Hi all,
I am using the nRF51822 and attach you can find the
/* Copyright (c) 2014 Nordic Semiconductor. All Rights Reserved. * * The information contained herein is property of Nordic Semiconductor ASA. * Terms and conditions of usage are described in detail in NORDIC * SEMICONDUCTOR STANDARD SOFTWARE LICENSE AGREEMENT. * * Licensees are granted free, non-transferable use of the information. NO * WARRANTY of ANY KIND is provided. This heading must NOT be removed from * the file. * */ /** * ble_app_uart example with interrupt driven ADC functionality */ #include <stdint.h> #include <string.h> #include "nordic_common.h" #include "nrf.h" #include "ble_hci.h" #include "ble_advdata.h" #include "ble_advertising.h" #include "ble_conn_params.h" #include "softdevice_handler.h" #include "app_timer.h" #include "app_button.h" #include "ble_nus.h" #include "app_uart.h" #include "app_util_platform.h" #include "bsp.h" #include "bsp_btn_ble.h" #include "nrf_drv_adc.h" #include "nrf_drv_ppi.h" #include "nrf_drv_timer.h" #define IS_SRVC_CHANGED_CHARACT_PRESENT 0 /**< Include the service_changed characteristic. If not enabled, the server's database cannot be changed for the lifetime of the device. */ #if (NRF_SD_BLE_API_VERSION == 3) #define NRF_BLE_MAX_MTU_SIZE GATT_MTU_SIZE_DEFAULT /**< MTU size used in the softdevice enabling and to reply to a BLE_GATTS_EVT_EXCHANGE_MTU_REQUEST event. */ #endif #define APP_FEATURE_NOT_SUPPORTED BLE_GATT_STATUS_ATTERR_APP_BEGIN + 2 /**< Reply when unsupported features are requested. */ #define CENTRAL_LINK_COUNT 0 /**< Number of central links used by the application. When changing this number remember to adjust the RAM settings*/ #define PERIPHERAL_LINK_COUNT 1 /**< Number of peripheral links used by the application. When changing this number remember to adjust the RAM settings*/ #define DEVICE_NAME "Step_Charge" /**< Name of device. Will be included in the advertising data. */ #define NUS_SERVICE_UUID_TYPE BLE_UUID_TYPE_VENDOR_BEGIN /**< UUID type for the Nordic UART Service (vendor specific). */ #define APP_ADV_INTERVAL 64 /**< The advertising interval (in units of 0.625 ms. This value corresponds to 40 ms). */ #define APP_ADV_TIMEOUT_IN_SECONDS 180 /**< The advertising timeout (in units of seconds). */ #define APP_TIMER_PRESCALER 0 /**< Value of the RTC1 PRESCALER register. */ #define APP_TIMER_OP_QUEUE_SIZE 4 /**< Size of timer operation queues. */ #define MIN_CONN_INTERVAL MSEC_TO_UNITS(20, UNIT_1_25_MS) /**< Minimum acceptable connection interval (20 ms), Connection interval uses 1.25 ms units. */ #define MAX_CONN_INTERVAL MSEC_TO_UNITS(75, UNIT_1_25_MS) /**< Maximum acceptable connection interval (75 ms), Connection interval uses 1.25 ms units. */ #define SLAVE_LATENCY 0 /**< Slave latency. */ #define CONN_SUP_TIMEOUT MSEC_TO_UNITS(4000, UNIT_10_MS) /**< Connection supervisory timeout (4 seconds), Supervision Timeout uses 10 ms units. */ #define FIRST_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(5000, APP_TIMER_PRESCALER) /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */ #define NEXT_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(30000, APP_TIMER_PRESCALER) /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */ #define MAX_CONN_PARAMS_UPDATE_COUNT 3 /**< Number of attempts before giving up the connection parameter negotiation. */ #define DEAD_BEEF 0xDEADBEEF /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */ #define UART_TX_BUF_SIZE 512 /**< UART TX buffer size. */ #define UART_RX_BUF_SIZE 64 /**< UART RX buffer size. */ /*#define ADC_BUFFER_SIZE 6 //Size of buffer for ADC samples. Buffer size should be multiple of number of adc channels located.*/ #define ADC_BUFFER_SIZE 8 //Size of buffer for ADC samples. Buffer size should be multiple of number of adc channels located. #define ADC_SAMPLE_RATE 1000 //ADC sampling frequencyng frequency in ms static nrf_adc_value_t adc_buffer[ADC_BUFFER_SIZE]; /**< ADC buffer. */ static nrf_ppi_channel_t m_ppi_channel; static const nrf_drv_timer_t m_timer = NRF_DRV_TIMER_INSTANCE(2); static uint8_t adc_event_counter = 0; static uint32_t number_of_adc_channels; static ble_nus_t m_nus; /**< Structure to identify the Nordic UART Service. */ static uint16_t m_conn_handle = BLE_CONN_HANDLE_INVALID; /**< Handle of the current connection. */ static ble_uuid_t m_adv_uuids[] = {{BLE_UUID_NUS_SERVICE, NUS_SERVICE_UUID_TYPE}}; /**< Universally unique service identifier. */ /**@brief Function for assert macro callback. * * @details This function will be called in case of an assert in the SoftDevice. * * @warning This handler is an example only and does not fit a final product. You need to analyse * how your product is supposed to react in case of Assert. * @warning On assert from the SoftDevice, the system can only recover on reset. * * @param[in] line_num Line number of the failing ASSERT call. * @param[in] p_file_name File name of the failing ASSERT call. */ void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name) { app_error_handler(DEAD_BEEF, line_num, p_file_name); } /**@brief Function for the GAP initialization. * * @details This function will set up all the necessary GAP (Generic Access Profile) parameters of * the device. It also sets the permissions and appearance. */ static void gap_params_init(void) { uint32_t err_code; ble_gap_conn_params_t gap_conn_params; ble_gap_conn_sec_mode_t sec_mode; BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode); err_code = sd_ble_gap_device_name_set(&sec_mode, (const uint8_t *) DEVICE_NAME, strlen(DEVICE_NAME)); APP_ERROR_CHECK(err_code); memset(&gap_conn_params, 0, sizeof(gap_conn_params)); gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL; gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL; gap_conn_params.slave_latency = SLAVE_LATENCY; gap_conn_params.conn_sup_timeout = CONN_SUP_TIMEOUT; err_code = sd_ble_gap_ppcp_set(&gap_conn_params); APP_ERROR_CHECK(err_code); } /**@brief Function for handling the data from the Nordic UART Service. * * @details This function will process the data received from the Nordic UART BLE Service and send * it to the UART module. * * @param[in] p_nus Nordic UART Service structure. * @param[in] p_data Data to be send to UART module. * @param[in] length Length of the data. */ /**@snippet [Handling the data received over BLE] */ static void nus_data_handler(ble_nus_t * p_nus, uint8_t * p_data, uint16_t length) { for (uint32_t i = 0; i < length; i++) { while (app_uart_put(p_data[i]) != NRF_SUCCESS); } while (app_uart_put('\r') != NRF_SUCCESS); while (app_uart_put('\n') != NRF_SUCCESS); } /**@snippet [Handling the data received over BLE] */ /**@brief Function for initializing services that will be used by the application. */ static void services_init(void) { uint32_t err_code; ble_nus_init_t nus_init; memset(&nus_init, 0, sizeof(nus_init)); nus_init.data_handler = nus_data_handler; err_code = ble_nus_init(&m_nus, &nus_init); APP_ERROR_CHECK(err_code); } /**@brief Function for handling an event from the Connection Parameters Module. * * @details This function will be called for all events in the Connection Parameters Module * which are passed to the application. * * @note All this function does is to disconnect. This could have been done by simply setting * the disconnect_on_fail config parameter, but instead we use the event handler * mechanism to demonstrate its use. * * @param[in] p_evt Event received from the Connection Parameters Module. */ static void on_conn_params_evt(ble_conn_params_evt_t * p_evt) { uint32_t err_code; if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED) { err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE); APP_ERROR_CHECK(err_code); } } /**@brief Function for handling errors from the Connection Parameters module. * * @param[in] nrf_error Error code containing information about what went wrong. */ static void conn_params_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } /**@brief Function for initializing the Connection Parameters module. */ static void conn_params_init(void) { uint32_t err_code; ble_conn_params_init_t cp_init; memset(&cp_init, 0, sizeof(cp_init)); cp_init.p_conn_params = NULL; cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY; cp_init.next_conn_params_update_delay = NEXT_CONN_PARAMS_UPDATE_DELAY; cp_init.max_conn_params_update_count = MAX_CONN_PARAMS_UPDATE_COUNT; cp_init.start_on_notify_cccd_handle = BLE_GATT_HANDLE_INVALID; cp_init.disconnect_on_fail = false; cp_init.evt_handler = on_conn_params_evt; cp_init.error_handler = conn_params_error_handler; err_code = ble_conn_params_init(&cp_init); APP_ERROR_CHECK(err_code); } /**@brief Function for putting the chip into sleep mode. * * @note This function will not return. */ static void sleep_mode_enter(void) { uint32_t err_code = bsp_indication_set(BSP_INDICATE_IDLE); APP_ERROR_CHECK(err_code); // Prepare wakeup buttons. err_code = bsp_btn_ble_sleep_mode_prepare(); APP_ERROR_CHECK(err_code); // Go to system-off mode (this function will not return; wakeup will cause a reset). err_code = sd_power_system_off(); APP_ERROR_CHECK(err_code); } /**@brief Function for handling advertising events. * * @details This function will be called for advertising events which are passed to the application. * * @param[in] ble_adv_evt Advertising event. */ static void on_adv_evt(ble_adv_evt_t ble_adv_evt) { uint32_t err_code; switch (ble_adv_evt) { case BLE_ADV_EVT_FAST: err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING); APP_ERROR_CHECK(err_code); break; case BLE_ADV_EVT_IDLE: sleep_mode_enter(); break; default: break; } } /**@brief Function for the application's SoftDevice event handler. * * @param[in] p_ble_evt SoftDevice event. */ static void on_ble_evt(ble_evt_t * p_ble_evt) { uint32_t err_code; switch (p_ble_evt->header.evt_id) { case BLE_GAP_EVT_CONNECTED: err_code = bsp_indication_set(BSP_INDICATE_CONNECTED); APP_ERROR_CHECK(err_code); m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle; break; // BLE_GAP_EVT_CONNECTED case BLE_GAP_EVT_DISCONNECTED: err_code = bsp_indication_set(BSP_INDICATE_IDLE); APP_ERROR_CHECK(err_code); m_conn_handle = BLE_CONN_HANDLE_INVALID; break; // BLE_GAP_EVT_DISCONNECTED case BLE_GAP_EVT_SEC_PARAMS_REQUEST: // Pairing not supported err_code = sd_ble_gap_sec_params_reply(m_conn_handle, BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL); APP_ERROR_CHECK(err_code); break; // BLE_GAP_EVT_SEC_PARAMS_REQUEST case BLE_GATTS_EVT_SYS_ATTR_MISSING: // No system attributes have been stored. err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0, 0); APP_ERROR_CHECK(err_code); break; // BLE_GATTS_EVT_SYS_ATTR_MISSING case BLE_GATTC_EVT_TIMEOUT: // Disconnect on GATT Client timeout event. err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; // BLE_GATTC_EVT_TIMEOUT case BLE_GATTS_EVT_TIMEOUT: // Disconnect on GATT Server timeout event. err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; // BLE_GATTS_EVT_TIMEOUT case BLE_EVT_USER_MEM_REQUEST: err_code = sd_ble_user_mem_reply(p_ble_evt->evt.gattc_evt.conn_handle, NULL); APP_ERROR_CHECK(err_code); break; // BLE_EVT_USER_MEM_REQUEST case BLE_GATTS_EVT_RW_AUTHORIZE_REQUEST: { ble_gatts_evt_rw_authorize_request_t req; ble_gatts_rw_authorize_reply_params_t auth_reply; req = p_ble_evt->evt.gatts_evt.params.authorize_request; if (req.type != BLE_GATTS_AUTHORIZE_TYPE_INVALID) { if ((req.request.write.op == BLE_GATTS_OP_PREP_WRITE_REQ) || (req.request.write.op == BLE_GATTS_OP_EXEC_WRITE_REQ_NOW) || (req.request.write.op == BLE_GATTS_OP_EXEC_WRITE_REQ_CANCEL)) { if (req.type == BLE_GATTS_AUTHORIZE_TYPE_WRITE) { auth_reply.type = BLE_GATTS_AUTHORIZE_TYPE_WRITE; } else { auth_reply.type = BLE_GATTS_AUTHORIZE_TYPE_READ; } auth_reply.params.write.gatt_status = APP_FEATURE_NOT_SUPPORTED; err_code = sd_ble_gatts_rw_authorize_reply(p_ble_evt->evt.gatts_evt.conn_handle, &auth_reply); APP_ERROR_CHECK(err_code); } } } break; // BLE_GATTS_EVT_RW_AUTHORIZE_REQUEST #if (NRF_SD_BLE_API_VERSION == 3) case BLE_GATTS_EVT_EXCHANGE_MTU_REQUEST: err_code = sd_ble_gatts_exchange_mtu_reply(p_ble_evt->evt.gatts_evt.conn_handle, NRF_BLE_MAX_MTU_SIZE); APP_ERROR_CHECK(err_code); break; // BLE_GATTS_EVT_EXCHANGE_MTU_REQUEST #endif default: // No implementation needed. break; } } /**@brief Function for dispatching a SoftDevice event to all modules with a SoftDevice * event handler. * * @details This function is called from the SoftDevice event interrupt handler after a * SoftDevice event has been received. * * @param[in] p_ble_evt SoftDevice event. */ static void ble_evt_dispatch(ble_evt_t * p_ble_evt) { ble_conn_params_on_ble_evt(p_ble_evt); ble_nus_on_ble_evt(&m_nus, p_ble_evt); on_ble_evt(p_ble_evt); ble_advertising_on_ble_evt(p_ble_evt); bsp_btn_ble_on_ble_evt(p_ble_evt); } /**@brief Function for the SoftDevice initialization. * * @details This function initializes the SoftDevice and the BLE event interrupt. */ static void ble_stack_init(void) { uint32_t err_code; nrf_clock_lf_cfg_t clock_lf_cfg = NRF_CLOCK_LFCLKSRC; // Initialize SoftDevice. SOFTDEVICE_HANDLER_INIT(&clock_lf_cfg, NULL); ble_enable_params_t ble_enable_params; err_code = softdevice_enable_get_default_config(CENTRAL_LINK_COUNT, PERIPHERAL_LINK_COUNT, &ble_enable_params); APP_ERROR_CHECK(err_code); //Check the ram settings against the used number of links CHECK_RAM_START_ADDR(CENTRAL_LINK_COUNT,PERIPHERAL_LINK_COUNT); // Enable BLE stack. #if (NRF_SD_BLE_API_VERSION == 3) ble_enable_params.gatt_enable_params.att_mtu = NRF_BLE_MAX_MTU_SIZE; #endif err_code = softdevice_enable(&ble_enable_params); APP_ERROR_CHECK(err_code); // Subscribe for BLE events. err_code = softdevice_ble_evt_handler_set(ble_evt_dispatch); APP_ERROR_CHECK(err_code); } /**@brief Function for handling events from the BSP module. * * @param[in] event Event generated by button press. */ void bsp_event_handler(bsp_event_t event) { uint32_t err_code; switch (event) { case BSP_EVENT_SLEEP: sleep_mode_enter(); break; case BSP_EVENT_DISCONNECT: err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); if (err_code != NRF_ERROR_INVALID_STATE) { APP_ERROR_CHECK(err_code); } break; case BSP_EVENT_WHITELIST_OFF: if (m_conn_handle == BLE_CONN_HANDLE_INVALID) { err_code = ble_advertising_restart_without_whitelist(); if (err_code != NRF_ERROR_INVALID_STATE) { APP_ERROR_CHECK(err_code); } } break; default: break; } } /**@brief Function for handling app_uart events. * * @details This function will receive a single character from the app_uart module and append it to * a string. The string will be be sent over BLE when the last character received was a * 'new line' i.e '\r\n' (hex 0x0D) or if the string has reached a length of * @ref NUS_MAX_DATA_LENGTH. */ /**@snippet [Handling the data received over UART] */ void uart_event_handle(app_uart_evt_t * p_event) { static uint8_t data_array[BLE_NUS_MAX_DATA_LEN]; static uint8_t index = 0; uint32_t err_code; switch (p_event->evt_type) { case APP_UART_DATA_READY: UNUSED_VARIABLE(app_uart_get(&data_array[index])); index++; if ((data_array[index - 1] == '\n') || (index >= (BLE_NUS_MAX_DATA_LEN))) { err_code = ble_nus_string_send(&m_nus, data_array, index); if (err_code != NRF_ERROR_INVALID_STATE) { APP_ERROR_CHECK(err_code); } index = 0; } break; case APP_UART_COMMUNICATION_ERROR: APP_ERROR_HANDLER(p_event->data.error_communication); break; case APP_UART_FIFO_ERROR: APP_ERROR_HANDLER(p_event->data.error_code); break; default: break; } } /**@snippet [Handling the data received over UART] */ /**@brief Function for initializing the UART module. */ /**@snippet [UART Initialization] */ static void uart_init(void) { uint32_t err_code; const app_uart_comm_params_t comm_params = { RX_PIN_NUMBER, TX_PIN_NUMBER, RTS_PIN_NUMBER, CTS_PIN_NUMBER, APP_UART_FLOW_CONTROL_DISABLED, false, UART_BAUDRATE_BAUDRATE_Baud115200 }; APP_UART_FIFO_INIT( &comm_params, UART_RX_BUF_SIZE, UART_TX_BUF_SIZE, uart_event_handle, APP_IRQ_PRIORITY_LOWEST, err_code); APP_ERROR_CHECK(err_code); } /**@snippet [UART Initialization] */ /**@brief Function for initializing the Advertising functionality. */ static void advertising_init(void) { uint32_t err_code; ble_advdata_t advdata; ble_advdata_t scanrsp; ble_adv_modes_config_t options; // Build advertising data struct to pass into @ref ble_advertising_init. memset(&advdata, 0, sizeof(advdata)); advdata.name_type = BLE_ADVDATA_FULL_NAME; advdata.include_appearance = false; advdata.flags = BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE; memset(&scanrsp, 0, sizeof(scanrsp)); scanrsp.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]); scanrsp.uuids_complete.p_uuids = m_adv_uuids; memset(&options, 0, sizeof(options)); options.ble_adv_fast_enabled = true; options.ble_adv_fast_interval = APP_ADV_INTERVAL; options.ble_adv_fast_timeout = APP_ADV_TIMEOUT_IN_SECONDS; err_code = ble_advertising_init(&advdata, &scanrsp, &options, on_adv_evt, NULL); APP_ERROR_CHECK(err_code); } /**@brief Function for initializing buttons and leds. * * @param[out] p_erase_bonds Will be true if the clear bonding button was pressed to wake the application up. */ static void buttons_leds_init(bool * p_erase_bonds) { bsp_event_t startup_event; uint32_t err_code = bsp_init(BSP_INIT_LED | BSP_INIT_BUTTONS, APP_TIMER_TICKS(100, APP_TIMER_PRESCALER), bsp_event_handler); APP_ERROR_CHECK(err_code); err_code = bsp_btn_ble_init(NULL, &startup_event); APP_ERROR_CHECK(err_code); *p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA); } /**@brief Function for placing the application in low power state while waiting for events. */ static void power_manage(void) { uint32_t err_code = sd_app_evt_wait(); APP_ERROR_CHECK(err_code); } /** * @brief ADC interrupt handler. * Prints ADC results on hardware UART and over BLE via the NUS service. */ static void adc_event_handler(nrf_drv_adc_evt_t const * p_event) { uint8_t adc_result[ADC_BUFFER_SIZE*2]; if (p_event->type == NRF_DRV_ADC_EVT_DONE) { adc_event_counter++; printf(" adc event counter: %d\r\n", adc_event_counter); for (uint32_t i = 0; i < p_event->data.done.size; i++) { printf("ADC value channel %d: %d\r\n", (int)(i % number_of_adc_channels), p_event->data.done.p_buffer[i]); adc_result[(i*2)] = p_event->data.done.p_buffer[i] >> 8; adc_result[(i*2)+1] = p_event->data.done.p_buffer[i]; } /*if(ADC_BUFFER_SIZE <= 10)*/ if(ADC_BUFFER_SIZE <= 10) { /*ble_nus_string_send(&m_nus, &adc_result[0], ADC_BUFFER_SIZE*2);*/ ble_nus_string_send(&m_nus, &adc_result[0], ADC_BUFFER_SIZE*2); } APP_ERROR_CHECK(nrf_drv_adc_buffer_convert(adc_buffer,ADC_BUFFER_SIZE)); LEDS_INVERT(BSP_LED_3_MASK); } } /** * @brief TIMER interrupt handler. */ void timer_handler(nrf_timer_event_t event_type, void* p_context) { } void adc_sampling_event_enable(void) { ret_code_t err_code = nrf_drv_ppi_channel_enable(m_ppi_channel); APP_ERROR_CHECK(err_code); } /** * @brief ADC initialization. */ static void adc_config(void) { ret_code_t ret_code; //Initialize ADC nrf_drv_adc_config_t config = NRF_DRV_ADC_DEFAULT_CONFIG; ret_code = nrf_drv_adc_init(&config, adc_event_handler); APP_ERROR_CHECK(ret_code); //Configure and enable ADC channel 0 static nrf_drv_adc_channel_t m_channel_0_config = NRF_DRV_ADC_DEFAULT_CHANNEL(NRF_ADC_CONFIG_INPUT_0); m_channel_0_config.config.config.input = NRF_ADC_CONFIG_SCALING_INPUT_FULL_SCALE; nrf_drv_adc_channel_enable(&m_channel_0_config); //Configure and enable ADC channel 1 static nrf_drv_adc_channel_t m_channel_1_config = NRF_DRV_ADC_DEFAULT_CHANNEL(NRF_ADC_CONFIG_INPUT_1); m_channel_1_config.config.config.input = NRF_ADC_CONFIG_SCALING_INPUT_FULL_SCALE; nrf_drv_adc_channel_enable(&m_channel_1_config); //Configure and enable ADC channel 2 static nrf_drv_adc_channel_t m_channel_2_config = NRF_DRV_ADC_DEFAULT_CHANNEL(NRF_ADC_CONFIG_INPUT_2); m_channel_2_config.config.config.input = NRF_ADC_CONFIG_SCALING_INPUT_FULL_SCALE; nrf_drv_adc_channel_enable(&m_channel_2_config); //Configure and enable ADC channel 3 static nrf_drv_adc_channel_t m_channel_3_config = NRF_DRV_ADC_DEFAULT_CHANNEL(NRF_ADC_CONFIG_INPUT_3); m_channel_3_config.config.config.input = NRF_ADC_CONFIG_SCALING_INPUT_FULL_SCALE; nrf_drv_adc_channel_enable(&m_channel_3_config); //Configure and enable ADC channel 4 static nrf_drv_adc_channel_t m_channel_4_config = NRF_DRV_ADC_DEFAULT_CHANNEL(NRF_ADC_CONFIG_INPUT_4); m_channel_4_config.config.config.input = NRF_ADC_CONFIG_SCALING_INPUT_FULL_SCALE; nrf_drv_adc_channel_enable(&m_channel_4_config); //Configure and enable ADC channel 5 static nrf_drv_adc_channel_t m_channel_5_config = NRF_DRV_ADC_DEFAULT_CHANNEL(NRF_ADC_CONFIG_INPUT_5); m_channel_5_config.config.config.input = NRF_ADC_CONFIG_SCALING_INPUT_FULL_SCALE; nrf_drv_adc_channel_enable(&m_channel_5_config); //Configure and enable ADC channel 6 static nrf_drv_adc_channel_t m_channel_6_config = NRF_DRV_ADC_DEFAULT_CHANNEL(NRF_ADC_CONFIG_INPUT_6); m_channel_6_config.config.config.input = NRF_ADC_CONFIG_SCALING_INPUT_FULL_SCALE; nrf_drv_adc_channel_enable(&m_channel_6_config); //Configure and enable ADC channel 7 static nrf_drv_adc_channel_t m_channel_7_config = NRF_DRV_ADC_DEFAULT_CHANNEL(NRF_ADC_CONFIG_INPUT_7); m_channel_7_config.config.config.input = NRF_ADC_CONFIG_SCALING_INPUT_FULL_SCALE; nrf_drv_adc_channel_enable(&m_channel_7_config); number_of_adc_channels = 8; //Set equal to the number of configured ADC channels, for the sake of UART output. } /** * @brief Setup sampling events. */ void adc_sampling_event_init(void) { ret_code_t err_code; err_code = nrf_drv_ppi_init(); APP_ERROR_CHECK(err_code); nrf_drv_timer_config_t timer_cfg = NRF_DRV_TIMER_DEFAULT_CONFIG; err_code = nrf_drv_timer_init(&m_timer, &timer_cfg, timer_handler); APP_ERROR_CHECK(err_code); /* setup m_timer for compare event */ uint32_t time_ticks = nrf_drv_timer_ms_to_ticks(&m_timer, ADC_SAMPLE_RATE); nrf_drv_timer_extended_compare(&m_timer, NRF_TIMER_CC_CHANNEL0, time_ticks, NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK, true); nrf_drv_timer_enable(&m_timer); uint32_t timer_compare_event_addr = nrf_drv_timer_compare_event_address_get(&m_timer, NRF_TIMER_CC_CHANNEL0); uint32_t adc_sample_event_addr = nrf_drv_adc_start_task_get(); /* setup ppi channel so that timer compare event is triggering sample task in SAADC */ err_code = nrf_drv_ppi_channel_alloc(&m_ppi_channel); APP_ERROR_CHECK(err_code); err_code = nrf_drv_ppi_channel_assign(m_ppi_channel, timer_compare_event_addr, adc_sample_event_addr); //NRF_ADC->TASKS_START); APP_ERROR_CHECK(err_code); } /**@brief Application main function. */ int main(void) { uint32_t err_code; bool erase_bonds; // Initialize. APP_TIMER_INIT(APP_TIMER_PRESCALER, APP_TIMER_OP_QUEUE_SIZE, false); uart_init(); buttons_leds_init(&erase_bonds); ble_stack_init(); gap_params_init(); services_init(); advertising_init(); conn_params_init(); adc_sampling_event_init(); adc_config(); APP_ERROR_CHECK(nrf_drv_adc_buffer_convert(adc_buffer,ADC_BUFFER_SIZE)); adc_sampling_event_enable(); printf("\r\nUART Start - with ADC !\r\n"); err_code = ble_advertising_start(BLE_ADV_MODE_FAST); APP_ERROR_CHECK(err_code); // Enter main loop. for (;;) { power_manage(); } } /** * @} */
I have noted that the current consumption is too hight for my scope (about 1.7mA). My idea is to 'reduce' the code with only acquisition of 6 ADC and trasmission it via Bluetooth. I know there is the possibility to siwitch off the UART but I don't know what is the section to make it. An other possibility to reduce the current consumption is to imprve the adbvertising internval. So is it possible to improve the SLAVE_LATENCy from 0 to 4?
Are there other point useful for my scope? My scope is acquisiton the 6 ADC channel and trasmittion data via bluetooth.
Thanks a lot and best regards
Angelo