_SCALING_COMPENSATION    6                                       /**< The ADC is configured to use VDD with 1/3 prescaling as input. And hence the result of conversion is to be multiplied by 3 to get the actual value of the battery voltage.*/
    #define DIODE_FWD_VOLT_DROP_MILLIVOLTS  270                                     /**< Typical forward voltage drop of the diode . */
    #define ADC_RES_10BIT                   1024                                    /**< Maximum digital value for 10-bit ADC conversion. */
    
    #define ADC_RESULT_IN_MILLI_VOLTS(ADC_VALUE)\
            ((((ADC_VALUE) * ADC_REF_VOLTAGE_IN_MILLIVOLTS) / ADC_RES_10BIT) * ADC_PRE_SCALING_COMPENSATION)
    
    static nrf_saadc_channel_config_t ch_config_flame = NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(FLAME_PIN);
    static nrf_saadc_channel_config_t ch_config_sound = NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(SOUND_PIN);
    static nrf_saadc_channel_config_t ch_config_humid = NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(HUMID_PIN);
    static nrf_saadc_channel_config_t ch_config_bat = NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(BAT_PIN);
    
    static const nrf_drv_timer_t m_timer = NRF_DRV_TIMER_INSTANCE(2);
          APP_TIMER_DEF(m_timer_II);
          static const nrf_drv_twi_t m_twi = NRF_DRV_TWI_INSTANCE(0);
    
    static nrf_saadc_value_t m_buffer_pool[4];
    
    static nrf_saadc_value_t flame_raw, sound_raw, humid_raw, bat_raw;
    
    static nrf_ppi_channel_t     m_ppi_channel;
    static uint32_t              m_adc_evt_counter;
          static uint32_t              m_twi_evt_counter;
    
          static axis3bit16_t          data_raw_acceleration[3];
          static iis2dlpc_ctx_t        dev_ctx;
          static uint8_t               whoamI, rst;
          static float acceleration_mg[3];
          static int SIZE;
          static int current_value[3];
          static int previous_value[3] = {0};
          static char difference0[3]; // X
          static char difference1[3]; // Y
          static char difference2[3]; // Z
          static char m_buffer[9];
    
    BLE_NUS_DEF(m_nus, NRF_SDH_BLE_TOTAL_LINK_COUNT);                                   /**< BLE NUS service instance. */
    NRF_BLE_GATT_DEF(m_gatt);                                                           /**< GATT module instance. */
    NRF_BLE_QWR_DEF(m_qwr);                                                             /**< Context for the Queued Write module.*/
    BLE_ADVERTISING_DEF(m_advertising);  
          NRF_TWI_MNGR_DEF(m_nrf_twi_mngr, MAX_PENDING_TRANSACTIONS, 0);
          NRF_TWI_SENSOR_DEF(m_nrf_twi_sensor, &m_nrf_twi_mngr, NRF_TWI_SENSOR_SEND_BUF_SIZE);
                                                   /**< Advertising module instance. */
    
    static uint16_t   m_conn_handle          = BLE_CONN_HANDLE_INVALID;                 /**< Handle of the current connection. */
    static uint16_t   m_ble_nus_max_data_len = BLE_GATT_ATT_MTU_DEFAULT - 3;            /**< Maximum length of data (in bytes) that can be transmitted to the peer by the Nordic UART service module. */
    
    //static ble_uuid_t m_adv_uuids[]          =                                          /**< Universally unique service identifier. */
    //{
     //   {BLE_UUID_NUS_SERVICE, NUS_SERVICE_UUID_TYPE}
    //};
    
    static ble_uuid_t m_adv_uuids[] =                                               /**< Universally unique service identifiers. */
    {
        {BLE_UUID_DEVICE_INFORMATION_SERVICE, BLE_UUID_TYPE_BLE}
    };
    
    /**@brief Function for assert macro callback.
     *
     * @details This function will be called in case of an assert in the SoftDevice.
     *
     * @warning This handler is an example only and does not fit a final product. You need to analyse
     *          how your product is supposed to react in case of Assert.
     * @warning On assert from the SoftDevice, the system can only recover on reset.
     *
     * @param[in] line_num    Line number of the failing ASSERT call.
     * @param[in] p_file_name File name of the failing ASSERT call.
     */
    void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name)
    {
        app_error_handler(DEAD_BEEF, line_num, p_file_name);
    }
    
    /**@brief Function for initializing the timer module.
     */
    static void timers_init(void)
    {
        ret_code_t err_code = app_timer_init();
        APP_ERROR_CHECK(err_code);
    }
    
    static void lfclk_config(void)
    {
        uint32_t err_code;
    
        err_code = nrf_drv_clock_init();
        APP_ERROR_CHECK(err_code);
    
        nrf_drv_clock_lfclk_request(NULL);
    }
    /**@brief Function for the GAP initialization.
     *
     * @details This function will set up all the necessary GAP (Generic Access Profile) parameters of
     *          the device. It also sets the permissions and appearance.
     */
    static void gap_params_init(void)
    {
        uint32_t                err_code;
        ble_gap_conn_params_t   gap_conn_params;
        ble_gap_conn_sec_mode_t sec_mode;
    
        BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode);
    
        err_code = sd_ble_gap_device_name_set(&sec_mode,
                                              (const uint8_t *) DEVICE_NAME,
                                              strlen(DEVICE_NAME));
        APP_ERROR_CHECK(err_code);
    
        sd_ble_gap_appearance_set(BLE_APPEARANCE_HID_KEYBOARD);
    
        memset(&gap_conn_params, 0, sizeof(gap_conn_params));
    
        gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL;
        gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL;
        gap_conn_params.slave_latency     = SLAVE_LATENCY;
        gap_conn_params.conn_sup_timeout  = CONN_SUP_TIMEOUT;
    
        err_code = sd_ble_gap_ppcp_set(&gap_conn_params);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling Queued Write Module errors.
     *
     * @details A pointer to this function will be passed to each service which may need to inform the
     *          application about an error.
     *
     * @param[in]   nrf_error   Error code containing information about what went wrong.
     */
    static void nrf_qwr_error_handler(uint32_t nrf_error)
    {
        APP_ERROR_HANDLER(nrf_error);
    }
    
    
    /**@brief Function for handling the data from the Nordic UART Service.
     *
     * @details This function will process the data received from the Nordic UART BLE Service and send
     *          it to the UART module.
     *
     * @param[in] p_evt       Nordic UART Service event.
     */
    /**@snippet [Handling the data received over BLE] */
    static void nus_data_handler(ble_nus_evt_t * p_evt)
    {
    
        if (p_evt->type == BLE_NUS_EVT_RX_DATA)
        {
            uint32_t err_code;
    
            NRF_LOG_DEBUG("Received data from BLE NUS. Writing data on UART.");
            NRF_LOG_HEXDUMP_DEBUG(p_evt->params.rx_data.p_data, p_evt->params.rx_data.length);
    
            for (uint32_t i = 0; i < p_evt->params.rx_data.length; i++)
            {
                do
                {
                    err_code = app_uart_put(p_evt->params.rx_data.p_data[i]);
                    if ((err_code != NRF_SUCCESS) && (err_code != NRF_ERROR_BUSY))
                    {
                        NRF_LOG_ERROR("Failed receiving NUS message. Error 0x%x. ", err_code);
                        APP_ERROR_CHECK(err_code);
                    }
                } while (err_code == NRF_ERROR_BUSY);
            }
            if (p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 1] == '\r')
            {
                while (app_uart_put('\n') == NRF_ERROR_BUSY);
            }
        }
    
    }
    /**@snippet [Handling the data received over BLE] */
    
    
    /**@brief Function for initializing services that will be used by the application.
     */
    static void services_init(void)
    {
        uint32_t           err_code;
        ble_nus_init_t     nus_init;
        nrf_ble_qwr_init_t qwr_init = {0};
    
        // Initialize Queued Write Module.
        qwr_init.error_handler = nrf_qwr_error_handler;
    
        err_code = nrf_ble_qwr_init(&m_qwr, &qwr_init);
        APP_ERROR_CHECK(err_code);
    
        // Initialize NUS.
        memset(&nus_init, 0, sizeof(nus_init));
    
        nus_init.data_handler = nus_data_handler;
    
        err_code = ble_nus_init(&m_nus, &nus_init);
        APP_ERROR_CHECK(err_code);
    }
    
    
    
    
    /**@brief Function for handling an event from the Connection Parameters Module.
     *
     * @details This function will be called for all events in the Connection Parameters Module
     *          which are passed to the application.
     *
     * @note All this function does is to disconnect. This could have been done by simply setting
     *       the disconnect_on_fail config parameter, but instead we use the event handler
     *       mechanism to demonstrate its use.
     *
     * @param[in] p_evt  Event received from the Connection Parameters Module.
     */
    static void on_conn_params_evt(ble_conn_params_evt_t * p_evt)
    {
        uint32_t err_code;
    
        if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED)
        {
            err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE);
            APP_ERROR_CHECK(err_code);
        }
    }
    
    
    /**@brief Function for handling errors from the Connection Parameters module.
     *
     * @param[in] nrf_error  Error code containing information about what went wrong.
     */
    static void conn_params_error_handler(uint32_t nrf_error)
    {
        APP_ERROR_HANDLER(nrf_error);
    }
    
    
    /**@brief Function for initializing the Connection Parameters module.
     */
    static void conn_params_init(void)
    {
        uint32_t               err_code;
        ble_conn_params_init_t cp_init;
    
        memset(&cp_init, 0, sizeof(cp_init));
    
        cp_init.p_conn_params                  = NULL;
        cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY;
        cp_init.next_conn_params_update_delay  = NEXT_CONN_PARAMS_UPDATE_DELAY;
        cp_init.max_conn_params_update_count   = MAX_CONN_PARAMS_UPDATE_COUNT;
        cp_init.start_on_notify_cccd_handle    = BLE_GATT_HANDLE_INVALID;
        cp_init.disconnect_on_fail             = false;
        cp_init.evt_handler                    = on_conn_params_evt;
        cp_init.error_handler                  = conn_params_error_handler;
    
        err_code = ble_conn_params_init(&cp_init);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for putting the chip into sleep mode.
     *
     * @note This function will not return.
     */
    static void sleep_mode_enter(void)
    {
        uint32_t err_code = bsp_indication_set(BSP_INDICATE_IDLE);
        APP_ERROR_CHECK(err_code);
    
        // Prepare wakeup buttons.
        err_code = bsp_btn_ble_sleep_mode_prepare();
        APP_ERROR_CHECK(err_code);
    
        // Go to system-off mode (this function will not return; wakeup will cause a reset).
        err_code = sd_power_system_off();
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling advertising events.
     *
     * @details This function will be called for advertising events which are passed to the application.
     *
     * @param[in] ble_adv_evt  Advertising event.
     */
    static void on_adv_evt(ble_adv_evt_t ble_adv_evt)
    {
        uint32_t err_code;
    
        switch (ble_adv_evt)
        {
            case BLE_ADV_EVT_FAST:
                err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING);
                APP_ERROR_CHECK(err_code);
                break;
            case BLE_ADV_EVT_IDLE:
                sleep_mode_enter();
                break;
            default:
                break;
        }
    }
    
    /**@brief Function for starting advertising.
     */
    static void advertising_start(void)
    {
        uint32_t err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST);
        APP_ERROR_CHECK(err_code);
    }
    
    /**@brief Function for handling BLE events.
     *
     * @param[in]   p_ble_evt   Bluetooth stack event.
     * @param[in]   p_context   Unused.
     */
    static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context)
    {
        uint32_t err_code;
    
        switch (p_ble_evt->header.evt_id)
        {
            case BLE_GAP_EVT_CONNECTED:
                NRF_LOG_INFO("Connected");
                err_code = bsp_indication_set(BSP_INDICATE_CONNECTED);
                APP_ERROR_CHECK(err_code);
                m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle;
                err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr, m_conn_handle);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GAP_EVT_DISCONNECTED:
                NRF_LOG_INFO("Disconnected");
                err_code = bsp_indication_set(BSP_INDICATE_CONNECTED);
                APP_ERROR_CHECK(err_code);
                // LED indication will be changed when advertising starts.
                m_conn_handle = BLE_CONN_HANDLE_INVALID;
                advertising_start();
                break;
    
            case BLE_GAP_EVT_PHY_UPDATE_REQUEST:
            {
                NRF_LOG_DEBUG("PHY update request.");
                ble_gap_phys_t const phys =
                {
                    .rx_phys = BLE_GAP_PHY_AUTO,
                    .tx_phys = BLE_GAP_PHY_AUTO,
                };
                err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys);
                APP_ERROR_CHECK(err_code);
            } break;
    
            case BLE_GAP_EVT_SEC_PARAMS_REQUEST:
                // Pairing not supported
                err_code = sd_ble_gap_sec_params_reply(m_conn_handle, BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GATTS_EVT_SYS_ATTR_MISSING:
                // No system attributes have been stored.
                err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0, 0);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GATTC_EVT_TIMEOUT:
                // Disconnect on GATT Client timeout event.
                err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle,
                                                 BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GATTS_EVT_TIMEOUT:
                // Disconnect on GATT Server timeout event.
                err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle,
                                                 BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
                APP_ERROR_CHECK(err_code);
                break;
    
            default:
                // No implementation needed.
                break;
        }
    }
    
    
    /**@brief Function for the SoftDevice initialization.
     *
     * @details This function initializes the SoftDevice and the BLE event interrupt.
     */
    static void ble_stack_init(void)
    {
        ret_code_t err_code;
    
        err_code = nrf_sdh_enable_request();
        APP_ERROR_CHECK(err_code);
    
        // Configure the BLE stack using the default settings.
        // Fetch the start address of the application RAM.
        uint32_t ram_start = 0;
        err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start);
        APP_ERROR_CHECK(err_code);
    
        // Enable BLE stack.
        err_code = nrf_sdh_ble_enable(&ram_start);
        APP_ERROR_CHECK(err_code);
    
        // Register a handler for BLE events.
        NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL);
    }
    
    
    /**@brief Function for handling events from the GATT library. */
    void gatt_evt_handler(nrf_ble_gatt_t * p_gatt, nrf_ble_gatt_evt_t const * p_evt)
    {
        if ((m_conn_handle == p_evt->conn_handle) && (p_evt->evt_id == NRF_BLE_GATT_EVT_ATT_MTU_UPDATED))
        {
            m_ble_nus_max_data_len = p_evt->params.att_mtu_effective - OPCODE_LENGTH - HANDLE_LENGTH;
            NRF_LOG_INFO("Data len is set to 0x%X(%d)", m_ble_nus_max_data_len, m_ble_nus_max_data_len);
        }
        NRF_LOG_DEBUG("ATT MTU exchange completed. central 0x%x peripheral 0x%x",
                      p_gatt->att_mtu_desired_central,
                      p_gatt->att_mtu_desired_periph);
    }
    
    
    /**@brief Function for initializing the GATT library. */
    void gatt_init(void)
    {
        ret_code_t err_code;
    
        err_code = nrf_ble_gatt_init(&m_gatt, gatt_evt_handler);
        APP_ERROR_CHECK(err_code);
    
        err_code = nrf_ble_gatt_att_mtu_periph_set(&m_gatt, NRF_SDH_BLE_GATT_MAX_MTU_SIZE);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling events from the BSP module.
     *
     * @param[in]   event   Event generated by button press.
     */
    void bsp_event_handler(bsp_event_t event)
    {
        uint32_t err_code;
        switch (event)
        {
            case BSP_EVENT_SLEEP:
                sleep_mode_enter();
                break;
    
            case BSP_EVENT_DISCONNECT:
                err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
                if (err_code != NRF_ERROR_INVALID_STATE)
                {
                    APP_ERROR_CHECK(err_code);
                }
                break;
    
            case BSP_EVENT_WHITELIST_OFF:
                if (m_conn_handle == BLE_CONN_HANDLE_INVALID)
                {
                    err_code = ble_advertising_restart_without_whitelist(&m_advertising);
                    if (err_code != NRF_ERROR_INVALID_STATE)
                    {
                        APP_ERROR_CHECK(err_code);
                    }
                }
                break;
    
            default:
                break;
        }
    }
    
    
    /**@brief   Function for handling app_uart events.
     *
     * @details This function will receive a single character from the app_uart module and append it to
     *          a string. The string will be be sent over BLE when the last character received was a
     *          'new line' '\n' (hex 0x0A) or if the string has reached the maximum data length.
     */
    /**@snippet [Handling the data received over UART] */
    void uart_event_handle(app_uart_evt_t * p_event)
    {
        static uint8_t data_array[10] = {0x70,0x5A,0x25,'\r','\n'};
        static uint8_t index= 6;
    
        //static uint8_t index = 0;
        uint32_t       err_code;
    
        uint16_t length = (uint16_t)index;
        uint32_t delaytime = 1000;
        ble_nus_data_send(&m_nus, data_array, &length, m_conn_handle);
        nrf_delay_ms(delaytime);
    }
    /**@snippet [Handling the data received over UART] */
    
    /**@brief  Function for initializing the UART module.
     */
    /**@snippet [UART Initialization] */
    static void uart_init(void)
    {
        uint32_t                     err_code;
        app_uart_comm_params_t const comm_params =
        {
            .rx_pin_no    = RX_PIN_NUMBER,
            .tx_pin_no    = TX_PIN_NUMBER,
            .rts_pin_no   = RTS_PIN_NUMBER,
            .cts_pin_no   = CTS_PIN_NUMBER,
            .flow_control = APP_UART_FLOW_CONTROL_DISABLED,
            .use_parity   = false,
    #if defined (UART_PRESENT)
            .baud_rate    = NRF_UART_BAUDRATE_115200
    #else
            .baud_rate    = NRF_UARTE_BAUDRATE_115200
    #endif
        };
    
        APP_UART_FIFO_INIT(&comm_params,
                           UART_RX_BUF_SIZE,
                           UART_TX_BUF_SIZE,
                           uart_event_handle,
                           APP_IRQ_PRIORITY_LOWEST,
                           err_code);
        APP_ERROR_CHECK(err_code);
    }
    /**@snippet [UART Initialization] */
    
    
    /**@brief Function for initializing the Advertising functionality.
     */
    static void advertising_init(void)
    {
        ret_code_t  err_code;
        ble_advertising_init_t init;
        memset(&init, 0, sizeof(init));
    
        uint8_t data[] = "SomeData!";
    
        ble_advdata_manuf_data_t manuf_data;
        manuf_data.company_identifier = 0x0059;
        manuf_data.data.p_data = data;
        manuf_data.data.size = sizeof(data);
        init.advdata.p_manuf_specific_data = &manuf_data;
    
        init.advdata.name_type          = BLE_ADVDATA_SHORT_NAME;
        init.advdata.short_name_len     = true;
        init.advdata.include_appearance = true;
        init.advdata.flags              = BLE_GAP_ADV_FLAGS_LE_ONLY_GENERAL_DISC_MODE;
        init.srdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]);
        init.srdata.uuids_complete.p_uuids  = m_adv_uuids;
        int8_t tx_power_level = -4;
        init.advdata.p_tx_power_level = &tx_power_level;
    
        ble_advdata_manuf_data_t manuf_data_response;
        uint8_t data_response[]="Many_bytes_of_data";
        manuf_data_response.company_identifier=0x0059;
        manuf_data_response.data.p_data=data_response;
        manuf_data_response.data.size=sizeof(data_response);
        init.srdata.name_type = BLE_ADVDATA_NO_NAME;
        init.srdata.p_manuf_specific_data=&manuf_data_response;
    
        init.config.ble_adv_fast_enabled  = true;
        init.config.ble_adv_fast_interval = APP_ADV_INTERVAL;
        init.config.ble_adv_fast_timeout  = APP_ADV_DURATION;
    
        init.evt_handler = on_adv_evt;
    
        err_code = ble_advertising_init(&m_advertising, &init);
        APP_ERROR_CHECK(err_code);
    
        ble_advertising_conn_cfg_tag_set(&m_advertising, APP_BLE_CONN_CFG_TAG);
    }
    
    
    /**@brief Function for initializing buttons and leds.
     *
     * @param[out] p_erase_bonds  Will be true if the clear bonding button was pressed to wake the application up.
     */
    static void buttons_leds_init(bool * p_erase_bonds)
    {
        bsp_event_t startup_event;
    
        uint32_t err_code = bsp_init(BSP_INIT_LEDS | BSP_INIT_BUTTONS, bsp_event_handler);
        APP_ERROR_CHECK(err_code);
    
        err_code = bsp_btn_ble_init(NULL, &startup_event);
        APP_ERROR_CHECK(err_code);
    
        *p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA);
    }
    
    
    /**@brief Function for initializing the nrf log module.
     */
    static void log_init(void)
    {
        ret_code_t err_code = NRF_LOG_INIT(NULL);
        APP_ERROR_CHECK(err_code);
    
        NRF_LOG_DEFAULT_BACKENDS_INIT();
    }
    
    
    /**@brief Function for initializing power management.
     */
    static void power_management_init(void)
    {
        ret_code_t err_code;
        err_code = nrf_pwr_mgmt_init();
        APP_ERROR_CHECK(err_code);
    }
    
    
    
    /**@brief Application main function.
     */
    void timer_handler(nrf_timer_event_t event_type, void * p_context)
    {
    
    }
    
    
    void saadc_sampling_event_init(void)
    {
        ret_code_t err_code;
    
        err_code = nrf_drv_ppi_init();
        APP_ERROR_CHECK(err_code);
    
        nrf_drv_timer_config_t timer_cfg = NRF_DRV_TIMER_DEFAULT_CONFIG;
        timer_cfg.bit_width = NRF_TIMER_BIT_WIDTH_32;
        err_code = nrf_drv_timer_init(&m_timer, &timer_cfg, timer_handler);
        APP_ERROR_CHECK(err_code);
    
        /* setup m_timer for compare event every 400ms */
        uint32_t ticks = nrf_drv_timer_ms_to_ticks(&m_timer, 400);
        nrf_drv_timer_extended_compare(&m_timer,
                                       NRF_TIMER_CC_CHANNEL2,
                                       ticks,
                                       NRF_TIMER_SHORT_COMPARE2_CLEAR_MASK,
                                       false);
        nrf_drv_timer_enable(&m_timer);
    
        uint32_t timer_compare_event_addr = nrf_drv_timer_compare_event_address_get(&m_timer,
                                                                                    NRF_TIMER_CC_CHANNEL2);
        uint32_t saadc_sample_task_addr   = nrf_drv_saadc_sample_task_get();
    
    
        /* setup ppi channel so that timer compare event is triggering sample task in SAADC */
        err_code = nrf_drv_ppi_channel_alloc(&m_ppi_channel);
        APP_ERROR_CHECK(err_code);
    
        err_code = nrf_drv_ppi_channel_assign(m_ppi_channel,
                                              timer_compare_event_addr,
                                              saadc_sample_task_addr);
        APP_ERROR_CHECK(err_code);
    }
    
    void saadc_sampling_event_enable(void)
    {
        ret_code_t err_code = nrf_drv_ppi_channel_enable(m_ppi_channel);
    
        APP_ERROR_CHECK(err_code);
    }
    
    
    void saadc_callback(nrf_drv_saadc_evt_t const * p_event)
    {
        if (p_event->type == NRF_DRV_SAADC_EVT_DONE)
        {
            ret_code_t err_code;
            nrf_saadc_value_t bat_result;
            uint16_t          batt_lvl_in_milli_volts;
            uint8_t           percentage_batt_lvl;
            char  temp[20];
            static uint8_t data_array[20];
            uint8_t temp2;
    
            err_code = nrf_drv_saadc_buffer_convert(p_event->data.done.p_buffer, sizeof(m_buffer_pool)/sizeof(nrf_saadc_value_t));
            APP_ERROR_CHECK(err_code);
    
            int i;
            NRF_LOG_INFO("ADC event number: %d", (int)m_adc_evt_counter);
    
            m_adc_evt_counter++;
    
            bat_result = p_event->data.done.p_buffer[BAT_CHANNEL];
    
            batt_lvl_in_milli_volts = ADC_RESULT_IN_MILLI_VOLTS(bat_result) +
                                      DIODE_FWD_VOLT_DROP_MILLIVOLTS;
            percentage_batt_lvl = battery_level_in_percent(batt_lvl_in_milli_volts);
    
            sprintf(temp, "%X %X %X %X", p_event->data.done.p_buffer[FLAME_CHANNEL], p_event->data.done.p_buffer[SOUND_CHANNEL], p_event->data.done.p_buffer[HUMID_CHANNEL], percentage_batt_lvl);
            printf("%s\n", temp);
       }
    }
    
    void saadc_init(void)
    {
        ret_code_t err_code;
    
        ch_config_flame.gain = NRF_SAADC_GAIN1;
        ch_config_sound.gain = NRF_SAADC_GAIN1;
        ch_config_humid.gain = NRF_SAADC_GAIN1;
        ch_config_bat.gain = NRF_SAADC_GAIN1_4;
    
    
        err_code = nrf_drv_saadc_init(NULL, saadc_callback);
        APP_ERROR_CHECK(err_code);
    
        err_code = nrf_drv_saadc_channel_init(FLAME_CHANNEL, &ch_config_flame);
        APP_ERROR_CHECK(err_code);
    
        err_code = nrf_drv_saadc_channel_init(SOUND_CHANNEL, &ch_config_sound);
        APP_ERROR_CHECK(err_code);
    
        err_code = nrf_drv_saadc_channel_init(HUMID_CHANNEL, &ch_config_humid);
        APP_ERROR_CHECK(err_code);
    
        err_code = nrf_drv_saadc_channel_init(BAT_CHANNEL, &ch_config_bat);
        APP_ERROR_CHECK(err_code);
    
        err_code = nrfx_saadc_buffer_convert(m_buffer_pool, sizeof(m_buffer_pool)/sizeof(nrf_saadc_value_t));
        APP_ERROR_CHECK(err_code);
    
        nrfx_saadc_sample();
    }
    
    
    
    
    
    static int32_t platform_read(void *handle, uint8_t reg, uint8_t *bufp, uint16_t len)
    {
      nrf_twi_sensor_reg_read(&m_nrf_twi_sensor, II_ADDR, reg, NULL, bufp, len);
      NRF_LOG_INFO("TWI event number: %d", (int)m_twi_evt_counter);
      m_twi_evt_counter++;
      return 0;
    }
    
    
    static int32_t platform_write(void *handle, uint8_t reg, uint8_t *bufp, uint16_t len)
    {
      nrf_twi_sensor_reg_write(&m_nrf_twi_sensor, II_ADDR, reg, bufp, len);  
      NRF_LOG_INFO("TWI event number: %d", (int)m_twi_evt_counter);
      m_twi_evt_counter++;
      return 0;
    }
    
    static void twi_init(void)
    {
        uint32_t err_code;
        dev_ctx.write_reg = platform_write;
        dev_ctx.read_reg = platform_read;
        dev_ctx.handle = NULL;
    
        const nrf_drv_twi_config_t ii_config = {
           .scl                = ARDUINO_SCL_PIN,
           .sda                = ARDUINO_SDA_PIN,
           .frequency          = NRF_DRV_TWI_FREQ_100K,
           .interrupt_priority = APP_IRQ_PRIORITY_LOWEST,
           .clear_bus_init     = false
        };
    
        err_code = nrf_twi_mngr_init(&m_nrf_twi_mngr, &ii_config);
        APP_ERROR_CHECK(err_code);
    
        err_code = nrf_twi_sensor_init(&m_nrf_twi_sensor);
        APP_ERROR_CHECK(err_code);
    }
    
    char* dto62(int decimal)
    {
    static char hexabindecimal[20] = {0, };
    static char minus_hexabindecimal[20];
    int position = 0;
    int minus_flag = 0;
        while (1)
            {
              if(decimal<0)
                {
                 minus_flag=1;
                 decimal=decimal*-1;
                }
                int mod = decimal % 62; 
                if (mod < 10)
                {
                   hexabindecimal[position] = 48 + mod;
                }
                else if(mod < 36)
                {
                   hexabindecimal[position] = 65 + (mod - 10);
                }
                else
                {
                   hexabindecimal[position] = 97 + (mod - 36);
                }
    
                decimal = decimal / 62;
    
                position++;
    
                if (decimal == 0)
                    break;
            }
    
      reverseString(hexabindecimal);
    
      if(minus_flag==1)
      {
        sprintf(minus_hexabindecimal,"-%s",hexabindecimal);
        return minus_hexabindecimal;
      }
      return hexabindecimal;
    }
    /*
    void iirun(void)
    {  
        memset(data_raw_acceleration[0].u8bit, 0x00, 3 * sizeof(int16_t));
        memset(data_raw_acceleration[1].u8bit, 0x00, 3 * sizeof(int16_t));
        memset(data_raw_acceleration[2].u8bit, 0x00, 3 * sizeof(int16_t));
    	  
        iis2dlpc_acceleration_raw_get(&dev_ctx, data_raw_acceleration[0].u8bit);
        iis2dlpc_acceleration_rawY_get(&dev_ctx, data_raw_acceleration[1].u8bit);
        iis2dlpc_acceleration_rawZ_get(&dev_ctx, data_raw_acceleration[2].u8bit);
    	  	  
        acceleration_mg[0] = iis2dlpc_from_fs16_lp1_to_mg(data_raw_acceleration[0].i16bit[0]);
        acceleration_mg[1] = iis2dlpc_from_fs16_lp1_to_mg(data_raw_acceleration[1].i16bit[0]);
        acceleration_mg[2] = iis2dlpc_from_fs16_lp1_to_mg(data_raw_acceleration[2].i16bit[0]);
        
    	current_value[0] = (int)(acceleration_mg[0]);
    	current_value[1] = (int)(acceleration_mg[1]);
    	current_value[2] = (int)(acceleration_mg[2]);
    
            strcpy(difference0,dto62(current_value[0]-previous_value[0]));
            strcpy(difference1,dto62(current_value[1]-previous_value[1]));
            strcpy(difference2,dto62(current_value[2]-previous_value[2]));
            sprintf(m_buffer, "%s %s %s", difference0, difference1, difference2);
            printf("%s\r\n",m_buffer);
      
      for(int i=0; i<3; i++)
      {
        previous_value[i] = current_value[i];
      }
    
    }
    */
    
    void timer_handler_II(void * p_context)
    {
    //    iirun();
      uint8_t reg_init;
    
      iis2dlpc_flag_data_ready_get(&dev_ctx, &reg_init);
      if(reg_init)
      {
        memset(data_raw_acceleration[0].u8bit, 0x00, 3 * sizeof(int16_t));
        memset(data_raw_acceleration[1].u8bit, 0x00, 3 * sizeof(int16_t));
        memset(data_raw_acceleration[2].u8bit, 0x00, 3 * sizeof(int16_t));
    	  
    //    iis2dlpc_read_reg(ctx, IIS2DLPC_OUT_X_L, buff, 6);
    //    iis2dlpc_read_reg(ctx, IIS2DLPC_OUT_Y_L, buff, 6);
    //    iis2dlpc_read_reg(ctx, IIS2DLPC_OUT_Z_L, buff, 6);
    
        iis2dlpc_acceleration_raw_get(&dev_ctx, data_raw_acceleration[0].u8bit);
        iis2dlpc_acceleration_rawY_get(&dev_ctx, data_raw_acceleration[1].u8bit);
        iis2dlpc_acceleration_rawZ_get(&dev_ctx, data_raw_acceleration[2].u8bit);
    	  	  
        acceleration_mg[0] = iis2dlpc_from_fs16_lp1_to_mg(data_raw_acceleration[0].i16bit[0]);
        acceleration_mg[1] = iis2dlpc_from_fs16_lp1_to_mg(data_raw_acceleration[1].i16bit[0]);
        acceleration_mg[2] = iis2dlpc_from_fs16_lp1_to_mg(data_raw_acceleration[2].i16bit[0]);
        
    	current_value[0] = (int)(acceleration_mg[0]);
    	current_value[1] = (int)(acceleration_mg[1]);
    	current_value[2] = (int)(acceleration_mg[2]);
    
            strcpy(difference0,dto62(current_value[0]-previous_value[0]));
            strcpy(difference1,dto62(current_value[1]-previous_value[1]));
            strcpy(difference2,dto62(current_value[2]-previous_value[2]));
            sprintf(m_buffer, "%s %s %s", difference0, difference1, difference2);
            printf("%s\r\n",m_buffer);
      }
      else
      {
      printf("can't read reg data\r\n");
      }
      for(int i=0; i<3; i++)
      {
        previous_value[i] = current_value[i];
      }
    }
    
    
    
     void platform_init(void)
    {
      ret_code_t err_code;
    
      iis2dlpc_device_id_get(&dev_ctx, &whoamI);
    //  do {
    //    if(whoamI != IIS2DLPC_ID){
    //      printf("\r\ndevice_id_get failed\r\n");
    //      }
    //    nrf_delay_ms(400);
    //    iis2dlpc_device_id_get(&dev_ctx, &whoamI);
    //  } while(whoamI != IIS2DLPC_ID);
      iis2dlpc_reset_set(&dev_ctx, PROPERTY_ENABLE);
      do {
        iis2dlpc_reset_get(&dev_ctx, &rst);
      } while (rst);
      iis2dlpc_block_data_update_set(&dev_ctx, PROPERTY_ENABLE);
      iis2dlpc_full_scale_set(&dev_ctx, IIS2DLPC_16g);
      iis2dlpc_filter_path_set(&dev_ctx, IIS2DLPC_LPF_ON_OUT);
      iis2dlpc_filter_bandwidth_set(&dev_ctx, IIS2DLPC_ODR_DIV_10);
      iis2dlpc_power_mode_set(&dev_ctx, IIS2DLPC_HIGH_PERFORMANCE_LOW_NOISE);
      iis2dlpc_data_rate_set(&dev_ctx, IIS2DLPC_XL_ODR_100Hz);
      printf("\r\nall settings are completed\r\n");
    
      err_code = app_timer_create(&m_timer_II, APP_TIMER_MODE_REPEATED, timer_handler_II);
      APP_ERROR_CHECK(err_code);
    
      err_code = app_timer_start(m_timer_II, APP_TIMER_TICKS(400), NULL);
      APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling the idle state (main loop).
     *
     * @details If there is no pending log operation, then sleep until next the next event occurs.
     */
    void idle_state_handle(void)
    {
        if (NRF_LOG_PROCESS() == false)
        {
            nrf_pwr_mgmt_run();
        }
    }
    
    
    int main(void)
    {
        bool erase_bonds;
    
        // Initialize.
        log_init();
        lfclk_config();
        timers_init();
        uart_init();
        twi_init();
        buttons_leds_init(&erase_bonds);
        power_management_init();
        ble_stack_init();
        gap_params_init();
        gatt_init();
    
    //    twi_sensor_init(); //*
        platform_init();
    
    //    advertising_init(); //*
        services_init();
        advertising_init();
        conn_params_init();
    //    peer_manger_init(); //*
        saadc_init();
        saadc_sampling_event_init();
        saadc_sampling_event_enable();    
       
        // Start execution.
        printf("\r\nUART started.\r\n");
        NRF_LOG_INFO("Debug logging for UART over RTT started.");
        advertising_start();
    
        // Enter main loop.
        for (;;)
        {
            idle_state_handle();
        }
    }
    
    
    /**
     * @}
     */
    

    and you can get reference of reg.c, reg.h in below url

    https://github.com/STMicroelectronics/STMems_Standard_C_drivers/blob/master/iis2dlpc_STdC/driver/iis2dlpc_reg.h

    I coded platform_read/write/init function with example of below url

    https://github.com/STMicroelectronics/STMems_Standard_C_drivers/blob/master/iis2dlpc_STdC/example/read_data_simple.c

Children
No Data
Related