This post is older than 2 years and might not be relevant anymore
More Info: Consider searching for newer posts

NRF52832 Long GPIOTE Interrupt Delay - s132

Hi everyone,

I modified example code ble_apps_bps and introduced a GPIO interrupt, I want to sniff I2c communication (bit banging) but my ISR is triggered with a very long latency.

For experimentation I am trying to sniff just only SCL line, when I receive it I am setting-resetting another pin. So, you can see the delay from here ==> Logic Analyzer Output

Please help me, I spend more than 2 weeks but there is no result Disappointed

void in_pin_scl_handler(nrf_drv_gpiote_pin_t pin, nrf_gpiote_polarity_t action)
{
        nrf_drv_gpiote_out_set(PIN_OUT);
    
        nrf_drv_gpiote_out_clear(PIN_OUT);
   
}


static void my_gpio_init(void)
{
    ret_code_t err_code;

    nrf_drv_gpiote_in_config_t in_config = GPIOTE_CONFIG_IN_SENSE_LOTOHI(true);
    in_config.pull = NRF_GPIO_PIN_PULLUP;

    err_code = nrf_drv_gpiote_in_init(PIN_SCL, &in_config, in_pin_scl_handler);
    APP_ERROR_CHECK(err_code);

    
    nrf_drv_gpiote_in_event_enable(PIN_SCL, true);

    nrf_drv_gpiote_out_config_t out_config = GPIOTE_CONFIG_OUT_SIMPLE(true);

    err_code = nrf_drv_gpiote_out_init(PIN_OUT, &out_config);
    APP_ERROR_CHECK(err_code);


}



int main(void)
{
    bool     erase_bonds;

    // Initialize.
    log_init();
    timers_init();
    buttons_leds_init(&erase_bonds);

    my_gpio_init();

    power_management_init();
    ble_stack_init();
    gap_params_init();
    gatt_init();
    advertising_init();
    services_init();
    sensor_simulator_init();
    conn_params_init();
    peer_manager_init();

    // Start execution.
    NRF_LOG_INFO("Blood Pressure example started.");
    application_timers_start();

    advertising_start(erase_bonds);

    // Enter main loop.
    for (;;)
    {
        idle_state_handle();

    }
}

Full Source Code main.c :


#include <stdint.h>
#include <string.h>
#include "nordic_common.h"
#include "nrf.h"
#include "app_error.h"
#include "ble.h"
#include "ble_err.h"
#include "ble_hci.h"
#include "ble_srv_common.h"
#include "ble_advdata.h"
#include "ble_advertising.h"
#include "ble_bas.h"
#include "ble_bps.h"
#include "ble_dis.h"
#include "ble_conn_params.h"
#include "sensorsim.h"
#include "nrf_sdh.h"
#include "nrf_sdh_soc.h"
#include "nrf_sdh_ble.h"
#include "app_timer.h"
#include "peer_manager.h"
#include "peer_manager_handler.h"
#include "bsp_btn_ble.h"
#include "fds.h"
#include "ble_conn_state.h"
#include "nrf_ble_gatt.h"
#include "nrf_ble_qwr.h"
#include "nrf_pwr_mgmt.h"

#include "nrf_log.h"
#include "nrf_log_ctrl.h"
#include "nrf_log_default_backends.h"
#include "nrf_drv_gpiote.h"

#define DEVICE_NAME                     "Nordic_BPS"                            /**< Name of device. Will be included in the advertising data. */
#define MANUFACTURER_NAME               "NordicSemiconductor"                   /**< Manufacturer. Will be passed to Device Information Service. */
#define MODEL_NUM                       "NS-BPS-EXAMPLE"                        /**< Model number. Will be passed to Device Information Service. */
#define MANUFACTURER_ID                 0x1122334455                            /**< Manufacturer ID, part of System ID. Will be passed to Device Information Service. */
#define ORG_UNIQUE_ID                   0x667788                                /**< Organizational Unique ID, part of System ID. Will be passed to Device Information Service. */

#define APP_BLE_OBSERVER_PRIO           3                                       /**< Application's BLE observer priority. You shouldn't need to modify this value. */
#define APP_BLE_CONN_CFG_TAG            1                                       /**< A tag identifying the SoftDevice BLE configuration. */

#define APP_ADV_INTERVAL                40                                      /**< The advertising interval (in units of 0.625 ms. This value corresponds to 25 ms). */

#define APP_ADV_DURATION                18000                                   /**< The advertising duration (180 seconds) in units of 10 milliseconds. */

#define NUM_SIM_MEAS_VALUES             4                                       /**< Number of simulated measurements to cycle through. */

#define SIM_MEAS_1_SYSTOLIC             117                                     /**< Simulated measurement value for systolic pressure. */
#define SIM_MEAS_1_DIASTOLIC            76                                      /**< Simulated measurement value for diastolic pressure. */
#define SIM_MEAS_1_MEAN_AP              103                                     /**< Simulated measurement value for mean arterial pressure. */
#define SIM_MEAS_1_PULSE_RATE           60                                      /**< Simulated measurement value for pulse rate. */

#define SIM_MEAS_2_SYSTOLIC             121                                     /**< Simulated measurement value for systolic pressure. */
#define SIM_MEAS_2_DIASTOLIC            81                                      /**< Simulated measurement value for diastolic pressure. */
#define SIM_MEAS_2_MEAN_AP              106                                     /**< Simulated measurement value for mean arterial pressure. */
#define SIM_MEAS_2_PULSE_RATE           72                                      /**< Simulated measurement value for pulse rate. */

#define SIM_MEAS_3_SYSTOLIC             138                                     /**< Simulated measurement value for systolic pressure. */
#define SIM_MEAS_3_DIASTOLIC            88                                      /**< Simulated measurement value for diastolic pressure. */
#define SIM_MEAS_3_MEAN_AP              120                                     /**< Simulated measurement value for mean arterial pressure. */
#define SIM_MEAS_3_PULSE_RATE           105                                     /**< Simulated measurement value for pulse rate. */

#define SIM_MEAS_4_SYSTOLIC             145                                     /**< Simulated measurement value for systolic pressure. */
#define SIM_MEAS_4_DIASTOLIC            100                                     /**< Simulated measurement value for diastolic pressure. */
#define SIM_MEAS_4_MEAN_AP              131                                     /**< Simulated measurement value for mean arterial pressure. */
#define SIM_MEAS_4_PULSE_RATE           125                                     /**< Simulated measurement value for pulse rate. */

#define BATTERY_LEVEL_MEAS_INTERVAL     APP_TIMER_TICKS(2000)                   /**< Battery level measurement interval (ticks). */
#define MIN_BATTERY_LEVEL               81                                      /**< Minimum battery level as returned by the simulated measurement function. */
#define MAX_BATTERY_LEVEL               100                                     /**< Maximum battery level as returned by the simulated measurement function. */
#define BATTERY_LEVEL_INCREMENT         1                                       /**< Value by which the battery level is incremented/decremented for each call to the simulated measurement function. */

#define MIN_CONN_INTERVAL               MSEC_TO_UNITS(500, UNIT_1_25_MS)        /**< Minimum acceptable connection interval (0.5 seconds). */
#define MAX_CONN_INTERVAL               MSEC_TO_UNITS(1000, UNIT_1_25_MS)       /**< Maximum acceptable connection interval (1 second). */
#define SLAVE_LATENCY                   0                                       /**< Slave latency. */
#define CONN_SUP_TIMEOUT                MSEC_TO_UNITS(4000, UNIT_10_MS)         /**< Connection supervisory timeout (4 seconds). */

#define FIRST_CONN_PARAMS_UPDATE_DELAY  APP_TIMER_TICKS(5000)                   /**< Time from initiating event (connect or start of indication) to first time sd_ble_gap_conn_param_update is called (5 seconds). */
#define NEXT_CONN_PARAMS_UPDATE_DELAY   APP_TIMER_TICKS(30000)                  /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */
#define MAX_CONN_PARAMS_UPDATE_COUNT    3                                       /**< Number of attempts before giving up the connection parameter negotiation. */

#define SEC_PARAM_BOND                  1                                       /**< Perform bonding. */
#define SEC_PARAM_MITM                  0                                       /**< Man In The Middle protection not required. */
#define SEC_PARAM_LESC                  0                                       /**< LE Secure Connections not enabled. */
#define SEC_PARAM_KEYPRESS              0                                       /**< Keypress notifications not enabled. */
#define SEC_PARAM_IO_CAPABILITIES       BLE_GAP_IO_CAPS_NONE                    /**< No I/O capabilities. */
#define SEC_PARAM_OOB                   0                                       /**< Out Of Band data not available. */
#define SEC_PARAM_MIN_KEY_SIZE          7                                       /**< Minimum encryption key size. */
#define SEC_PARAM_MAX_KEY_SIZE          16                                      /**< Maximum encryption key size. */

#define DEAD_BEEF                       0xDEADBEEF                              /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */

#define PIN_SDA 25
#define PIN_SCL 26
#define PIN_OUT 27
#define SIZE_OF_BUFFER		    2048	// Maximum size of buffer
volatile unsigned char	circularBuffer[SIZE_OF_BUFFER] = { 0 };	// Empty circular buffer
volatile int	readIndex	    =	0;	// Index of the read pointer
volatile int	writeIndex	    =	0;	// Index of the write pointer
volatile int	bufferLength	=	0;	// Number of values in circular buffer

/**@brief Structure for a simulated blood pressure measurment. An instance of this struct is
          filled out before sending a notification to the peer with ble_bps_measurement_send.
 */
typedef struct
{
    ieee_float16_t systolic;
    ieee_float16_t diastolic;
    ieee_float16_t mean_arterial;
    ieee_float16_t pulse_rate;
} bps_meas_sim_value_t;


APP_TIMER_DEF(m_battery_timer_id);                                      /**< Battery timer. */
BLE_BAS_DEF(m_bas);                                                     /**< Structure used to identify the battery service. */
BLE_BPS_DEF(m_bps);                                                     /**< Structure used to identify the blood pressure service. */
NRF_BLE_GATT_DEF(m_gatt);                                               /**< GATT module instance. */
NRF_BLE_QWR_DEF(m_qwr);                                                 /**< Context for the Queued Write module.*/
BLE_ADVERTISING_DEF(m_advertising);                                     /**< Advertising module instance. */
NRF_BLE_GQ_DEF(m_ble_gatt_queue,                                        /**< BLE GATT Queue instance. */
               NRF_SDH_BLE_PERIPHERAL_LINK_COUNT,
               NRF_BLE_GQ_QUEUE_SIZE);

static uint16_t             m_conn_handle = BLE_CONN_HANDLE_INVALID;    /**< Handle of the current connection. */
static bps_meas_sim_value_t m_bps_meas_sim_val[NUM_SIM_MEAS_VALUES];    /**< Blood Pressure simulated measurements. */
static bool                 m_bps_meas_ind_conf_pending = false;        /**< Flag to keep track of when an indication confirmation is pending. */
static sensorsim_cfg_t      m_battery_sim_cfg;                          /**< Battery Level sensor simulator configuration. */
static sensorsim_state_t    m_battery_sim_state;                        /**< Battery Level sensor simulator state. */

static ble_uuid_t m_adv_uuids[] =                                       /**< Universally unique service identifiers. */
{
    {BLE_UUID_BLOOD_PRESSURE_SERVICE,     BLE_UUID_TYPE_BLE},
    {BLE_UUID_BATTERY_SERVICE,            BLE_UUID_TYPE_BLE},
    {BLE_UUID_DEVICE_INFORMATION_SERVICE, BLE_UUID_TYPE_BLE}
};


static void advertising_start(bool erase_bonds);
static void blood_pressure_measurement_send(void);

/**@brief Callback function for asserts in the SoftDevice.
 *
 * @details This function will be called in case of an assert in the SoftDevice.
 *
 * @warning This handler is an example only and does not fit a final product. You need to analyze
 *          how your product is supposed to react in case of Assert.
 * @warning On assert from the SoftDevice, the system can only recover on reset.
 *
 * @param[in]   line_num   Line number of the failing ASSERT call.
 * @param[in]   file_name  File name of the failing ASSERT call.
 */
void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name)
{
    app_error_handler(DEAD_BEEF, line_num, p_file_name);
}


/**@brief Function for handling Service errors.
 *
 * @details A pointer to this function will be passed to each service which may need to inform the
 *          application about an error.
 *
 * @param[in] nrf_error  Error code containing information about what went wrong.
 */
static void service_error_handler(uint32_t nrf_error)
{
    APP_ERROR_HANDLER(nrf_error);
}


/**@brief Function for handling Peer Manager events.
 *
 * @param[in] p_evt  Peer Manager event.
 */
static void pm_evt_handler(pm_evt_t const * p_evt)
{
    ret_code_t err_code;
    bool       is_indication_enabled;

    pm_handler_on_pm_evt(p_evt);
    pm_handler_flash_clean(p_evt);

    switch (p_evt->evt_id)
    {
        case PM_EVT_CONN_SEC_SUCCEEDED:
            // Send a single blood pressure measurement if indication is enabled.
            // NOTE: For this to work, make sure ble_bps_on_ble_evt() is called before
            // ble_bondmngr_on_ble_evt() in ble_evt_dispatch().
            err_code = ble_bps_is_indication_enabled(&m_bps, &is_indication_enabled);
            APP_ERROR_CHECK(err_code);

            if (is_indication_enabled)
            {
                blood_pressure_measurement_send();
            }
            break;

        case PM_EVT_PEERS_DELETE_SUCCEEDED:
            advertising_start(false);
            break;

        default:
            break;
    }
}


/**@brief Function for performing battery measurement and updating the Battery Level characteristic
 *        in Battery Service.
 */
static void battery_level_update(void)
{
    ret_code_t err_code;
    uint8_t  battery_level;

    battery_level = (uint8_t)sensorsim_measure(&m_battery_sim_state, &m_battery_sim_cfg);

    err_code = ble_bas_battery_level_update(&m_bas, battery_level, BLE_CONN_HANDLE_ALL);
    if ((err_code != NRF_SUCCESS) &&
        (err_code != NRF_ERROR_INVALID_STATE) &&
        (err_code != NRF_ERROR_RESOURCES) &&
        (err_code != BLE_ERROR_GATTS_SYS_ATTR_MISSING)
       )
    {
        APP_ERROR_HANDLER(err_code);
    }
}


/**@brief Function for handling the Battery measurement timer timeout.
 *
 * @details This function will be called each time the battery level measurement timer expires.
 *
 * @param[in]   p_context   Pointer used for passing some arbitrary information (context) from the
 *                          app_start_timer() call to the timeout handler.
 */
static void battery_level_meas_timeout_handler(void * p_context)
{
    UNUSED_PARAMETER(p_context);
    battery_level_update();
}


/**@brief Function for populating simulated blood pressure measurements.
 */
static void bps_sim_measurement(ble_bps_meas_t * p_meas)
{
    static ble_date_time_t s_time_stamp = { 2012, 12, 5, 11, 05, 03 };
    static uint8_t         s_ndx        = 0;

    p_meas->blood_pressure_units_in_kpa = false;
    p_meas->time_stamp_present          = (s_ndx == 0) || (s_ndx == 2);
    p_meas->pulse_rate_present          = (s_ndx == 0) || (s_ndx == 1);
    p_meas->user_id_present             = false;
    p_meas->measurement_status_present  = false;

    p_meas->blood_pressure_systolic.mantissa = m_bps_meas_sim_val[s_ndx].systolic.mantissa;
    p_meas->blood_pressure_systolic.exponent = m_bps_meas_sim_val[s_ndx].systolic.exponent;

    p_meas->blood_pressure_diastolic.mantissa = m_bps_meas_sim_val[s_ndx].diastolic.mantissa;
    p_meas->blood_pressure_diastolic.exponent = m_bps_meas_sim_val[s_ndx].diastolic.exponent;

    p_meas->mean_arterial_pressure.mantissa = m_bps_meas_sim_val[s_ndx].mean_arterial.mantissa;
    p_meas->mean_arterial_pressure.exponent = m_bps_meas_sim_val[s_ndx].mean_arterial.exponent;

    p_meas->time_stamp = s_time_stamp;

    p_meas->pulse_rate.mantissa = m_bps_meas_sim_val[s_ndx].pulse_rate.mantissa;
    p_meas->pulse_rate.exponent = m_bps_meas_sim_val[s_ndx].pulse_rate.exponent;

    // Update index to simulated measurements.
    s_ndx++;
    if (s_ndx == NUM_SIM_MEAS_VALUES)
    {
        s_ndx = 0;
    }

    // Update simulated time stamp.
    s_time_stamp.seconds += 27;
    if (s_time_stamp.seconds > 59)
    {
        s_time_stamp.seconds -= 60;

        s_time_stamp.minutes++;
        if (s_time_stamp.minutes > 59)
        {
            s_time_stamp.minutes = 0;
        }
    }
}


/**@brief Function for the Timer initialization.
 *
 * @details Initializes the timer module. This creates and starts application timers.
 */
static void timers_init(void)
{
    ret_code_t err_code;

    // Initialize timer module.
    err_code = app_timer_init();
    APP_ERROR_CHECK(err_code);

    // Create timers.
    err_code = app_timer_create(&m_battery_timer_id,
                                APP_TIMER_MODE_REPEATED,
                                battery_level_meas_timeout_handler);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for the GAP initialization.
 *
 * @details This function sets up all the necessary GAP (Generic Access Profile) parameters of the
 *          device including the device name, appearance, and the preferred connection parameters.
 */
static void gap_params_init(void)
{
    uint32_t                err_code;
    ble_gap_conn_params_t   gap_conn_params;
    ble_gap_conn_sec_mode_t sec_mode;

    BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode);

    err_code = sd_ble_gap_device_name_set(&sec_mode,
                                          (const uint8_t *)DEVICE_NAME,
                                          strlen(DEVICE_NAME));
    APP_ERROR_CHECK(err_code);

    err_code = sd_ble_gap_appearance_set(BLE_APPEARANCE_GENERIC_BLOOD_PRESSURE);
    APP_ERROR_CHECK(err_code);

    memset(&gap_conn_params, 0, sizeof(gap_conn_params));

    gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL;
    gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL;
    gap_conn_params.slave_latency     = SLAVE_LATENCY;
    gap_conn_params.conn_sup_timeout  = CONN_SUP_TIMEOUT;

    err_code = sd_ble_gap_ppcp_set(&gap_conn_params);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for initializing the GATT module.
 */
static void gatt_init(void)
{
    ret_code_t err_code = nrf_ble_gatt_init(&m_gatt, NULL);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for simulating and sending one Blood Pressure Measurement.
 */
static void blood_pressure_measurement_send(void)
{
    ble_bps_meas_t simulated_meas;
    uint32_t       err_code;
    bool           is_indication_enabled;

    err_code = ble_bps_is_indication_enabled(&m_bps, &is_indication_enabled);
    APP_ERROR_CHECK(err_code);

    if (is_indication_enabled && !m_bps_meas_ind_conf_pending)
    {
        bps_sim_measurement(&simulated_meas);

        err_code = ble_bps_measurement_send(&m_bps, &simulated_meas);

        switch (err_code)
        {
            case NRF_SUCCESS:
                // Measurement was successfully sent, wait for confirmation.
                m_bps_meas_ind_conf_pending = true;
                break;

            case NRF_ERROR_INVALID_STATE:
                // Ignore error.
                break;

            default:
                APP_ERROR_HANDLER(err_code);
                break;
        }
    }
}


/**@brief Function for handling the Blood Pressure Service events.
 *
 * @details This function will be called for all Blood Pressure Service events which are passed to
 *          the application.
 *
 * @param[in]   p_bps   Blood Pressure Service structure.
 * @param[in]   p_evt   Event received from the Blood Pressure Service.
 */
static void on_bps_evt(ble_bps_t * p_bps, ble_bps_evt_t * p_evt)
{
    switch (p_evt->evt_type)
    {
        case BLE_BPS_EVT_INDICATION_ENABLED:
            // Indication has been enabled, send a single blood pressure measurement.
            blood_pressure_measurement_send();
            break;

        case BLE_BPS_EVT_INDICATION_CONFIRMED:
            m_bps_meas_ind_conf_pending = false;
            break;

        default:
            // No implementation needed.
            break;
    }
}


/**@brief Function for handling Queued Write Module errors.
 *
 * @details A pointer to this function will be passed to each service which may need to inform the
 *          application about an error.
 *
 * @param[in]   nrf_error   Error code containing information about what went wrong.
 */
static void nrf_qwr_error_handler(uint32_t nrf_error)
{
    APP_ERROR_HANDLER(nrf_error);
}


/**@brief Function for initializing services that will be used by the application.
 *
 * @details Initialize the Blood Pressure, Battery, and Device Information services.
 */
static void services_init(void)
{
    uint32_t           err_code;
    ble_bps_init_t     bps_init;
    ble_bas_init_t     bas_init;
    ble_dis_init_t     dis_init;
    ble_dis_sys_id_t   sys_id;
    nrf_ble_qwr_init_t qwr_init = {0};

    // Initialize Queued Write Module
    qwr_init.error_handler = nrf_qwr_error_handler;

    err_code = nrf_ble_qwr_init(&m_qwr, &qwr_init);
    APP_ERROR_CHECK(err_code);

    // Initialize Blood Pressure Service.
    memset(&bps_init, 0, sizeof(bps_init));

    bps_init.evt_handler   = on_bps_evt;
    bps_init.error_handler = service_error_handler;
    bps_init.p_gatt_queue  = &m_ble_gatt_queue;
    bps_init.feature       = BLE_BPS_FEATURE_BODY_MOVEMENT_BIT |
                             BLE_BPS_FEATURE_MEASUREMENT_POSITION_BIT;

    // Here the sec level for the Blood Pressure Service can be changed/increased.
    bps_init.bp_cccd_wr_sec    = SEC_JUST_WORKS;
    bps_init.bp_feature_rd_sec = SEC_OPEN;

    err_code = ble_bps_init(&m_bps, &bps_init);
    APP_ERROR_CHECK(err_code);

    // Initialize Battery Service.
    memset(&bas_init, 0, sizeof(bas_init));

    // Here the sec level for the Battery Service can be changed/increased.
    bas_init.bl_rd_sec        = SEC_OPEN;
    bas_init.bl_cccd_wr_sec   = SEC_OPEN;
    bas_init.bl_report_rd_sec = SEC_OPEN;

    bas_init.evt_handler          = NULL;
    bas_init.support_notification = true;
    bas_init.p_report_ref         = NULL;
    bas_init.initial_batt_level   = 100;

    err_code = ble_bas_init(&m_bas, &bas_init);
    APP_ERROR_CHECK(err_code);

    // Initialize Device Information Service.
    memset(&dis_init, 0, sizeof(dis_init));

    ble_srv_ascii_to_utf8(&dis_init.manufact_name_str, MANUFACTURER_NAME);
    ble_srv_ascii_to_utf8(&dis_init.model_num_str, MODEL_NUM);

    sys_id.manufacturer_id            = MANUFACTURER_ID;
    sys_id.organizationally_unique_id = ORG_UNIQUE_ID;
    dis_init.p_sys_id                 = &sys_id;

    dis_init.dis_char_rd_sec = SEC_OPEN;

    err_code = ble_dis_init(&dis_init);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for initializing the sensor simulators.
 */
static void sensor_simulator_init(void)
{
    m_battery_sim_cfg.min          = MIN_BATTERY_LEVEL;
    m_battery_sim_cfg.max          = MAX_BATTERY_LEVEL;
    m_battery_sim_cfg.incr         = BATTERY_LEVEL_INCREMENT;
    m_battery_sim_cfg.start_at_max = true;

    sensorsim_init(&m_battery_sim_state, &m_battery_sim_cfg);

    // Simulated measurement #1.
    m_bps_meas_sim_val[0].systolic.mantissa      = SIM_MEAS_1_SYSTOLIC;
    m_bps_meas_sim_val[0].systolic.exponent      = 0;
    m_bps_meas_sim_val[0].diastolic.mantissa     = SIM_MEAS_1_DIASTOLIC;
    m_bps_meas_sim_val[0].diastolic.exponent     = 0;
    m_bps_meas_sim_val[0].mean_arterial.mantissa = SIM_MEAS_1_MEAN_AP;
    m_bps_meas_sim_val[0].mean_arterial.exponent = 0;
    m_bps_meas_sim_val[0].pulse_rate.mantissa    = SIM_MEAS_1_PULSE_RATE;
    m_bps_meas_sim_val[0].pulse_rate.exponent    = 0;

    // Simulated measurement #2.
    m_bps_meas_sim_val[1].systolic.mantissa      = SIM_MEAS_2_SYSTOLIC;
    m_bps_meas_sim_val[1].systolic.exponent      = 0;
    m_bps_meas_sim_val[1].diastolic.mantissa     = SIM_MEAS_2_DIASTOLIC;
    m_bps_meas_sim_val[1].diastolic.exponent     = 0;
    m_bps_meas_sim_val[1].mean_arterial.mantissa = SIM_MEAS_2_MEAN_AP;
    m_bps_meas_sim_val[1].mean_arterial.exponent = 0;
    m_bps_meas_sim_val[1].pulse_rate.mantissa    = SIM_MEAS_2_PULSE_RATE;
    m_bps_meas_sim_val[1].pulse_rate.exponent    = 0;

    // Simulated measurement #3.
    m_bps_meas_sim_val[2].systolic.mantissa      = SIM_MEAS_3_SYSTOLIC;
    m_bps_meas_sim_val[2].systolic.exponent      = 0;
    m_bps_meas_sim_val[2].diastolic.mantissa     = SIM_MEAS_3_DIASTOLIC;
    m_bps_meas_sim_val[2].diastolic.exponent     = 0;
    m_bps_meas_sim_val[2].mean_arterial.mantissa = SIM_MEAS_3_MEAN_AP;
    m_bps_meas_sim_val[2].mean_arterial.exponent = 0;
    m_bps_meas_sim_val[2].pulse_rate.mantissa    = SIM_MEAS_3_PULSE_RATE;
    m_bps_meas_sim_val[2].pulse_rate.exponent    = 0;

    // Simulated measurement #4.
    m_bps_meas_sim_val[3].systolic.mantissa      = SIM_MEAS_4_SYSTOLIC;
    m_bps_meas_sim_val[3].systolic.exponent      = 0;
    m_bps_meas_sim_val[3].diastolic.mantissa     = SIM_MEAS_4_DIASTOLIC;
    m_bps_meas_sim_val[3].diastolic.exponent     = 0;
    m_bps_meas_sim_val[3].mean_arterial.mantissa = SIM_MEAS_4_MEAN_AP;
    m_bps_meas_sim_val[3].mean_arterial.exponent = 0;
    m_bps_meas_sim_val[3].pulse_rate.mantissa    = SIM_MEAS_4_PULSE_RATE;
    m_bps_meas_sim_val[3].pulse_rate.exponent    = 0;
}


/**@brief Function for starting application timers.
 */
static void application_timers_start(void)
{
    ret_code_t err_code;

    // Start application timers.
    err_code = app_timer_start(m_battery_timer_id, BATTERY_LEVEL_MEAS_INTERVAL, NULL);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling the Connection Parameter events.
 *
 * @details This function will be called for all events in the Connection Parameters Module which
 *          are passed to the application.
 *          @note All this function does is to disconnect. This could have been done by simply
 *                setting the disconnect_on_fail configuration parameter, but instead we use the
 *                event handler mechanism to demonstrate its use.
 *
 * @param[in]   p_evt   Event received from the Connection Parameters Module.
 */
static void on_conn_params_evt(ble_conn_params_evt_t * p_evt)
{
    ret_code_t err_code;

    if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED)
    {
        err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE);
        APP_ERROR_CHECK(err_code);
    }
}


/**@brief Function for handling a Connection Parameters error.
 *
 * @param[in]   nrf_error   Error code containing information about what went wrong.
 */
static void conn_params_error_handler(uint32_t nrf_error)
{
    APP_ERROR_HANDLER(nrf_error);
}


/**@brief Function for initializing the Connection Parameters module.
 */
static void conn_params_init(void)
{
    uint32_t               err_code;
    ble_conn_params_init_t connection_params_init;

    memset(&connection_params_init, 0, sizeof(connection_params_init));

    connection_params_init.p_conn_params                  = NULL;
    connection_params_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY;
    connection_params_init.next_conn_params_update_delay  = NEXT_CONN_PARAMS_UPDATE_DELAY;
    connection_params_init.max_conn_params_update_count   = MAX_CONN_PARAMS_UPDATE_COUNT;
    connection_params_init.start_on_notify_cccd_handle    = BLE_GATT_HANDLE_INVALID;
    connection_params_init.disconnect_on_fail             = false;
    connection_params_init.evt_handler                    = on_conn_params_evt;
    connection_params_init.error_handler                  = conn_params_error_handler;

    err_code = ble_conn_params_init(&connection_params_init);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for putting the chip into sleep mode.
 *
 * @note This function will not return.
 */
static void sleep_mode_enter(void)
{
    // ret_code_t err_code = bsp_indication_set(BSP_INDICATE_IDLE);

    // APP_ERROR_CHECK(err_code);

    // // Prepare wakeup buttons.
    // err_code = bsp_btn_ble_sleep_mode_prepare();
    // APP_ERROR_CHECK(err_code);

    // // Go to system-off mode (this function will not return; wakeup will cause a reset).
    // err_code = sd_power_system_off();
    // APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling advertising events.
 *
 * @details This function will be called for advertising events which are passed to the application.
 *
 * @param[in] ble_adv_evt  Advertising event.
 */
static void on_adv_evt(ble_adv_evt_t ble_adv_evt)
{
    ret_code_t err_code;

    switch (ble_adv_evt)
    {
        case BLE_ADV_EVT_FAST:
            NRF_LOG_INFO("Fast advertising");
            err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_ADV_EVT_IDLE:
            sleep_mode_enter();

            break;

        default:
            break;
    }
}


/**@brief Function for handling BLE events.
 *
 * @param[in]   p_ble_evt   Bluetooth stack event.
 * @param[in]   p_context   Unused.
 */
static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context)
{
    ret_code_t err_code = NRF_SUCCESS;

    switch (p_ble_evt->header.evt_id)
    {
        case BLE_GAP_EVT_CONNECTED:
            NRF_LOG_INFO("Connected");
            err_code = bsp_indication_set(BSP_INDICATE_CONNECTED);
            APP_ERROR_CHECK(err_code);
            m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle;
            err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr, m_conn_handle);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_GAP_EVT_DISCONNECTED:
            NRF_LOG_INFO("Disconnected");
            m_conn_handle               = BLE_CONN_HANDLE_INVALID;
            m_bps_meas_ind_conf_pending = false;
            break;

        case BLE_GAP_EVT_PHY_UPDATE_REQUEST:
        {
            NRF_LOG_DEBUG("PHY update request.");
            ble_gap_phys_t const phys =
            {
                .rx_phys = BLE_GAP_PHY_AUTO,
                .tx_phys = BLE_GAP_PHY_AUTO,
            };
            err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys);
            APP_ERROR_CHECK(err_code);
        } break;

        case BLE_GATTC_EVT_TIMEOUT:
            // Disconnect on GATT Client timeout event.
            NRF_LOG_DEBUG("GATT Client Timeout.");
            err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle,
                                             BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_GATTS_EVT_TIMEOUT:
            // Disconnect on GATT Server timeout event.
            NRF_LOG_DEBUG("GATT Server Timeout.");
            err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle,
                                             BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
            APP_ERROR_CHECK(err_code);
            break;

        default:
            // No implementation needed.
            break;
    }
}


/**@brief Function for initializing the BLE stack.
 *
 * @details Initializes the SoftDevice and the BLE event interrupt.
 */
static void ble_stack_init(void)
{
    ret_code_t err_code;

    err_code = nrf_sdh_enable_request();
    APP_ERROR_CHECK(err_code);

    // Configure the BLE stack using the default settings.
    // Fetch the start address of the application RAM.
    uint32_t ram_start = 0;
    err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start);
    APP_ERROR_CHECK(err_code);

    // Enable BLE stack.
    err_code = nrf_sdh_ble_enable(&ram_start);
    APP_ERROR_CHECK(err_code);

    // Register a handler for BLE events.
    NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL);
}


/**@brief Function for handling events from the BSP module.
 *
 * @param[in] event  Event generated by button press.
 */
static void bsp_event_handler(bsp_event_t event)
{
    ret_code_t err_code;

    switch (event)
    {
        case BSP_EVENT_SLEEP:
            sleep_mode_enter();
            break;

        case BSP_EVENT_DISCONNECT:
            err_code = sd_ble_gap_disconnect(m_conn_handle,
                                             BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
            if (err_code != NRF_ERROR_INVALID_STATE)
            {
                APP_ERROR_CHECK(err_code);
            }
            break;

        case BSP_EVENT_WHITELIST_OFF:
            if (m_conn_handle == BLE_CONN_HANDLE_INVALID)
            {
                err_code = ble_advertising_restart_without_whitelist(&m_advertising);
                if (err_code != NRF_ERROR_INVALID_STATE)
                {
                    APP_ERROR_CHECK(err_code);
                }
            }
            break;

        case BSP_EVENT_KEY_0:
            if (m_conn_handle != BLE_CONN_HANDLE_INVALID)
            {
                blood_pressure_measurement_send();
            }
            break;

        default:
            break;
    }
}


/**@brief Function for the Peer Manager initialization.
 */
static void peer_manager_init(void)
{
    ble_gap_sec_params_t sec_param;
    ret_code_t           err_code;

    err_code = pm_init();
    APP_ERROR_CHECK(err_code);

    memset(&sec_param, 0, sizeof(ble_gap_sec_params_t));

    // Security parameters to be used for all security procedures.
    sec_param.bond           = SEC_PARAM_BOND;
    sec_param.mitm           = SEC_PARAM_MITM;
    sec_param.lesc           = SEC_PARAM_LESC;
    sec_param.keypress       = SEC_PARAM_KEYPRESS;
    sec_param.io_caps        = SEC_PARAM_IO_CAPABILITIES;
    sec_param.oob            = SEC_PARAM_OOB;
    sec_param.min_key_size   = SEC_PARAM_MIN_KEY_SIZE;
    sec_param.max_key_size   = SEC_PARAM_MAX_KEY_SIZE;
    sec_param.kdist_own.enc  = 1;
    sec_param.kdist_own.id   = 1;
    sec_param.kdist_peer.enc = 1;
    sec_param.kdist_peer.id  = 1;

    err_code = pm_sec_params_set(&sec_param);
    APP_ERROR_CHECK(err_code);

    err_code = pm_register(pm_evt_handler);
    APP_ERROR_CHECK(err_code);
}


/**@brief Clear bond information from persistent storage.
 */
static void delete_bonds(void)
{
    ret_code_t err_code;

    NRF_LOG_INFO("Erase bonds!");

    err_code = pm_peers_delete();
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for initializing the Advertising functionality.
 */
static void advertising_init(void)
{
    ret_code_t             err_code;
    ble_advertising_init_t init;

    memset(&init, 0, sizeof(init));

    init.advdata.name_type               = BLE_ADVDATA_FULL_NAME;
    init.advdata.include_appearance      = true;
    init.advdata.flags                   = BLE_GAP_ADV_FLAGS_LE_ONLY_GENERAL_DISC_MODE;
    init.advdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]);
    init.advdata.uuids_complete.p_uuids  = m_adv_uuids;

    init.config.ble_adv_fast_enabled  = true;
    init.config.ble_adv_fast_interval = APP_ADV_INTERVAL;
    init.config.ble_adv_fast_timeout  = APP_ADV_DURATION;

    init.evt_handler = on_adv_evt;

    err_code = ble_advertising_init(&m_advertising, &init);
    APP_ERROR_CHECK(err_code);

    ble_advertising_conn_cfg_tag_set(&m_advertising, APP_BLE_CONN_CFG_TAG);
}


/**@brief Function for initializing buttons and leds.
 *
 * @param[out] p_erase_bonds  Will be true if the clear bonding button was pressed to wake the application up.
 */
static void buttons_leds_init(bool * p_erase_bonds)
{
    ret_code_t err_code;
    bsp_event_t startup_event;

    err_code = bsp_init(BSP_INIT_LEDS | BSP_INIT_BUTTONS, bsp_event_handler);
    APP_ERROR_CHECK(err_code);

    err_code = bsp_btn_ble_init(NULL, &startup_event);
    APP_ERROR_CHECK(err_code);

    *p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA);
}


/**@brief Function for initializing the nrf log module.
 */
static void log_init(void)
{
    ret_code_t err_code = NRF_LOG_INIT(NULL);
    APP_ERROR_CHECK(err_code);

    NRF_LOG_DEFAULT_BACKENDS_INIT();
}


/**@brief Function for initializing power management.
 */
static void power_management_init(void)
{
    ret_code_t err_code;
    err_code = nrf_pwr_mgmt_init();
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling the idle state (main loop).
 *
 * @details If there is no pending log operation, then sleep until next the next event occurs.
 */
static void idle_state_handle(void)
{
    if (NRF_LOG_PROCESS() == false)
    {
        nrf_pwr_mgmt_run();
    }
}


/**@brief Function for starting advertising.
 */
static void advertising_start(bool erase_bonds)
{
    if (erase_bonds == true)
    {
        delete_bonds();
        // Advertising is started by PM_EVT_PEERS_DELETE_SUCCEEDED event.
    }
    else{
        ret_code_t err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST);

        APP_ERROR_CHECK(err_code);
    }
}

volatile bool bitcount_changed = false;
volatile unsigned int bitcount = 0;
volatile bool sda_status = true;
volatile bool scl_status = true;
volatile bool comm_started = false;
/*
typedef enum
{
  NRF_GPIOTE_POLARITY_LOTOHI = GPIOTE_CONFIG_POLARITY_LoToHi,       ///<  Low to high.
  NRF_GPIOTE_POLARITY_HITOLO = GPIOTE_CONFIG_POLARITY_HiToLo,       ///<  High to low.
  NRF_GPIOTE_POLARITY_TOGGLE = GPIOTE_CONFIG_POLARITY_Toggle        ///<  Toggle.
} nrf_gpiote_polarity_t;

*/
/*
void in_pin_sda_handler(nrf_drv_gpiote_pin_t pin, nrf_gpiote_polarity_t action)
{
    
    //sda_status = nrf_gpio_pin_read(PIN_SDA);

    nrf_gpio_pin_toggle(PIN_OUT);

    // if(scl_status){
    //     if(!sda_status)
    //     {
    //         comm_started = true;
    //         bitcount = 0;   
    //     }    
    //     else
    //     {
    //         comm_started = false;

    //         if (bufferLength != SIZE_OF_BUFFER && bitcount > 8) { // write into ringbuffer
    //             circularBuffer[writeIndex] = bitcount;
    //             bufferLength++;	 //	Increase buffer size after writing
    //             writeIndex++;	 //	Increase writeIndex position to prepare for next write

    //             // If at last index in buffer, set writeIndex back to 0
    //             if (writeIndex == SIZE_OF_BUFFER) {
    //                 writeIndex = 0;
    //             }
    //         }
    //         bitcount = 0;   
    //     }
    // }

}
*/



void in_pin_scl_handler(nrf_drv_gpiote_pin_t pin, nrf_gpiote_polarity_t action)
{
    
        nrf_drv_gpiote_out_set(PIN_OUT);
    
        nrf_drv_gpiote_out_clear(PIN_OUT);
   
    // if (scl_status && bufferLength != SIZE_OF_BUFFER) { // write into ringbuffer
    //     circularBuffer[writeIndex] = sda_status;
    //     bufferLength++;	 //	Increase buffer size after writing
    //     writeIndex++;	 //	Increase writeIndex position to prepare for next write

    //     // If at last index in buffer, set writeIndex back to 0
    //     if (writeIndex == SIZE_OF_BUFFER) {
    //         writeIndex = 0;
    //     }
    // }

    // if(scl_status && comm_started){
    //     bitcount++;
    // }

    
}

static void my_gpio_init(void)
{
    ret_code_t err_code;

    // err_code = nrf_drv_gpiote_init();
    // APP_ERROR_CHECK(err_code);

    
    nrf_drv_gpiote_in_config_t in_config = GPIOTE_CONFIG_IN_SENSE_LOTOHI(true);
    in_config.pull = NRF_GPIO_PIN_PULLUP;

    // err_code = nrf_drv_gpiote_in_init(PIN_SDA, &in_config, in_pin_sda_handler);
    // APP_ERROR_CHECK(err_code);

    err_code = nrf_drv_gpiote_in_init(PIN_SCL, &in_config, in_pin_scl_handler);
    APP_ERROR_CHECK(err_code);

    // nrf_drv_gpiote_in_event_enable(PIN_SDA, true);
    nrf_drv_gpiote_in_event_enable(PIN_SCL, true);

    nrf_drv_gpiote_out_config_t out_config = GPIOTE_CONFIG_OUT_SIMPLE(true);

    err_code = nrf_drv_gpiote_out_init(PIN_OUT, &out_config);
    APP_ERROR_CHECK(err_code);


}



/**@brief Function for application main entry.
 */
int main(void)
{
    bool     erase_bonds;

    // Initialize.
    log_init();
    timers_init();
    buttons_leds_init(&erase_bonds);

    my_gpio_init();

    power_management_init();
    ble_stack_init();
    gap_params_init();
    gatt_init();
    advertising_init();
    services_init();
    sensor_simulator_init();
    conn_params_init();
    peer_manager_init();

    // Start execution.
    NRF_LOG_INFO("Blood Pressure example started.");
    application_timers_start();

    advertising_start(erase_bonds);

    // Enter main loop.
    for (;;)
    {
        idle_state_handle();

       

        
        // if (bufferLength != 0){

        //     if(circularBuffer[readIndex] == 8)
        //     {
        //         NRF_LOG_INFO(">");
        //     }   
        //     else if (circularBuffer[readIndex] == 9)
        //     {
        //         NRF_LOG_INFO("<");
        //     }
        //     else
        //     {
        //          NRF_LOG_INFO("%d",circularBuffer[readIndex]);
        //     } 
                
        //     bufferLength--;	 //	Decrease buffer size after reading
		// 	readIndex++;	 //	Increase readIndex position to prepare for next read

        //     // If at last index in buffer, set readIndex back to 0
		// 	if (readIndex == SIZE_OF_BUFFER) {
		// 		readIndex = 0;
		// 	}
        // }
    }
}


/**
 * @}
 */

// <e> GPIOTE_ENABLED - nrf_drv_gpiote - GPIOTE peripheral driver - legacy layer
//==========================================================
#ifndef GPIOTE_ENABLED
#define GPIOTE_ENABLED 1
#endif
// <o> GPIOTE_CONFIG_NUM_OF_LOW_POWER_EVENTS - Number of lower power input pins 
#ifndef GPIOTE_CONFIG_NUM_OF_LOW_POWER_EVENTS
#define GPIOTE_CONFIG_NUM_OF_LOW_POWER_EVENTS 6
#endif

// <o> GPIOTE_CONFIG_IRQ_PRIORITY  - Interrupt priority
 

// <i> Priorities 0,2 (nRF51) and 0,1,4,5 (nRF52) are reserved for SoftDevice
// <0=> 0 (highest) 
// <1=> 1 
// <2=> 2 
// <3=> 3 
// <4=> 4 
// <5=> 5 
// <6=> 6 
// <7=> 7 

#ifndef GPIOTE_CONFIG_IRQ_PRIORITY
#define GPIOTE_CONFIG_IRQ_PRIORITY 2
#endif

Parents
  • Hi,

    I suggest using the GPIOTE + PPI directly instead as this offloads the CPU and is much faster than doing it purely based on event handlers in SW. Try something like this for setting the pin on a Low to high transition:

    static void gpiote_setup(void)
    {
        uint32_t in_evt_addr;
        uint32_t gpiote_task_addr;
        nrf_ppi_channel_t ppi_channel;
        ret_code_t err_code;
    
        nrf_drv_gpiote_out_config_t config_out = GPIOTE_CONFIG_OUT_TASK_TOGGLE(true);
        nrf_drv_gpiote_in_config_t  config_in = GPIOTE_CONFIG_IN_SENSE_LOTOHI(false);
    
        err_code = nrf_drv_gpiote_out_init(GPIO_OUTPUT_PIN_NUMBER, &config_out);
        APP_ERROR_CHECK(err_code);
    
        err_code = nrf_drv_gpiote_in_init(GPIOTE_INPUT_PIN_NUMBER, &config_in,NULL);
        APP_ERROR_CHECK(err_code);
    
    
        err_code = nrf_drv_ppi_channel_alloc(&ppi_channel);
        APP_ERROR_CHECK(err_code);
    
        in_evt_addr = nrf_drv_gpiote_in_event_addr_get(GPIOTE_INPUT_PIN_NUMBER);
        gpiote_task_addr = nrf_drv_gpiote_out_task_addr_get(GPIO_OUTPUT_PIN_NUMBER);
    
        err_code = nrf_drv_ppi_channel_assign(ppi_channel, in_evt_addr, gpiote_task_addr);
        APP_ERROR_CHECK(err_code);
    
        err_code = nrf_drv_ppi_channel_enable(ppi_channel);
        APP_ERROR_CHECK(err_code);
    
        nrf_drv_gpiote_out_task_enable(GPIO_OUTPUT_PIN_NUMBER);
        nrf_drv_gpiote_in_event_enable(GPIOTE_INPUT_PIN_NUMBER, true);
    }

  • Thanks for your reply but actually I will process SDA SCL lines while listening to them via interrupts. PPI cannot help me because I will not try to toggle a led. Is there any other way to do it?

Reply Children
Related