Hi everyone,
I modified example code ble_apps_bps and introduced a GPIO interrupt, I want to sniff I2c communication (bit banging) but my ISR is triggered with a very long latency.
For experimentation I am trying to sniff just only SCL line, when I receive it I am setting-resetting another pin. So, you can see the delay from here ==> Logic Analyzer Output
Please help me, I spend more than 2 weeks but there is no result
void in_pin_scl_handler(nrf_drv_gpiote_pin_t pin, nrf_gpiote_polarity_t action) { nrf_drv_gpiote_out_set(PIN_OUT); nrf_drv_gpiote_out_clear(PIN_OUT); } static void my_gpio_init(void) { ret_code_t err_code; nrf_drv_gpiote_in_config_t in_config = GPIOTE_CONFIG_IN_SENSE_LOTOHI(true); in_config.pull = NRF_GPIO_PIN_PULLUP; err_code = nrf_drv_gpiote_in_init(PIN_SCL, &in_config, in_pin_scl_handler); APP_ERROR_CHECK(err_code); nrf_drv_gpiote_in_event_enable(PIN_SCL, true); nrf_drv_gpiote_out_config_t out_config = GPIOTE_CONFIG_OUT_SIMPLE(true); err_code = nrf_drv_gpiote_out_init(PIN_OUT, &out_config); APP_ERROR_CHECK(err_code); } int main(void) { bool erase_bonds; // Initialize. log_init(); timers_init(); buttons_leds_init(&erase_bonds); my_gpio_init(); power_management_init(); ble_stack_init(); gap_params_init(); gatt_init(); advertising_init(); services_init(); sensor_simulator_init(); conn_params_init(); peer_manager_init(); // Start execution. NRF_LOG_INFO("Blood Pressure example started."); application_timers_start(); advertising_start(erase_bonds); // Enter main loop. for (;;) { idle_state_handle(); } }
Full Source Code main.c :
#include <stdint.h> #include <string.h> #include "nordic_common.h" #include "nrf.h" #include "app_error.h" #include "ble.h" #include "ble_err.h" #include "ble_hci.h" #include "ble_srv_common.h" #include "ble_advdata.h" #include "ble_advertising.h" #include "ble_bas.h" #include "ble_bps.h" #include "ble_dis.h" #include "ble_conn_params.h" #include "sensorsim.h" #include "nrf_sdh.h" #include "nrf_sdh_soc.h" #include "nrf_sdh_ble.h" #include "app_timer.h" #include "peer_manager.h" #include "peer_manager_handler.h" #include "bsp_btn_ble.h" #include "fds.h" #include "ble_conn_state.h" #include "nrf_ble_gatt.h" #include "nrf_ble_qwr.h" #include "nrf_pwr_mgmt.h" #include "nrf_log.h" #include "nrf_log_ctrl.h" #include "nrf_log_default_backends.h" #include "nrf_drv_gpiote.h" #define DEVICE_NAME "Nordic_BPS" /**< Name of device. Will be included in the advertising data. */ #define MANUFACTURER_NAME "NordicSemiconductor" /**< Manufacturer. Will be passed to Device Information Service. */ #define MODEL_NUM "NS-BPS-EXAMPLE" /**< Model number. Will be passed to Device Information Service. */ #define MANUFACTURER_ID 0x1122334455 /**< Manufacturer ID, part of System ID. Will be passed to Device Information Service. */ #define ORG_UNIQUE_ID 0x667788 /**< Organizational Unique ID, part of System ID. Will be passed to Device Information Service. */ #define APP_BLE_OBSERVER_PRIO 3 /**< Application's BLE observer priority. You shouldn't need to modify this value. */ #define APP_BLE_CONN_CFG_TAG 1 /**< A tag identifying the SoftDevice BLE configuration. */ #define APP_ADV_INTERVAL 40 /**< The advertising interval (in units of 0.625 ms. This value corresponds to 25 ms). */ #define APP_ADV_DURATION 18000 /**< The advertising duration (180 seconds) in units of 10 milliseconds. */ #define NUM_SIM_MEAS_VALUES 4 /**< Number of simulated measurements to cycle through. */ #define SIM_MEAS_1_SYSTOLIC 117 /**< Simulated measurement value for systolic pressure. */ #define SIM_MEAS_1_DIASTOLIC 76 /**< Simulated measurement value for diastolic pressure. */ #define SIM_MEAS_1_MEAN_AP 103 /**< Simulated measurement value for mean arterial pressure. */ #define SIM_MEAS_1_PULSE_RATE 60 /**< Simulated measurement value for pulse rate. */ #define SIM_MEAS_2_SYSTOLIC 121 /**< Simulated measurement value for systolic pressure. */ #define SIM_MEAS_2_DIASTOLIC 81 /**< Simulated measurement value for diastolic pressure. */ #define SIM_MEAS_2_MEAN_AP 106 /**< Simulated measurement value for mean arterial pressure. */ #define SIM_MEAS_2_PULSE_RATE 72 /**< Simulated measurement value for pulse rate. */ #define SIM_MEAS_3_SYSTOLIC 138 /**< Simulated measurement value for systolic pressure. */ #define SIM_MEAS_3_DIASTOLIC 88 /**< Simulated measurement value for diastolic pressure. */ #define SIM_MEAS_3_MEAN_AP 120 /**< Simulated measurement value for mean arterial pressure. */ #define SIM_MEAS_3_PULSE_RATE 105 /**< Simulated measurement value for pulse rate. */ #define SIM_MEAS_4_SYSTOLIC 145 /**< Simulated measurement value for systolic pressure. */ #define SIM_MEAS_4_DIASTOLIC 100 /**< Simulated measurement value for diastolic pressure. */ #define SIM_MEAS_4_MEAN_AP 131 /**< Simulated measurement value for mean arterial pressure. */ #define SIM_MEAS_4_PULSE_RATE 125 /**< Simulated measurement value for pulse rate. */ #define BATTERY_LEVEL_MEAS_INTERVAL APP_TIMER_TICKS(2000) /**< Battery level measurement interval (ticks). */ #define MIN_BATTERY_LEVEL 81 /**< Minimum battery level as returned by the simulated measurement function. */ #define MAX_BATTERY_LEVEL 100 /**< Maximum battery level as returned by the simulated measurement function. */ #define BATTERY_LEVEL_INCREMENT 1 /**< Value by which the battery level is incremented/decremented for each call to the simulated measurement function. */ #define MIN_CONN_INTERVAL MSEC_TO_UNITS(500, UNIT_1_25_MS) /**< Minimum acceptable connection interval (0.5 seconds). */ #define MAX_CONN_INTERVAL MSEC_TO_UNITS(1000, UNIT_1_25_MS) /**< Maximum acceptable connection interval (1 second). */ #define SLAVE_LATENCY 0 /**< Slave latency. */ #define CONN_SUP_TIMEOUT MSEC_TO_UNITS(4000, UNIT_10_MS) /**< Connection supervisory timeout (4 seconds). */ #define FIRST_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(5000) /**< Time from initiating event (connect or start of indication) to first time sd_ble_gap_conn_param_update is called (5 seconds). */ #define NEXT_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(30000) /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */ #define MAX_CONN_PARAMS_UPDATE_COUNT 3 /**< Number of attempts before giving up the connection parameter negotiation. */ #define SEC_PARAM_BOND 1 /**< Perform bonding. */ #define SEC_PARAM_MITM 0 /**< Man In The Middle protection not required. */ #define SEC_PARAM_LESC 0 /**< LE Secure Connections not enabled. */ #define SEC_PARAM_KEYPRESS 0 /**< Keypress notifications not enabled. */ #define SEC_PARAM_IO_CAPABILITIES BLE_GAP_IO_CAPS_NONE /**< No I/O capabilities. */ #define SEC_PARAM_OOB 0 /**< Out Of Band data not available. */ #define SEC_PARAM_MIN_KEY_SIZE 7 /**< Minimum encryption key size. */ #define SEC_PARAM_MAX_KEY_SIZE 16 /**< Maximum encryption key size. */ #define DEAD_BEEF 0xDEADBEEF /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */ #define PIN_SDA 25 #define PIN_SCL 26 #define PIN_OUT 27 #define SIZE_OF_BUFFER 2048 // Maximum size of buffer volatile unsigned char circularBuffer[SIZE_OF_BUFFER] = { 0 }; // Empty circular buffer volatile int readIndex = 0; // Index of the read pointer volatile int writeIndex = 0; // Index of the write pointer volatile int bufferLength = 0; // Number of values in circular buffer /**@brief Structure for a simulated blood pressure measurment. An instance of this struct is filled out before sending a notification to the peer with ble_bps_measurement_send. */ typedef struct { ieee_float16_t systolic; ieee_float16_t diastolic; ieee_float16_t mean_arterial; ieee_float16_t pulse_rate; } bps_meas_sim_value_t; APP_TIMER_DEF(m_battery_timer_id); /**< Battery timer. */ BLE_BAS_DEF(m_bas); /**< Structure used to identify the battery service. */ BLE_BPS_DEF(m_bps); /**< Structure used to identify the blood pressure service. */ NRF_BLE_GATT_DEF(m_gatt); /**< GATT module instance. */ NRF_BLE_QWR_DEF(m_qwr); /**< Context for the Queued Write module.*/ BLE_ADVERTISING_DEF(m_advertising); /**< Advertising module instance. */ NRF_BLE_GQ_DEF(m_ble_gatt_queue, /**< BLE GATT Queue instance. */ NRF_SDH_BLE_PERIPHERAL_LINK_COUNT, NRF_BLE_GQ_QUEUE_SIZE); static uint16_t m_conn_handle = BLE_CONN_HANDLE_INVALID; /**< Handle of the current connection. */ static bps_meas_sim_value_t m_bps_meas_sim_val[NUM_SIM_MEAS_VALUES]; /**< Blood Pressure simulated measurements. */ static bool m_bps_meas_ind_conf_pending = false; /**< Flag to keep track of when an indication confirmation is pending. */ static sensorsim_cfg_t m_battery_sim_cfg; /**< Battery Level sensor simulator configuration. */ static sensorsim_state_t m_battery_sim_state; /**< Battery Level sensor simulator state. */ static ble_uuid_t m_adv_uuids[] = /**< Universally unique service identifiers. */ { {BLE_UUID_BLOOD_PRESSURE_SERVICE, BLE_UUID_TYPE_BLE}, {BLE_UUID_BATTERY_SERVICE, BLE_UUID_TYPE_BLE}, {BLE_UUID_DEVICE_INFORMATION_SERVICE, BLE_UUID_TYPE_BLE} }; static void advertising_start(bool erase_bonds); static void blood_pressure_measurement_send(void); /**@brief Callback function for asserts in the SoftDevice. * * @details This function will be called in case of an assert in the SoftDevice. * * @warning This handler is an example only and does not fit a final product. You need to analyze * how your product is supposed to react in case of Assert. * @warning On assert from the SoftDevice, the system can only recover on reset. * * @param[in] line_num Line number of the failing ASSERT call. * @param[in] file_name File name of the failing ASSERT call. */ void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name) { app_error_handler(DEAD_BEEF, line_num, p_file_name); } /**@brief Function for handling Service errors. * * @details A pointer to this function will be passed to each service which may need to inform the * application about an error. * * @param[in] nrf_error Error code containing information about what went wrong. */ static void service_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } /**@brief Function for handling Peer Manager events. * * @param[in] p_evt Peer Manager event. */ static void pm_evt_handler(pm_evt_t const * p_evt) { ret_code_t err_code; bool is_indication_enabled; pm_handler_on_pm_evt(p_evt); pm_handler_flash_clean(p_evt); switch (p_evt->evt_id) { case PM_EVT_CONN_SEC_SUCCEEDED: // Send a single blood pressure measurement if indication is enabled. // NOTE: For this to work, make sure ble_bps_on_ble_evt() is called before // ble_bondmngr_on_ble_evt() in ble_evt_dispatch(). err_code = ble_bps_is_indication_enabled(&m_bps, &is_indication_enabled); APP_ERROR_CHECK(err_code); if (is_indication_enabled) { blood_pressure_measurement_send(); } break; case PM_EVT_PEERS_DELETE_SUCCEEDED: advertising_start(false); break; default: break; } } /**@brief Function for performing battery measurement and updating the Battery Level characteristic * in Battery Service. */ static void battery_level_update(void) { ret_code_t err_code; uint8_t battery_level; battery_level = (uint8_t)sensorsim_measure(&m_battery_sim_state, &m_battery_sim_cfg); err_code = ble_bas_battery_level_update(&m_bas, battery_level, BLE_CONN_HANDLE_ALL); if ((err_code != NRF_SUCCESS) && (err_code != NRF_ERROR_INVALID_STATE) && (err_code != NRF_ERROR_RESOURCES) && (err_code != BLE_ERROR_GATTS_SYS_ATTR_MISSING) ) { APP_ERROR_HANDLER(err_code); } } /**@brief Function for handling the Battery measurement timer timeout. * * @details This function will be called each time the battery level measurement timer expires. * * @param[in] p_context Pointer used for passing some arbitrary information (context) from the * app_start_timer() call to the timeout handler. */ static void battery_level_meas_timeout_handler(void * p_context) { UNUSED_PARAMETER(p_context); battery_level_update(); } /**@brief Function for populating simulated blood pressure measurements. */ static void bps_sim_measurement(ble_bps_meas_t * p_meas) { static ble_date_time_t s_time_stamp = { 2012, 12, 5, 11, 05, 03 }; static uint8_t s_ndx = 0; p_meas->blood_pressure_units_in_kpa = false; p_meas->time_stamp_present = (s_ndx == 0) || (s_ndx == 2); p_meas->pulse_rate_present = (s_ndx == 0) || (s_ndx == 1); p_meas->user_id_present = false; p_meas->measurement_status_present = false; p_meas->blood_pressure_systolic.mantissa = m_bps_meas_sim_val[s_ndx].systolic.mantissa; p_meas->blood_pressure_systolic.exponent = m_bps_meas_sim_val[s_ndx].systolic.exponent; p_meas->blood_pressure_diastolic.mantissa = m_bps_meas_sim_val[s_ndx].diastolic.mantissa; p_meas->blood_pressure_diastolic.exponent = m_bps_meas_sim_val[s_ndx].diastolic.exponent; p_meas->mean_arterial_pressure.mantissa = m_bps_meas_sim_val[s_ndx].mean_arterial.mantissa; p_meas->mean_arterial_pressure.exponent = m_bps_meas_sim_val[s_ndx].mean_arterial.exponent; p_meas->time_stamp = s_time_stamp; p_meas->pulse_rate.mantissa = m_bps_meas_sim_val[s_ndx].pulse_rate.mantissa; p_meas->pulse_rate.exponent = m_bps_meas_sim_val[s_ndx].pulse_rate.exponent; // Update index to simulated measurements. s_ndx++; if (s_ndx == NUM_SIM_MEAS_VALUES) { s_ndx = 0; } // Update simulated time stamp. s_time_stamp.seconds += 27; if (s_time_stamp.seconds > 59) { s_time_stamp.seconds -= 60; s_time_stamp.minutes++; if (s_time_stamp.minutes > 59) { s_time_stamp.minutes = 0; } } } /**@brief Function for the Timer initialization. * * @details Initializes the timer module. This creates and starts application timers. */ static void timers_init(void) { ret_code_t err_code; // Initialize timer module. err_code = app_timer_init(); APP_ERROR_CHECK(err_code); // Create timers. err_code = app_timer_create(&m_battery_timer_id, APP_TIMER_MODE_REPEATED, battery_level_meas_timeout_handler); APP_ERROR_CHECK(err_code); } /**@brief Function for the GAP initialization. * * @details This function sets up all the necessary GAP (Generic Access Profile) parameters of the * device including the device name, appearance, and the preferred connection parameters. */ static void gap_params_init(void) { uint32_t err_code; ble_gap_conn_params_t gap_conn_params; ble_gap_conn_sec_mode_t sec_mode; BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode); err_code = sd_ble_gap_device_name_set(&sec_mode, (const uint8_t *)DEVICE_NAME, strlen(DEVICE_NAME)); APP_ERROR_CHECK(err_code); err_code = sd_ble_gap_appearance_set(BLE_APPEARANCE_GENERIC_BLOOD_PRESSURE); APP_ERROR_CHECK(err_code); memset(&gap_conn_params, 0, sizeof(gap_conn_params)); gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL; gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL; gap_conn_params.slave_latency = SLAVE_LATENCY; gap_conn_params.conn_sup_timeout = CONN_SUP_TIMEOUT; err_code = sd_ble_gap_ppcp_set(&gap_conn_params); APP_ERROR_CHECK(err_code); } /**@brief Function for initializing the GATT module. */ static void gatt_init(void) { ret_code_t err_code = nrf_ble_gatt_init(&m_gatt, NULL); APP_ERROR_CHECK(err_code); } /**@brief Function for simulating and sending one Blood Pressure Measurement. */ static void blood_pressure_measurement_send(void) { ble_bps_meas_t simulated_meas; uint32_t err_code; bool is_indication_enabled; err_code = ble_bps_is_indication_enabled(&m_bps, &is_indication_enabled); APP_ERROR_CHECK(err_code); if (is_indication_enabled && !m_bps_meas_ind_conf_pending) { bps_sim_measurement(&simulated_meas); err_code = ble_bps_measurement_send(&m_bps, &simulated_meas); switch (err_code) { case NRF_SUCCESS: // Measurement was successfully sent, wait for confirmation. m_bps_meas_ind_conf_pending = true; break; case NRF_ERROR_INVALID_STATE: // Ignore error. break; default: APP_ERROR_HANDLER(err_code); break; } } } /**@brief Function for handling the Blood Pressure Service events. * * @details This function will be called for all Blood Pressure Service events which are passed to * the application. * * @param[in] p_bps Blood Pressure Service structure. * @param[in] p_evt Event received from the Blood Pressure Service. */ static void on_bps_evt(ble_bps_t * p_bps, ble_bps_evt_t * p_evt) { switch (p_evt->evt_type) { case BLE_BPS_EVT_INDICATION_ENABLED: // Indication has been enabled, send a single blood pressure measurement. blood_pressure_measurement_send(); break; case BLE_BPS_EVT_INDICATION_CONFIRMED: m_bps_meas_ind_conf_pending = false; break; default: // No implementation needed. break; } } /**@brief Function for handling Queued Write Module errors. * * @details A pointer to this function will be passed to each service which may need to inform the * application about an error. * * @param[in] nrf_error Error code containing information about what went wrong. */ static void nrf_qwr_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } /**@brief Function for initializing services that will be used by the application. * * @details Initialize the Blood Pressure, Battery, and Device Information services. */ static void services_init(void) { uint32_t err_code; ble_bps_init_t bps_init; ble_bas_init_t bas_init; ble_dis_init_t dis_init; ble_dis_sys_id_t sys_id; nrf_ble_qwr_init_t qwr_init = {0}; // Initialize Queued Write Module qwr_init.error_handler = nrf_qwr_error_handler; err_code = nrf_ble_qwr_init(&m_qwr, &qwr_init); APP_ERROR_CHECK(err_code); // Initialize Blood Pressure Service. memset(&bps_init, 0, sizeof(bps_init)); bps_init.evt_handler = on_bps_evt; bps_init.error_handler = service_error_handler; bps_init.p_gatt_queue = &m_ble_gatt_queue; bps_init.feature = BLE_BPS_FEATURE_BODY_MOVEMENT_BIT | BLE_BPS_FEATURE_MEASUREMENT_POSITION_BIT; // Here the sec level for the Blood Pressure Service can be changed/increased. bps_init.bp_cccd_wr_sec = SEC_JUST_WORKS; bps_init.bp_feature_rd_sec = SEC_OPEN; err_code = ble_bps_init(&m_bps, &bps_init); APP_ERROR_CHECK(err_code); // Initialize Battery Service. memset(&bas_init, 0, sizeof(bas_init)); // Here the sec level for the Battery Service can be changed/increased. bas_init.bl_rd_sec = SEC_OPEN; bas_init.bl_cccd_wr_sec = SEC_OPEN; bas_init.bl_report_rd_sec = SEC_OPEN; bas_init.evt_handler = NULL; bas_init.support_notification = true; bas_init.p_report_ref = NULL; bas_init.initial_batt_level = 100; err_code = ble_bas_init(&m_bas, &bas_init); APP_ERROR_CHECK(err_code); // Initialize Device Information Service. memset(&dis_init, 0, sizeof(dis_init)); ble_srv_ascii_to_utf8(&dis_init.manufact_name_str, MANUFACTURER_NAME); ble_srv_ascii_to_utf8(&dis_init.model_num_str, MODEL_NUM); sys_id.manufacturer_id = MANUFACTURER_ID; sys_id.organizationally_unique_id = ORG_UNIQUE_ID; dis_init.p_sys_id = &sys_id; dis_init.dis_char_rd_sec = SEC_OPEN; err_code = ble_dis_init(&dis_init); APP_ERROR_CHECK(err_code); } /**@brief Function for initializing the sensor simulators. */ static void sensor_simulator_init(void) { m_battery_sim_cfg.min = MIN_BATTERY_LEVEL; m_battery_sim_cfg.max = MAX_BATTERY_LEVEL; m_battery_sim_cfg.incr = BATTERY_LEVEL_INCREMENT; m_battery_sim_cfg.start_at_max = true; sensorsim_init(&m_battery_sim_state, &m_battery_sim_cfg); // Simulated measurement #1. m_bps_meas_sim_val[0].systolic.mantissa = SIM_MEAS_1_SYSTOLIC; m_bps_meas_sim_val[0].systolic.exponent = 0; m_bps_meas_sim_val[0].diastolic.mantissa = SIM_MEAS_1_DIASTOLIC; m_bps_meas_sim_val[0].diastolic.exponent = 0; m_bps_meas_sim_val[0].mean_arterial.mantissa = SIM_MEAS_1_MEAN_AP; m_bps_meas_sim_val[0].mean_arterial.exponent = 0; m_bps_meas_sim_val[0].pulse_rate.mantissa = SIM_MEAS_1_PULSE_RATE; m_bps_meas_sim_val[0].pulse_rate.exponent = 0; // Simulated measurement #2. m_bps_meas_sim_val[1].systolic.mantissa = SIM_MEAS_2_SYSTOLIC; m_bps_meas_sim_val[1].systolic.exponent = 0; m_bps_meas_sim_val[1].diastolic.mantissa = SIM_MEAS_2_DIASTOLIC; m_bps_meas_sim_val[1].diastolic.exponent = 0; m_bps_meas_sim_val[1].mean_arterial.mantissa = SIM_MEAS_2_MEAN_AP; m_bps_meas_sim_val[1].mean_arterial.exponent = 0; m_bps_meas_sim_val[1].pulse_rate.mantissa = SIM_MEAS_2_PULSE_RATE; m_bps_meas_sim_val[1].pulse_rate.exponent = 0; // Simulated measurement #3. m_bps_meas_sim_val[2].systolic.mantissa = SIM_MEAS_3_SYSTOLIC; m_bps_meas_sim_val[2].systolic.exponent = 0; m_bps_meas_sim_val[2].diastolic.mantissa = SIM_MEAS_3_DIASTOLIC; m_bps_meas_sim_val[2].diastolic.exponent = 0; m_bps_meas_sim_val[2].mean_arterial.mantissa = SIM_MEAS_3_MEAN_AP; m_bps_meas_sim_val[2].mean_arterial.exponent = 0; m_bps_meas_sim_val[2].pulse_rate.mantissa = SIM_MEAS_3_PULSE_RATE; m_bps_meas_sim_val[2].pulse_rate.exponent = 0; // Simulated measurement #4. m_bps_meas_sim_val[3].systolic.mantissa = SIM_MEAS_4_SYSTOLIC; m_bps_meas_sim_val[3].systolic.exponent = 0; m_bps_meas_sim_val[3].diastolic.mantissa = SIM_MEAS_4_DIASTOLIC; m_bps_meas_sim_val[3].diastolic.exponent = 0; m_bps_meas_sim_val[3].mean_arterial.mantissa = SIM_MEAS_4_MEAN_AP; m_bps_meas_sim_val[3].mean_arterial.exponent = 0; m_bps_meas_sim_val[3].pulse_rate.mantissa = SIM_MEAS_4_PULSE_RATE; m_bps_meas_sim_val[3].pulse_rate.exponent = 0; } /**@brief Function for starting application timers. */ static void application_timers_start(void) { ret_code_t err_code; // Start application timers. err_code = app_timer_start(m_battery_timer_id, BATTERY_LEVEL_MEAS_INTERVAL, NULL); APP_ERROR_CHECK(err_code); } /**@brief Function for handling the Connection Parameter events. * * @details This function will be called for all events in the Connection Parameters Module which * are passed to the application. * @note All this function does is to disconnect. This could have been done by simply * setting the disconnect_on_fail configuration parameter, but instead we use the * event handler mechanism to demonstrate its use. * * @param[in] p_evt Event received from the Connection Parameters Module. */ static void on_conn_params_evt(ble_conn_params_evt_t * p_evt) { ret_code_t err_code; if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED) { err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE); APP_ERROR_CHECK(err_code); } } /**@brief Function for handling a Connection Parameters error. * * @param[in] nrf_error Error code containing information about what went wrong. */ static void conn_params_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } /**@brief Function for initializing the Connection Parameters module. */ static void conn_params_init(void) { uint32_t err_code; ble_conn_params_init_t connection_params_init; memset(&connection_params_init, 0, sizeof(connection_params_init)); connection_params_init.p_conn_params = NULL; connection_params_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY; connection_params_init.next_conn_params_update_delay = NEXT_CONN_PARAMS_UPDATE_DELAY; connection_params_init.max_conn_params_update_count = MAX_CONN_PARAMS_UPDATE_COUNT; connection_params_init.start_on_notify_cccd_handle = BLE_GATT_HANDLE_INVALID; connection_params_init.disconnect_on_fail = false; connection_params_init.evt_handler = on_conn_params_evt; connection_params_init.error_handler = conn_params_error_handler; err_code = ble_conn_params_init(&connection_params_init); APP_ERROR_CHECK(err_code); } /**@brief Function for putting the chip into sleep mode. * * @note This function will not return. */ static void sleep_mode_enter(void) { // ret_code_t err_code = bsp_indication_set(BSP_INDICATE_IDLE); // APP_ERROR_CHECK(err_code); // // Prepare wakeup buttons. // err_code = bsp_btn_ble_sleep_mode_prepare(); // APP_ERROR_CHECK(err_code); // // Go to system-off mode (this function will not return; wakeup will cause a reset). // err_code = sd_power_system_off(); // APP_ERROR_CHECK(err_code); } /**@brief Function for handling advertising events. * * @details This function will be called for advertising events which are passed to the application. * * @param[in] ble_adv_evt Advertising event. */ static void on_adv_evt(ble_adv_evt_t ble_adv_evt) { ret_code_t err_code; switch (ble_adv_evt) { case BLE_ADV_EVT_FAST: NRF_LOG_INFO("Fast advertising"); err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING); APP_ERROR_CHECK(err_code); break; case BLE_ADV_EVT_IDLE: sleep_mode_enter(); break; default: break; } } /**@brief Function for handling BLE events. * * @param[in] p_ble_evt Bluetooth stack event. * @param[in] p_context Unused. */ static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context) { ret_code_t err_code = NRF_SUCCESS; switch (p_ble_evt->header.evt_id) { case BLE_GAP_EVT_CONNECTED: NRF_LOG_INFO("Connected"); err_code = bsp_indication_set(BSP_INDICATE_CONNECTED); APP_ERROR_CHECK(err_code); m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle; err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr, m_conn_handle); APP_ERROR_CHECK(err_code); break; case BLE_GAP_EVT_DISCONNECTED: NRF_LOG_INFO("Disconnected"); m_conn_handle = BLE_CONN_HANDLE_INVALID; m_bps_meas_ind_conf_pending = false; break; case BLE_GAP_EVT_PHY_UPDATE_REQUEST: { NRF_LOG_DEBUG("PHY update request."); ble_gap_phys_t const phys = { .rx_phys = BLE_GAP_PHY_AUTO, .tx_phys = BLE_GAP_PHY_AUTO, }; err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys); APP_ERROR_CHECK(err_code); } break; case BLE_GATTC_EVT_TIMEOUT: // Disconnect on GATT Client timeout event. NRF_LOG_DEBUG("GATT Client Timeout."); err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; case BLE_GATTS_EVT_TIMEOUT: // Disconnect on GATT Server timeout event. NRF_LOG_DEBUG("GATT Server Timeout."); err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; default: // No implementation needed. break; } } /**@brief Function for initializing the BLE stack. * * @details Initializes the SoftDevice and the BLE event interrupt. */ static void ble_stack_init(void) { ret_code_t err_code; err_code = nrf_sdh_enable_request(); APP_ERROR_CHECK(err_code); // Configure the BLE stack using the default settings. // Fetch the start address of the application RAM. uint32_t ram_start = 0; err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start); APP_ERROR_CHECK(err_code); // Enable BLE stack. err_code = nrf_sdh_ble_enable(&ram_start); APP_ERROR_CHECK(err_code); // Register a handler for BLE events. NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL); } /**@brief Function for handling events from the BSP module. * * @param[in] event Event generated by button press. */ static void bsp_event_handler(bsp_event_t event) { ret_code_t err_code; switch (event) { case BSP_EVENT_SLEEP: sleep_mode_enter(); break; case BSP_EVENT_DISCONNECT: err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); if (err_code != NRF_ERROR_INVALID_STATE) { APP_ERROR_CHECK(err_code); } break; case BSP_EVENT_WHITELIST_OFF: if (m_conn_handle == BLE_CONN_HANDLE_INVALID) { err_code = ble_advertising_restart_without_whitelist(&m_advertising); if (err_code != NRF_ERROR_INVALID_STATE) { APP_ERROR_CHECK(err_code); } } break; case BSP_EVENT_KEY_0: if (m_conn_handle != BLE_CONN_HANDLE_INVALID) { blood_pressure_measurement_send(); } break; default: break; } } /**@brief Function for the Peer Manager initialization. */ static void peer_manager_init(void) { ble_gap_sec_params_t sec_param; ret_code_t err_code; err_code = pm_init(); APP_ERROR_CHECK(err_code); memset(&sec_param, 0, sizeof(ble_gap_sec_params_t)); // Security parameters to be used for all security procedures. sec_param.bond = SEC_PARAM_BOND; sec_param.mitm = SEC_PARAM_MITM; sec_param.lesc = SEC_PARAM_LESC; sec_param.keypress = SEC_PARAM_KEYPRESS; sec_param.io_caps = SEC_PARAM_IO_CAPABILITIES; sec_param.oob = SEC_PARAM_OOB; sec_param.min_key_size = SEC_PARAM_MIN_KEY_SIZE; sec_param.max_key_size = SEC_PARAM_MAX_KEY_SIZE; sec_param.kdist_own.enc = 1; sec_param.kdist_own.id = 1; sec_param.kdist_peer.enc = 1; sec_param.kdist_peer.id = 1; err_code = pm_sec_params_set(&sec_param); APP_ERROR_CHECK(err_code); err_code = pm_register(pm_evt_handler); APP_ERROR_CHECK(err_code); } /**@brief Clear bond information from persistent storage. */ static void delete_bonds(void) { ret_code_t err_code; NRF_LOG_INFO("Erase bonds!"); err_code = pm_peers_delete(); APP_ERROR_CHECK(err_code); } /**@brief Function for initializing the Advertising functionality. */ static void advertising_init(void) { ret_code_t err_code; ble_advertising_init_t init; memset(&init, 0, sizeof(init)); init.advdata.name_type = BLE_ADVDATA_FULL_NAME; init.advdata.include_appearance = true; init.advdata.flags = BLE_GAP_ADV_FLAGS_LE_ONLY_GENERAL_DISC_MODE; init.advdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]); init.advdata.uuids_complete.p_uuids = m_adv_uuids; init.config.ble_adv_fast_enabled = true; init.config.ble_adv_fast_interval = APP_ADV_INTERVAL; init.config.ble_adv_fast_timeout = APP_ADV_DURATION; init.evt_handler = on_adv_evt; err_code = ble_advertising_init(&m_advertising, &init); APP_ERROR_CHECK(err_code); ble_advertising_conn_cfg_tag_set(&m_advertising, APP_BLE_CONN_CFG_TAG); } /**@brief Function for initializing buttons and leds. * * @param[out] p_erase_bonds Will be true if the clear bonding button was pressed to wake the application up. */ static void buttons_leds_init(bool * p_erase_bonds) { ret_code_t err_code; bsp_event_t startup_event; err_code = bsp_init(BSP_INIT_LEDS | BSP_INIT_BUTTONS, bsp_event_handler); APP_ERROR_CHECK(err_code); err_code = bsp_btn_ble_init(NULL, &startup_event); APP_ERROR_CHECK(err_code); *p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA); } /**@brief Function for initializing the nrf log module. */ static void log_init(void) { ret_code_t err_code = NRF_LOG_INIT(NULL); APP_ERROR_CHECK(err_code); NRF_LOG_DEFAULT_BACKENDS_INIT(); } /**@brief Function for initializing power management. */ static void power_management_init(void) { ret_code_t err_code; err_code = nrf_pwr_mgmt_init(); APP_ERROR_CHECK(err_code); } /**@brief Function for handling the idle state (main loop). * * @details If there is no pending log operation, then sleep until next the next event occurs. */ static void idle_state_handle(void) { if (NRF_LOG_PROCESS() == false) { nrf_pwr_mgmt_run(); } } /**@brief Function for starting advertising. */ static void advertising_start(bool erase_bonds) { if (erase_bonds == true) { delete_bonds(); // Advertising is started by PM_EVT_PEERS_DELETE_SUCCEEDED event. } else{ ret_code_t err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST); APP_ERROR_CHECK(err_code); } } volatile bool bitcount_changed = false; volatile unsigned int bitcount = 0; volatile bool sda_status = true; volatile bool scl_status = true; volatile bool comm_started = false; /* typedef enum { NRF_GPIOTE_POLARITY_LOTOHI = GPIOTE_CONFIG_POLARITY_LoToHi, ///< Low to high. NRF_GPIOTE_POLARITY_HITOLO = GPIOTE_CONFIG_POLARITY_HiToLo, ///< High to low. NRF_GPIOTE_POLARITY_TOGGLE = GPIOTE_CONFIG_POLARITY_Toggle ///< Toggle. } nrf_gpiote_polarity_t; */ /* void in_pin_sda_handler(nrf_drv_gpiote_pin_t pin, nrf_gpiote_polarity_t action) { //sda_status = nrf_gpio_pin_read(PIN_SDA); nrf_gpio_pin_toggle(PIN_OUT); // if(scl_status){ // if(!sda_status) // { // comm_started = true; // bitcount = 0; // } // else // { // comm_started = false; // if (bufferLength != SIZE_OF_BUFFER && bitcount > 8) { // write into ringbuffer // circularBuffer[writeIndex] = bitcount; // bufferLength++; // Increase buffer size after writing // writeIndex++; // Increase writeIndex position to prepare for next write // // If at last index in buffer, set writeIndex back to 0 // if (writeIndex == SIZE_OF_BUFFER) { // writeIndex = 0; // } // } // bitcount = 0; // } // } } */ void in_pin_scl_handler(nrf_drv_gpiote_pin_t pin, nrf_gpiote_polarity_t action) { nrf_drv_gpiote_out_set(PIN_OUT); nrf_drv_gpiote_out_clear(PIN_OUT); // if (scl_status && bufferLength != SIZE_OF_BUFFER) { // write into ringbuffer // circularBuffer[writeIndex] = sda_status; // bufferLength++; // Increase buffer size after writing // writeIndex++; // Increase writeIndex position to prepare for next write // // If at last index in buffer, set writeIndex back to 0 // if (writeIndex == SIZE_OF_BUFFER) { // writeIndex = 0; // } // } // if(scl_status && comm_started){ // bitcount++; // } } static void my_gpio_init(void) { ret_code_t err_code; // err_code = nrf_drv_gpiote_init(); // APP_ERROR_CHECK(err_code); nrf_drv_gpiote_in_config_t in_config = GPIOTE_CONFIG_IN_SENSE_LOTOHI(true); in_config.pull = NRF_GPIO_PIN_PULLUP; // err_code = nrf_drv_gpiote_in_init(PIN_SDA, &in_config, in_pin_sda_handler); // APP_ERROR_CHECK(err_code); err_code = nrf_drv_gpiote_in_init(PIN_SCL, &in_config, in_pin_scl_handler); APP_ERROR_CHECK(err_code); // nrf_drv_gpiote_in_event_enable(PIN_SDA, true); nrf_drv_gpiote_in_event_enable(PIN_SCL, true); nrf_drv_gpiote_out_config_t out_config = GPIOTE_CONFIG_OUT_SIMPLE(true); err_code = nrf_drv_gpiote_out_init(PIN_OUT, &out_config); APP_ERROR_CHECK(err_code); } /**@brief Function for application main entry. */ int main(void) { bool erase_bonds; // Initialize. log_init(); timers_init(); buttons_leds_init(&erase_bonds); my_gpio_init(); power_management_init(); ble_stack_init(); gap_params_init(); gatt_init(); advertising_init(); services_init(); sensor_simulator_init(); conn_params_init(); peer_manager_init(); // Start execution. NRF_LOG_INFO("Blood Pressure example started."); application_timers_start(); advertising_start(erase_bonds); // Enter main loop. for (;;) { idle_state_handle(); // if (bufferLength != 0){ // if(circularBuffer[readIndex] == 8) // { // NRF_LOG_INFO(">"); // } // else if (circularBuffer[readIndex] == 9) // { // NRF_LOG_INFO("<"); // } // else // { // NRF_LOG_INFO("%d",circularBuffer[readIndex]); // } // bufferLength--; // Decrease buffer size after reading // readIndex++; // Increase readIndex position to prepare for next read // // If at last index in buffer, set readIndex back to 0 // if (readIndex == SIZE_OF_BUFFER) { // readIndex = 0; // } // } } } /** * @} */
// <e> GPIOTE_ENABLED - nrf_drv_gpiote - GPIOTE peripheral driver - legacy layer //========================================================== #ifndef GPIOTE_ENABLED #define GPIOTE_ENABLED 1 #endif // <o> GPIOTE_CONFIG_NUM_OF_LOW_POWER_EVENTS - Number of lower power input pins #ifndef GPIOTE_CONFIG_NUM_OF_LOW_POWER_EVENTS #define GPIOTE_CONFIG_NUM_OF_LOW_POWER_EVENTS 6 #endif // <o> GPIOTE_CONFIG_IRQ_PRIORITY - Interrupt priority // <i> Priorities 0,2 (nRF51) and 0,1,4,5 (nRF52) are reserved for SoftDevice // <0=> 0 (highest) // <1=> 1 // <2=> 2 // <3=> 3 // <4=> 4 // <5=> 5 // <6=> 6 // <7=> 7 #ifndef GPIOTE_CONFIG_IRQ_PRIORITY #define GPIOTE_CONFIG_IRQ_PRIORITY 2 #endif