This post is older than 2 years and might not be relevant anymore
More Info: Consider searching for newer posts

app_timer resets

Hi, 

I'm using the ble_app_uart example as a starting point for my project. Basically I want to program the nRF52 DK to receive data from another device via UART, store them in an SD card every few seconds and then send the data via BLE every minute or so. I successfully wrote data to the SD card whenever the uart_event_handle is called. I created an app_timer_handler so that I can read data from SD card every 60th second and send it via BLE. I used a variable toggle_index and printed that variable at every app_timer ticks and I realised that the variable value resets to my initial value which is 1 after 43. I commented out the function that I used to write data to the SD card (fatfs_send_data()) and the toggle_index value did not reset, seems like the issue is with my fatfs_send_data() function but I'm not sure what is the issue. 

I'm using SoftDevice 140. The main code and the results are shown below.

Thanks.

#include <stdint.h>
#include <string.h>
#include "nordic_common.h"
#include "nrf.h"
#include "ff.h"
#include "diskio_blkdev.h"
#include "nrf_block_dev_sdc.h"
#include "ble_hci.h"
#include "ble_advdata.h"
#include "ble_advertising.h"
#include "ble_conn_params.h"
#include "nrf_sdh.h"
#include "nrf_sdh_soc.h"
#include "nrf_sdh_ble.h"
#include "nrf_ble_gatt.h"
#include "nrf_ble_qwr.h"
#include "app_timer.h"
#include "nrf_drv_rtc.h"
#include "nrf_drv_clock.h"
#include "ble_nus.h"
#include "app_uart.h"
#include "app_util_platform.h"
#include "bsp_btn_ble.h"
#include "nrf_pwr_mgmt.h"
#include "nrf_gpiote.h"
#include "nrf_gpio.h"
#include "nrf_drv_gpiote.h"
#include "nrf_delay.h"
#include "nrf_drv_saadc.h"
#include "nrf_drv_ppi.h"
#include "nrf_drv_timer.h"
#include "app_error.h"


#if defined (UART_PRESENT)
#include "nrf_uart.h"
#endif
#if defined (UARTE_PRESENT)
#include "nrf_uarte.h"
#endif

#include "nrf_log.h"
#include "nrf_log_ctrl.h"
#include "nrf_log_default_backends.h"


#define APP_BLE_CONN_CFG_TAG            1                                           /**< A tag identifying the SoftDevice BLE configuration. */

#define DEVICE_NAME                     "Nordic_test"                               /**< Name of device. Will be included in the advertising data. */
#define NUS_SERVICE_UUID_TYPE           BLE_UUID_TYPE_VENDOR_BEGIN                  /**< UUID type for the Nordic UART Service (vendor specific). */

#define APP_BLE_OBSERVER_PRIO           3                                           /**< Application's BLE observer priority. You shouldn't need to modify this value. */

#define APP_ADV_INTERVAL                1600                                        /**< The advertising interval (in units of 0.625 ms. This value corresponds to 40 ms). */

#define APP_ADV_DURATION                0                                       /**< The advertising duration (180 seconds) in units of 10 milliseconds. */

#define MIN_CONN_INTERVAL               MSEC_TO_UNITS(20, UNIT_1_25_MS)             /**< Minimum acceptable connection interval (20 ms), Connection interval uses 1.25 ms units. */
#define MAX_CONN_INTERVAL               MSEC_TO_UNITS(75, UNIT_1_25_MS)             /**< Maximum acceptable connection interval (1000 ms), Connection interval uses 1.25 ms units. */
#define SLAVE_LATENCY                   0                                           /**< Slave latency. */
#define CONN_SUP_TIMEOUT                MSEC_TO_UNITS(4000, UNIT_10_MS)             /**< Connection supervisory timeout (4 seconds), Supervision Timeout uses 10 ms units. */
#define FIRST_CONN_PARAMS_UPDATE_DELAY  APP_TIMER_TICKS(5000)                       /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */
#define NEXT_CONN_PARAMS_UPDATE_DELAY   APP_TIMER_TICKS(30000)                      /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */
#define MAX_CONN_PARAMS_UPDATE_COUNT    3                                           /**< Number of attempts before giving up the connection parameter negotiation. */

#define DEAD_BEEF                       0xDEADBEEF                                  /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */

#define UART_TX_BUF_SIZE                256                                         /**< UART TX buffer size. */
#define UART_RX_BUF_SIZE                256       

#define SAADC_SAMPLES_IN_BUFFER         1
#define SAADC_SAMPLE_RATE		1000                                         /**< SAADC sample rate in ms. */ 


#define SD_SEND_BLE_INTERVAL            1000

#define FILE_NAME   "NORDIC.TXT"
#define TEST_STRING "SD card example.\r\n"
#define NEWLINE "\r\n"

#define SDC_SCK_PIN     ARDUINO_13_PIN  ///< SDC serial clock (SCK) pin.
#define SDC_MOSI_PIN    ARDUINO_11_PIN  ///< SDC serial data in (DI) pin.
#define SDC_MISO_PIN    ARDUINO_12_PIN  ///< SDC serial data out (DO) pin.
#define SDC_CS_PIN      ARDUINO_10_PIN  ///< SDC chip select (CS) pin.

#define APP_TIMER_PRESCALER

BLE_NUS_DEF(m_nus, NRF_SDH_BLE_TOTAL_LINK_COUNT);                                   /**< BLE NUS service instance. */
NRF_BLE_GATT_DEF(m_gatt);                                                           /**< GATT module instance. */
NRF_BLE_QWR_DEF(m_qwr);                                                             /**< Context for the Queued Write module.*/
BLE_ADVERTISING_DEF(m_advertising);                                                 /**< Advertising module instance. */

APP_TIMER_DEF(m_repeated_timer_id);     /**< Handler for repeated timer used to blink LED 1. */

uint8_t SD_send = 1;
uint8_t UART_receive = 0;
uint8_t SD_read = 1;
uint8_t m = 0;
static uint32_t toggle_index = 1;
static uint32_t timer_seconds = 0;




uint8_t read_buffer[50];

static uint16_t   m_conn_handle          = BLE_CONN_HANDLE_INVALID;                 /**< Handle of the current connection. */
static uint16_t   m_ble_nus_max_data_len = BLE_GATT_ATT_MTU_DEFAULT - 3;            /**< Maximum length of data (in bytes) that can be transmitted to the peer by the Nordic UART service module. */
static ble_uuid_t m_adv_uuids[]          =                                          /**< Universally unique service identifier. */
{
    {BLE_UUID_NUS_SERVICE, NUS_SERVICE_UUID_TYPE}
};


/**
 * @brief  SDC block device definition
 * */
NRF_BLOCK_DEV_SDC_DEFINE(
        m_block_dev_sdc,
        NRF_BLOCK_DEV_SDC_CONFIG(
                SDC_SECTOR_SIZE,
                APP_SDCARD_CONFIG(SDC_MOSI_PIN, SDC_MISO_PIN, SDC_SCK_PIN, SDC_CS_PIN)
         ),
         NFR_BLOCK_DEV_INFO_CONFIG("Nordic", "SDC", "1.00")
);

/**
 * @brief Function for writing data to SD.
 */
void fatfs_send_data(uint8_t data[])
{
    FATFS fs;
    DIR dir;
    FILINFO fno;
    FIL file;

    uint32_t bytes_written;
    FRESULT ff_result;
    DSTATUS disk_state = STA_NOINIT;

    // Initialize FATFS disk I/O interface by providing the block device.
    static diskio_blkdev_t drives[] =
    {
            DISKIO_BLOCKDEV_CONFIG(NRF_BLOCKDEV_BASE_ADDR(m_block_dev_sdc, block_dev), NULL)
    };

    diskio_blockdev_register(drives, ARRAY_SIZE(drives));

    printf("Initializing disk 0 (SDC)...\r\n");
    for (uint32_t retries = 6; retries && disk_state; --retries)
    {
        disk_state = disk_initialize(0);
    }
    if (disk_state)
    {
        printf("Disk initialization failed.\r\n");
        return;
    }

    uint32_t blocks_per_mb = (1024uL * 1024uL) / m_block_dev_sdc.block_dev.p_ops->geometry(&m_block_dev_sdc.block_dev)->blk_size;
    uint32_t capacity = m_block_dev_sdc.block_dev.p_ops->geometry(&m_block_dev_sdc.block_dev)->blk_count / blocks_per_mb;
    printf("Capacity: %d MB\r\n", capacity);

    printf("Mounting volume...\r\n");
    ff_result = f_mount(&fs, "", 1);
    if (ff_result)
    {
        printf("Mount failed.\r\n");
        return;
    }

    NRF_LOG_INFO("Writing to file " FILE_NAME "...");
    ff_result = f_open(&file, FILE_NAME, FA_WRITE | FA_OPEN_APPEND);
    if (ff_result != FR_OK)
    {
        NRF_LOG_INFO("Unable to open or create file: " FILE_NAME ".");
        return;
    }

    ff_result = f_write(&file, data, sizeof(&data), (UINT *) &bytes_written);
    if (ff_result != FR_OK)
    {
        printf("Write failed\r\n.");
    }
    else
    {
        printf("%d bytes written.\r\n", bytes_written);
    }
    
    ff_result = f_write(&file, NEWLINE, sizeof(NEWLINE) - 1, (UINT *) &bytes_written);
    if (ff_result != FR_OK)
    {
        printf("Write failed\r\n.");
    }
    else
    {
        printf("%d bytes written.\r\n", bytes_written);
    }

    (void) f_close(&file);

    ff_result = f_mount(0, "", 0);
    if (ff_result)
    {
        printf("Mount failed.\r\n");
        return;
    }

    disk_state = disk_uninitialize(0);
}

/**
 * @brief Function for reading data from SD.
 */
void fatfs_read_data(uint8_t data[])
{
    FATFS fs;
    DIR dir;
    FILINFO fno;
    FIL file;

    uint32_t bytes_read;
    FRESULT ff_result;
    DSTATUS disk_state = STA_NOINIT;

    // Initialize FATFS disk I/O interface by providing the block device.
    static diskio_blkdev_t drives[] =
    {
            DISKIO_BLOCKDEV_CONFIG(NRF_BLOCKDEV_BASE_ADDR(m_block_dev_sdc, block_dev), NULL)
    };

    diskio_blockdev_register(drives, ARRAY_SIZE(drives));

    printf("Initializing disk 0 (SDC)...\r\n");
    for (uint32_t retries = 3; retries && disk_state; --retries)
    {
        disk_state = disk_initialize(0);
    }
    if (disk_state)
    {
        printf("Disk initialization failed.\r\n");
        return;
    }

    uint32_t blocks_per_mb = (1024uL * 1024uL) / m_block_dev_sdc.block_dev.p_ops->geometry(&m_block_dev_sdc.block_dev)->blk_size;
    uint32_t capacity = m_block_dev_sdc.block_dev.p_ops->geometry(&m_block_dev_sdc.block_dev)->blk_count / blocks_per_mb;
    printf("Capacity: %d MB\r\n", capacity);

    printf("Mounting volume...\r\n");
    ff_result = f_mount(&fs, "", 1);
    if (ff_result)
    {
        printf("Mount failed.\r\n");
        return;
    }

    NRF_LOG_INFO("Reading from file " FILE_NAME "...");
    ff_result = f_open(&file, FILE_NAME, FA_READ);
    if (ff_result != FR_OK)
    {
        NRF_LOG_INFO("Unable to open or create file: " FILE_NAME ".");
        return;
    }

    ff_result = f_read(&file, data, (UINT) f_size(&file), (UINT *) &bytes_read);
    
    if (ff_result != FR_OK)
    {
        printf("Read failed\r\n.");
    }
    else
    {
            printf("Number of bytes read: %d\r\n", bytes_read);

    }


    (void) f_close(&file);

    ff_result = f_mount(0, "", 0);
    if (ff_result)
    {
        printf("Mount failed.\r\n");
        return;
    }

    disk_state = disk_uninitialize(0);

}

/**@brief Function for assert macro callback.
 *
 * @details This function will be called in case of an assert in the SoftDevice.
 *
 * @warning This handler is an example only and does not fit a final product. You need to analyse
 *          how your product is supposed to react in case of Assert.
 * @warning On assert from the SoftDevice, the system can only recover on reset.
 *
 * @param[in] line_num    Line number of the failing ASSERT call.
 * @param[in] p_file_name File name of the failing ASSERT call.
 */
void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name)
{
    app_error_handler(DEAD_BEEF, line_num, p_file_name);
}

/**@brief Function for initializing the timer module.
 */
static void timers_init(void)
{
    ret_code_t err_code = app_timer_init();
    APP_ERROR_CHECK(err_code);
}

/**@brief Function for the GAP initialization.
 *
 * @details This function will set up all the necessary GAP (Generic Access Profile) parameters of
 *          the device. It also sets the permissions and appearance.
 */
static void gap_params_init(void)
{
    uint32_t                err_code;
    ble_gap_conn_params_t   gap_conn_params;
    ble_gap_conn_sec_mode_t sec_mode;

    BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode);

    err_code = sd_ble_gap_device_name_set(&sec_mode,
                                          (const uint8_t *) DEVICE_NAME,
                                          strlen(DEVICE_NAME));
    APP_ERROR_CHECK(err_code);

    memset(&gap_conn_params, 0, sizeof(gap_conn_params));

    gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL;
    gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL;
    gap_conn_params.slave_latency     = SLAVE_LATENCY;
    gap_conn_params.conn_sup_timeout  = CONN_SUP_TIMEOUT;

    err_code = sd_ble_gap_ppcp_set(&gap_conn_params);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling Queued Write Module errors.
 *
 * @details A pointer to this function will be passed to each service which may need to inform the
 *          application about an error.
 *
 * @param[in]   nrf_error   Error code containing information about what went wrong.
 */
static void nrf_qwr_error_handler(uint32_t nrf_error)
{
    APP_ERROR_HANDLER(nrf_error);
}


/**@brief Function for handling the data from the Nordic UART Service.
 *
 * @details This function will process the data received from the Nordic UART BLE Service and send
 *          it to the UART module.
 *
 * @param[in] p_evt       Nordic UART Service event.
 */
/**@snippet [Handling the data received over BLE] */
static void nus_data_handler(ble_nus_evt_t * p_evt)
{

    if (p_evt->type == BLE_NUS_EVT_RX_DATA)
    {
        uint32_t err_code;

        NRF_LOG_DEBUG("Received data from BLE NUS. Writing data on UART.");
        NRF_LOG_HEXDUMP_DEBUG(p_evt->params.rx_data.p_data, p_evt->params.rx_data.length);

        for (uint32_t i = 0; i < p_evt->params.rx_data.length; i++)
        {
            do
            {
                err_code = app_uart_put(p_evt->params.rx_data.p_data[i]);
                if ((err_code != NRF_SUCCESS) && (err_code != NRF_ERROR_BUSY))
                {
                    NRF_LOG_ERROR("Failed receiving NUS message. Error 0x%x. ", err_code);
                    APP_ERROR_CHECK(err_code);
                }
            } while (err_code == NRF_ERROR_BUSY);
        }
        if (p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 1] == '\r')
        {
            while (app_uart_put('\n') == NRF_ERROR_BUSY);
        }
    }
    

}
/**@snippet [Handling the data received over BLE] */


/**@brief Function for initializing services that will be used by the application.
 */
static void services_init(void)
{
    uint32_t           err_code;
    ble_nus_init_t     nus_init;
    nrf_ble_qwr_init_t qwr_init = {0};

    // Initialize Queued Write Module.
    qwr_init.error_handler = nrf_qwr_error_handler;

    err_code = nrf_ble_qwr_init(&m_qwr, &qwr_init);
    APP_ERROR_CHECK(err_code);

    // Initialize NUS.
    memset(&nus_init, 0, sizeof(nus_init));

    nus_init.data_handler = nus_data_handler;

    err_code = ble_nus_init(&m_nus, &nus_init);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling an event from the Connection Parameters Module.
 *
 * @details This function will be called for all events in the Connection Parameters Module
 *          which are passed to the application.
 *
 * @note All this function does is to disconnect. This could have been done by simply setting
 *       the disconnect_on_fail config parameter, but instead we use the event handler
 *       mechanism to demonstrate its use.
 *
 * @param[in] p_evt  Event received from the Connection Parameters Module.
 */
static void on_conn_params_evt(ble_conn_params_evt_t * p_evt)
{
    uint32_t err_code;

    if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED)
    {
        err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE);
        APP_ERROR_CHECK(err_code);
    }
}


/**@brief Function for handling errors from the Connection Parameters module.
 *
 * @param[in] nrf_error  Error code containing information about what went wrong.
 */
static void conn_params_error_handler(uint32_t nrf_error)
{
    APP_ERROR_HANDLER(nrf_error);
}


/**@brief Function for initializing the Connection Parameters module.
 */
static void conn_params_init(void)
{
    uint32_t               err_code;
    ble_conn_params_init_t cp_init;

    memset(&cp_init, 0, sizeof(cp_init));

    cp_init.p_conn_params                  = NULL;
    cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY;
    cp_init.next_conn_params_update_delay  = NEXT_CONN_PARAMS_UPDATE_DELAY;
    cp_init.max_conn_params_update_count   = MAX_CONN_PARAMS_UPDATE_COUNT;
    cp_init.start_on_notify_cccd_handle    = BLE_GATT_HANDLE_INVALID;
    cp_init.disconnect_on_fail             = false;
    cp_init.evt_handler                    = on_conn_params_evt;
    cp_init.error_handler                  = conn_params_error_handler;

    err_code = ble_conn_params_init(&cp_init);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for putting the chip into sleep mode.
 *
 * @note This function will not return.
 */
static void sleep_mode_enter(void)
{
    uint32_t err_code = bsp_indication_set(BSP_INDICATE_IDLE);
    APP_ERROR_CHECK(err_code);

    // Prepare wakeup buttons.
    err_code = bsp_btn_ble_sleep_mode_prepare();
    APP_ERROR_CHECK(err_code);

    // Go to system-off mode (this function will not return; wakeup will cause a reset).
    err_code = sd_power_system_off();
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling advertising events.
 *
 * @details This function will be called for advertising events which are passed to the application.
 *
 * @param[in] ble_adv_evt  Advertising event.
 */
static void on_adv_evt(ble_adv_evt_t ble_adv_evt)
{
    uint32_t err_code;
    switch (ble_adv_evt)
    {
        case BLE_ADV_EVT_FAST:
            err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING);
            APP_ERROR_CHECK(err_code);
            break;
        case BLE_ADV_EVT_IDLE:
            sleep_mode_enter();
            break;
        default:
            break;
    }
}


/**@brief Function for handling BLE events.
 *
 * @param[in]   p_ble_evt   Bluetooth stack event.
 * @param[in]   p_context   Unused.
 */
static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context)
{
    uint32_t err_code;

    switch (p_ble_evt->header.evt_id)
    {
        case BLE_GAP_EVT_CONNECTED:
            NRF_LOG_INFO("Connected");
//            SD_send = 0;
            err_code = bsp_indication_set(BSP_INDICATE_CONNECTED);
            APP_ERROR_CHECK(err_code);
            
            m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle;
            err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr, m_conn_handle);
            APP_ERROR_CHECK(err_code);
            

            break;

        case BLE_GAP_EVT_DISCONNECTED:
            NRF_LOG_INFO("Disconnected");
//            SD_send = 1;
            // LED indication will be changed when advertising starts.
            m_conn_handle = BLE_CONN_HANDLE_INVALID;
            
            break;

        case BLE_GAP_EVT_PHY_UPDATE_REQUEST:
        {
            NRF_LOG_DEBUG("PHY update request.");
            ble_gap_phys_t const phys =
            {
                .rx_phys = BLE_GAP_PHY_AUTO,
                .tx_phys = BLE_GAP_PHY_AUTO,
            };
            err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys);
            APP_ERROR_CHECK(err_code);
        } break;

        case BLE_GAP_EVT_SEC_PARAMS_REQUEST:
            // Pairing not supported
            err_code = sd_ble_gap_sec_params_reply(m_conn_handle, BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_GATTS_EVT_SYS_ATTR_MISSING:
            // No system attributes have been stored.
            err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0, 0);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_GATTC_EVT_TIMEOUT:
            // Disconnect on GATT Client timeout event.
            err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle,
                                             BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_GATTS_EVT_TIMEOUT:
            // Disconnect on GATT Server timeout event.
            err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle,
                                             BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
            APP_ERROR_CHECK(err_code);
            break;

        default:
            // No implementation needed.
            break;
    }
}


/**@brief Function for the SoftDevice initialization.
 *
 * @details This function initializes the SoftDevice and the BLE event interrupt.
 */
static void ble_stack_init(void)
{
    ret_code_t err_code;

    err_code = nrf_sdh_enable_request();
    APP_ERROR_CHECK(err_code);

    // Configure the BLE stack using the default settings.
    // Fetch the start address of the application RAM.
    uint32_t ram_start = 0;
    err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start);
    APP_ERROR_CHECK(err_code);

    // Enable BLE stack.
    err_code = nrf_sdh_ble_enable(&ram_start);
    APP_ERROR_CHECK(err_code);

    // Register a handler for BLE events.
    NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL);
}


/**@brief Function for handling events from the GATT library. */
void gatt_evt_handler(nrf_ble_gatt_t * p_gatt, nrf_ble_gatt_evt_t const * p_evt)
{
    if ((m_conn_handle == p_evt->conn_handle) && (p_evt->evt_id == NRF_BLE_GATT_EVT_ATT_MTU_UPDATED))
    {
        m_ble_nus_max_data_len = p_evt->params.att_mtu_effective - OPCODE_LENGTH - HANDLE_LENGTH;
        NRF_LOG_INFO("Data len is set to 0x%X(%d)", m_ble_nus_max_data_len, m_ble_nus_max_data_len);
    }
    NRF_LOG_DEBUG("ATT MTU exchange completed. central 0x%x peripheral 0x%x",
                  p_gatt->att_mtu_desired_central,
                  p_gatt->att_mtu_desired_periph);
}


/**@brief Function for initializing the GATT library. */
void gatt_init(void)
{
    ret_code_t err_code;

    err_code = nrf_ble_gatt_init(&m_gatt, gatt_evt_handler);
    APP_ERROR_CHECK(err_code);

    err_code = nrf_ble_gatt_att_mtu_periph_set(&m_gatt, NRF_SDH_BLE_GATT_MAX_MTU_SIZE);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling events from the BSP module.
 *
 * @param[in]   event   Event generated by button press.
 */
void bsp_event_handler(bsp_event_t event)
{
    uint32_t err_code;
    switch (event)
    {
        case BSP_EVENT_SLEEP:
            sleep_mode_enter();
            break;

        case BSP_EVENT_DISCONNECT:
            err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
            if (err_code != NRF_ERROR_INVALID_STATE)
            {
                APP_ERROR_CHECK(err_code);
            }
            break;

        case BSP_EVENT_WHITELIST_OFF:
            if (m_conn_handle == BLE_CONN_HANDLE_INVALID)
            {
                err_code = ble_advertising_restart_without_whitelist(&m_advertising);
                if (err_code != NRF_ERROR_INVALID_STATE)
                {
                    APP_ERROR_CHECK(err_code);
                }
            }
            break;

        default:
            break;
    }
}



/**@brief   Function for handling app_uart events.
 *
 * @details This function will receive a single character from the app_uart module and append it to
 *          a string. The string will be be sent over BLE when the last character received was a
 *          'new line' '\n' (hex 0x0A) or if the string has reached the maximum data length.
 */
/**@snippet [Handling the data received over UART] */
void uart_event_handle(app_uart_evt_t * p_event)
{
    static uint8_t data_array[BLE_NUS_MAX_DATA_LEN];
    static uint8_t index = 0;
    uint32_t       err_code;

    switch (p_event->evt_type)
    {
        case APP_UART_DATA_READY:
            UNUSED_VARIABLE(app_uart_get(&data_array[index]));
            index++;


            if ((data_array[index - 1] == '\n') ||
                (data_array[index - 1] == '\r') ||
                (index >= m_ble_nus_max_data_len))
            {
                if (index > 1)
                {
                    fatfs_send_data(data_array);
                }

                index = 0;
                UART_receive = 1;
            }
            break;

        case APP_UART_COMMUNICATION_ERROR:
            APP_ERROR_HANDLER(p_event->data.error_communication);
            break;

        case APP_UART_FIFO_ERROR:
            APP_ERROR_HANDLER(p_event->data.error_code);
            break;

        default:
            break;
    }
   
}
/**@snippet [Handling the data received over UART] */


/**@brief  Function for initializing the UART module.
 */
/**@snippet [UART Initialization] */
static void uart_init(void)
{
    uint32_t                     err_code;
    app_uart_comm_params_t const comm_params =
    {
        .rx_pin_no    = RX_PIN_NUMBER,
        .tx_pin_no    = TX_PIN_NUMBER,
        .rts_pin_no   = RTS_PIN_NUMBER,
        .cts_pin_no   = CTS_PIN_NUMBER,
        .flow_control = APP_UART_FLOW_CONTROL_DISABLED,
        .use_parity   = false,
#if defined (UART_PRESENT)
        .baud_rate    = NRF_UART_BAUDRATE_115200
#else
        .baud_rate    = NRF_UARTE_BAUDRATE_115200
#endif
    };

    APP_UART_FIFO_INIT(&comm_params,
                       UART_RX_BUF_SIZE,
                       UART_TX_BUF_SIZE,
                       uart_event_handle,
                       APP_IRQ_PRIORITY_LOWEST,
                       err_code);
    APP_ERROR_CHECK(err_code);
    

}
/**@snippet [UART Initialization] */


/**@brief Function for initializing the Advertising functionality.
 */
static void advertising_init(void)
{
    uint32_t               err_code;
    ble_advertising_init_t init;

    memset(&init, 0, sizeof(init));

    init.advdata.name_type          = BLE_ADVDATA_FULL_NAME;
    init.advdata.include_appearance = false;
    init.advdata.flags              = BLE_GAP_ADV_FLAGS_LE_ONLY_GENERAL_DISC_MODE;

    init.srdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]);
    init.srdata.uuids_complete.p_uuids  = m_adv_uuids;

    init.config.ble_adv_fast_enabled  = true;
    init.config.ble_adv_fast_interval = APP_ADV_INTERVAL;
    init.config.ble_adv_fast_timeout  = APP_ADV_DURATION;
    init.evt_handler = on_adv_evt;

    err_code = ble_advertising_init(&m_advertising, &init);
    APP_ERROR_CHECK(err_code);

    ble_advertising_conn_cfg_tag_set(&m_advertising, APP_BLE_CONN_CFG_TAG);
}


/**@brief Function for initializing buttons and leds.
 *
 * @param[out] p_erase_bonds  Will be true if the clear bonding button was pressed to wake the application up.
 */
static void buttons_leds_init(bool * p_erase_bonds)
{
    bsp_event_t startup_event;

    uint32_t err_code = bsp_init(BSP_INIT_LEDS | BSP_INIT_BUTTONS, bsp_event_handler);
    APP_ERROR_CHECK(err_code);

    err_code = bsp_btn_ble_init(NULL, &startup_event);
    APP_ERROR_CHECK(err_code);

    *p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA);
}


/**@brief Function for initializing the nrf log module.
 */
static void log_init(void)
{
    ret_code_t err_code = NRF_LOG_INIT(NULL);
    APP_ERROR_CHECK(err_code);

    NRF_LOG_DEFAULT_BACKENDS_INIT();
}


/**@brief Function for initializing power management.
 */
static void power_management_init(void)
{
    ret_code_t err_code;
    err_code = nrf_pwr_mgmt_init();
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling the idle state (main loop).
 *
 * @details If there is no pending log operation, then sleep until next the next event occurs.
 */
static void idle_state_handle(void)
{
    if (NRF_LOG_PROCESS() == false)	
    {	
        nrf_pwr_mgmt_run();	
    }
}


/**@brief Function for starting advertising.
 */
static void advertising_start(void)
{
    uint32_t err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST);
    APP_ERROR_CHECK(err_code);
}

/**@brief Timeout handler for the repeated timer.
 */
static void repeated_timer_handler(void * p_context)
{

      
    printf("Toggle index: %u\r\n", toggle_index);
    toggle_index++;
      
      
}

/**@brief Create timers.
 */
static void create_timers()
{
    ret_code_t err_code;

    // Create timers
    err_code = app_timer_create(&m_repeated_timer_id,
                                APP_TIMER_MODE_REPEATED,
                                repeated_timer_handler);
    APP_ERROR_CHECK(err_code);
}

/**@brief Application main function.
 */
int main(void)

{
    bool erase_bonds;

    // Initialize.;
    uart_init();    
    timers_init();
    power_management_init();
    buttons_leds_init(&erase_bonds);
    ble_stack_init();
    
    gap_params_init();
    gatt_init();
    services_init();
    advertising_init();
    conn_params_init();

    sd_power_dcdc_mode_set(NRF_POWER_DCDC_ENABLE);

    create_timers();
    ret_code_t      err_code;
    // Start repeated timer (start blinking LED).
    err_code = app_timer_start(m_repeated_timer_id, APP_TIMER_TICKS(SD_SEND_BLE_INTERVAL), NULL);
    APP_ERROR_CHECK(err_code);
    advertising_start();
    
    // Enter main loop.
    for (;;)
    {      
      idle_state_handle(); 
    }
}


/**
 * @}
 */

Parents Reply Children
Related