Beware that this post is related to an SDK in maintenance mode
More Info: Consider nRF Connect SDK for new designs
This post is older than 2 years and might not be relevant anymore
More Info: Consider searching for newer posts

It seems like I'm loosing PCM audio data (decimated from PDM via PDM peripheral on nRF52832 interfacing ST mic) when transmitting the data onto UART.

I've interfaced an ST mic eval board (STEVAL-MIC006V1) to the nRF52 dev board on the PDM interface (SDK-15.2.0) . I'm attaching the code for showing my configuration and flow of capturing data and pushing it over UART, for your reference. I just want to dump 16KHz PCM output data from RAM to serial terminal so that I can read that data from terminal (with the help of a python script) and either log the raw byte values in a .csv file or generate  a wave file. I did many attempts in doing so but only got a little close to getting roughly correct data in one case (I checked by generating and playing back the .wav file, parts of it were the distorted version of my voice recording). 
I think I'm loosing data on communication because when I increase the Baud rate and run a python script to count number of bytes received in 1 second, I get higher values with higher baud rate. Theoretically, if sampling rate is 16KHz and samples are 16 bit wide , I should get ~32000  bytes in 1 sec on the terminal but best I get is around 16000 bytes with very high baud rate. 

Please go over my code and help me out with it.

Here, pressing button 2 starts the process of reading PDM data and converting to PCM and button 3 stops the process under bsp_event_handler(bsp_event_t event) in main.c

In nrfx_pdm_irq_handler(void) in nrfx_pdm.c, under the case nrf_pdm_event_check(NRF_PDM_EVENT_END), I am splitting the 16 bit uint16_t values into 2 8bit uint8_t integers and transmitting them over UART.

I've modified the uart_central example to incorporate pdm mic application. Please go through the files and let me know what is it that I'm doing wrong.

/**
 * Copyright (c) 2016 - 2018, Nordic Semiconductor ASA
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form, except as embedded into a Nordic
 *    Semiconductor ASA integrated circuit in a product or a software update for
 *    such product, must reproduce the above copyright notice, this list of
 *    conditions and the following disclaimer in the documentation and/or other
 *    materials provided with the distribution.
 *
 * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
 *    contributors may be used to endorse or promote products derived from this
 *    software without specific prior written permission.
 *
 * 4. This software, with or without modification, must only be used with a
 *    Nordic Semiconductor ASA integrated circuit.
 *
 * 5. Any software provided in binary form under this license must not be reverse
 *    engineered, decompiled, modified and/or disassembled.
 *
 * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 */
#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>
#include "nordic_common.h"
#include "app_error.h"
#include "app_uart.h"
#include "ble_db_discovery.h"
#include "app_timer.h"
#include "app_util.h"
#include "bsp_btn_ble.h"
#include "ble.h"
#include "ble_gap.h"
#include "ble_hci.h"
#include "nrf_sdh.h"
#include "nrf_sdh_ble.h"
#include "nrf_sdh_soc.h"
#include "ble_nus_c.h"
#include "nrf_ble_gatt.h"
#include "nrf_pwr_mgmt.h"
#include "nrf_ble_scan.h"

#include "nrf_log.h"
#include "nrf_log_ctrl.h"
#include "nrf_log_default_backends.h"

#include "nrfx_pdm.h"


#define APP_BLE_CONN_CFG_TAG    1                                       /**< Tag that refers to the BLE stack configuration set with @ref sd_ble_cfg_set. The default tag is @ref BLE_CONN_CFG_TAG_DEFAULT. */
#define APP_BLE_OBSERVER_PRIO   3                                       /**< BLE observer priority of the application. There is no need to modify this value. */

#define UART_TX_BUF_SIZE        4096//2048//1024//256                                     /**< UART TX buffer size. */
#define UART_RX_BUF_SIZE        4096//2048//1024//256                                     /**< UART RX buffer size. */

#define NUS_SERVICE_UUID_TYPE   BLE_UUID_TYPE_VENDOR_BEGIN              /**< UUID type for the Nordic UART Service (vendor specific). */

#define ECHOBACK_BLE_UART_DATA  0//1                                       /**< Echo the UART data that is received over the Nordic UART Service (NUS) back to the sender. */


BLE_NUS_C_DEF(m_ble_nus_c);                                             /**< BLE Nordic UART Service (NUS) client instance. */
NRF_BLE_GATT_DEF(m_gatt);                                               /**< GATT module instance. */
BLE_DB_DISCOVERY_DEF(m_db_disc);                                        /**< Database discovery module instance. */
NRF_BLE_SCAN_DEF(m_scan);                                               /**< Scanning Module instance. */
APP_TIMER_DEF(test_timer);

static uint16_t m_ble_nus_max_data_len = BLE_GATT_ATT_MTU_DEFAULT - OPCODE_LENGTH - HANDLE_LENGTH; /**< Maximum length of data (in bytes) that can be transmitted to the peer by the Nordic UART service module. */

/**@brief NUS UUID. */
static ble_uuid_t const m_nus_uuid =
{
    .uuid = BLE_UUID_NUS_SERVICE,
    .type = NUS_SERVICE_UUID_TYPE
};

nrfx_pdm_config_t pdm_config={

      .mode=                (nrf_pdm_mode_t)NRF_PDM_MODE_MONO,
      .edge=                (nrf_pdm_edge_t)NRF_PDM_EDGE_LEFTRISING,
      .pin_clk=              11,
      .pin_din=              12,
      .clock_freq=          (nrf_pdm_freq_t)NRFX_PDM_CONFIG_CLOCK_FREQ,
      .gain_l=              NRF_PDM_GAIN_MAXIMUM,                       
      .gain_r=              NRF_PDM_GAIN_MAXIMUM,                       
      .interrupt_priority = NRFX_PDM_CONFIG_IRQ_PRIORITY
};


uint16_t audio_sample_buf[sample_buf_size];



/**@brief Function for handling asserts in the SoftDevice.
 *
 * @details This function is called in case of an assert in the SoftDevice.
 *
 * @warning This handler is only an example and is not meant for the final product. You need to analyze
 *          how your product is supposed to react in case of assert.
 * @warning On assert from the SoftDevice, the system can only recover on reset.
 *
 * @param[in] line_num     Line number of the failing assert call.
 * @param[in] p_file_name  File name of the failing assert call.
 */
void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name)
{
    app_error_handler(0xDEADBEEF, line_num, p_file_name);
}


/**@brief Function for starting scanning. */
static void scan_start(void)
{
    ret_code_t ret;

    ret = nrf_ble_scan_start(&m_scan);
    APP_ERROR_CHECK(ret);

    ret = bsp_indication_set(BSP_INDICATE_SCANNING);
    APP_ERROR_CHECK(ret);
}


/**@brief Function for handling Scanning Module events.
 */
static void scan_evt_handler(scan_evt_t const * p_scan_evt)
{
    ret_code_t err_code;

    switch(p_scan_evt->scan_evt_id)
    {
         case NRF_BLE_SCAN_EVT_CONNECTING_ERROR:
         {
              err_code = p_scan_evt->params.connecting_err.err_code;
              APP_ERROR_CHECK(err_code);
         } break;

         case NRF_BLE_SCAN_EVT_CONNECTED:
         {
              ble_gap_evt_connected_t const * p_connected =
                               p_scan_evt->params.connected.p_connected;
             // Scan is automatically stopped by the connection.
             NRF_LOG_INFO("Connecting to target %02x%02x%02x%02x%02x%02x",
                      p_connected->peer_addr.addr[0],
                      p_connected->peer_addr.addr[1],
                      p_connected->peer_addr.addr[2],
                      p_connected->peer_addr.addr[3],
                      p_connected->peer_addr.addr[4],
                      p_connected->peer_addr.addr[5]
                      );
         } break;

         case NRF_BLE_SCAN_EVT_SCAN_TIMEOUT:
         {
             NRF_LOG_INFO("Scan timed out.");
             scan_start();
         } break;

         default:
             break;
    }
}


/**@brief Function for initializing the scanning and setting the filters.
 */
static void scan_init(void)
{
    ret_code_t          err_code;
    nrf_ble_scan_init_t init_scan;

    memset(&init_scan, 0, sizeof(init_scan));

    init_scan.connect_if_match = true;
    init_scan.conn_cfg_tag     = APP_BLE_CONN_CFG_TAG;

    err_code = nrf_ble_scan_init(&m_scan, &init_scan, scan_evt_handler);
    APP_ERROR_CHECK(err_code);

    err_code = nrf_ble_scan_filter_set(&m_scan, SCAN_UUID_FILTER, &m_nus_uuid);
    APP_ERROR_CHECK(err_code);

    err_code = nrf_ble_scan_filters_enable(&m_scan, NRF_BLE_SCAN_UUID_FILTER, false);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling database discovery events.
 *
 * @details This function is a callback function to handle events from the database discovery module.
 *          Depending on the UUIDs that are discovered, this function forwards the events
 *          to their respective services.
 *
 * @param[in] p_event  Pointer to the database discovery event.
 */
static void db_disc_handler(ble_db_discovery_evt_t * p_evt)
{
    ble_nus_c_on_db_disc_evt(&m_ble_nus_c, p_evt);
}


/**@brief Function for handling characters received by the Nordic UART Service (NUS).
 *
 * @details This function takes a list of characters of length data_len and prints the characters out on UART.
 *          If @ref ECHOBACK_BLE_UART_DATA is set, the data is sent back to sender.
 */
static void ble_nus_chars_received_uart_print(uint8_t * p_data, uint16_t data_len)
{
    ret_code_t ret_val;

    NRF_LOG_DEBUG("Receiving data.");
    NRF_LOG_HEXDUMP_DEBUG(p_data, data_len);

    for (uint32_t i = 0; i < data_len; i++)
    {
        do
        {
            ret_val = app_uart_put(p_data[i]);
            if ((ret_val != NRF_SUCCESS) && (ret_val != NRF_ERROR_BUSY))
            {
                NRF_LOG_ERROR("app_uart_put failed for index 0x%04x.", i);
                APP_ERROR_CHECK(ret_val);
            }
        } while (ret_val == NRF_ERROR_BUSY);
    }
    if (p_data[data_len-1] == '\r')
    {
        while (app_uart_put('\n') == NRF_ERROR_BUSY);
    }
    if (ECHOBACK_BLE_UART_DATA)
    {
        // Send data back to the peripheral.
        do
        {
            ret_val = ble_nus_c_string_send(&m_ble_nus_c, p_data, data_len);
            if ((ret_val != NRF_SUCCESS) && (ret_val != NRF_ERROR_BUSY))
            {
                NRF_LOG_ERROR("Failed sending NUS message. Error 0x%x. ", ret_val);
                APP_ERROR_CHECK(ret_val);
            }
        } while (ret_val == NRF_ERROR_BUSY);
    }
}


/**@brief   Function for handling app_uart events.
 *
 * @details This function receives a single character from the app_uart module and appends it to
 *          a string. The string is sent over BLE when the last character received is a
 *          'new line' '\n' (hex 0x0A) or if the string reaches the maximum data length.
 */
void uart_event_handle(app_uart_evt_t * p_event)
{
    static uint8_t data_array[BLE_NUS_MAX_DATA_LEN];
    static uint16_t index = 0;
    uint32_t ret_val;

    switch (p_event->evt_type)
    {
        /**@snippet [Handling data from UART] */
        case APP_UART_DATA_READY:
            UNUSED_VARIABLE(app_uart_get(&data_array[index]));
            index++;

            if ((data_array[index - 1] == '\n') || (index >= (m_ble_nus_max_data_len)))
            {
                NRF_LOG_DEBUG("Ready to send data over BLE NUS");
                NRF_LOG_HEXDUMP_DEBUG(data_array, index);

                do
                {
                    ret_val = ble_nus_c_string_send(&m_ble_nus_c, data_array, index);
                    if ( (ret_val != NRF_ERROR_INVALID_STATE) && (ret_val != NRF_ERROR_RESOURCES) )
                    {
                        APP_ERROR_CHECK(ret_val);
                    }
                } while (ret_val == NRF_ERROR_RESOURCES);

                index = 0;
            }
            break;

        /**@snippet [Handling data from UART] */
        case APP_UART_COMMUNICATION_ERROR:
            NRF_LOG_ERROR("Communication error occurred while handling UART.");
            APP_ERROR_HANDLER(p_event->data.error_communication);
            break;

        case APP_UART_FIFO_ERROR:
            NRF_LOG_ERROR("Error occurred in FIFO module used by UART.");
            APP_ERROR_HANDLER(p_event->data.error_code);
            break;

        default:
            break;
    }
}


/**@brief Callback handling Nordic UART Service (NUS) client events.
 *
 * @details This function is called to notify the application of NUS client events.
 *
 * @param[in]   p_ble_nus_c   NUS client handle. This identifies the NUS client.
 * @param[in]   p_ble_nus_evt Pointer to the NUS client event.
 */

/**@snippet [Handling events from the ble_nus_c module] */
static void ble_nus_c_evt_handler(ble_nus_c_t * p_ble_nus_c, ble_nus_c_evt_t const * p_ble_nus_evt)
{
    ret_code_t err_code;

    switch (p_ble_nus_evt->evt_type)
    {
        case BLE_NUS_C_EVT_DISCOVERY_COMPLETE:
            NRF_LOG_INFO("Discovery complete.");
            err_code = ble_nus_c_handles_assign(p_ble_nus_c, p_ble_nus_evt->conn_handle, &p_ble_nus_evt->handles);
            APP_ERROR_CHECK(err_code);

            err_code = ble_nus_c_tx_notif_enable(p_ble_nus_c);
            APP_ERROR_CHECK(err_code);
            NRF_LOG_INFO("Connected to device with Nordic UART Service.");
            break;

        case BLE_NUS_C_EVT_NUS_TX_EVT:
            ble_nus_chars_received_uart_print(p_ble_nus_evt->p_data, p_ble_nus_evt->data_len);
            break;

        case BLE_NUS_C_EVT_DISCONNECTED:
            NRF_LOG_INFO("Disconnected.");
            scan_start();
            break;
    }
}
/**@snippet [Handling events from the ble_nus_c module] */


/**
 * @brief Function for handling shutdown events.
 *
 * @param[in]   event       Shutdown type.
 */
static bool shutdown_handler(nrf_pwr_mgmt_evt_t event)
{
    ret_code_t err_code;

    err_code = bsp_indication_set(BSP_INDICATE_IDLE);
    APP_ERROR_CHECK(err_code);

    switch (event)
    {
        case NRF_PWR_MGMT_EVT_PREPARE_WAKEUP:
            // Prepare wakeup buttons.
            err_code = bsp_btn_ble_sleep_mode_prepare();
            APP_ERROR_CHECK(err_code);
            break;

        default:
            break;
    }

    return true;
}

NRF_PWR_MGMT_HANDLER_REGISTER(shutdown_handler, APP_SHUTDOWN_HANDLER_PRIORITY);


/**@brief Function for handling BLE events.
 *
 * @param[in]   p_ble_evt   Bluetooth stack event.
 * @param[in]   p_context   Unused.
 */
static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context)
{
    ret_code_t            err_code;
    ble_gap_evt_t const * p_gap_evt = &p_ble_evt->evt.gap_evt;

    switch (p_ble_evt->header.evt_id)
    {
        case BLE_GAP_EVT_CONNECTED:
            err_code = ble_nus_c_handles_assign(&m_ble_nus_c, p_ble_evt->evt.gap_evt.conn_handle, NULL);
            APP_ERROR_CHECK(err_code);

            err_code = bsp_indication_set(BSP_INDICATE_CONNECTED);
            APP_ERROR_CHECK(err_code);

            // start discovery of services. The NUS Client waits for a discovery result
            err_code = ble_db_discovery_start(&m_db_disc, p_ble_evt->evt.gap_evt.conn_handle);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_GAP_EVT_DISCONNECTED:

            NRF_LOG_INFO("Disconnected. conn_handle: 0x%x, reason: 0x%x",
                         p_gap_evt->conn_handle,
                         p_gap_evt->params.disconnected.reason);
            break;

        case BLE_GAP_EVT_TIMEOUT:
            if (p_gap_evt->params.timeout.src == BLE_GAP_TIMEOUT_SRC_CONN)
            {
                NRF_LOG_INFO("Connection Request timed out.");
            }
            break;

        case BLE_GAP_EVT_SEC_PARAMS_REQUEST:
            // Pairing not supported.
            err_code = sd_ble_gap_sec_params_reply(p_ble_evt->evt.gap_evt.conn_handle, BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_GAP_EVT_CONN_PARAM_UPDATE_REQUEST:
            // Accepting parameters requested by peer.
            err_code = sd_ble_gap_conn_param_update(p_gap_evt->conn_handle,
                                                    &p_gap_evt->params.conn_param_update_request.conn_params);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_GAP_EVT_PHY_UPDATE_REQUEST:
        {
            NRF_LOG_DEBUG("PHY update request.");
            ble_gap_phys_t const phys =
            {
                .rx_phys = BLE_GAP_PHY_AUTO,
                .tx_phys = BLE_GAP_PHY_AUTO,
            };
            err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys);
            APP_ERROR_CHECK(err_code);
        } break;

        case BLE_GATTC_EVT_TIMEOUT:
            // Disconnect on GATT Client timeout event.
            NRF_LOG_DEBUG("GATT Client Timeout.");
            err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle,
                                             BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
            APP_ERROR_CHECK(err_code);
            break;

        case BLE_GATTS_EVT_TIMEOUT:
            // Disconnect on GATT Server timeout event.
            NRF_LOG_DEBUG("GATT Server Timeout.");
            err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle,
                                             BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
            APP_ERROR_CHECK(err_code);
            break;

        default:
            break;
    }
}


/**@brief Function for initializing the BLE stack.
 *
 * @details Initializes the SoftDevice and the BLE event interrupt.
 */
static void ble_stack_init(void)
{
    ret_code_t err_code;

    err_code = nrf_sdh_enable_request();
    APP_ERROR_CHECK(err_code);

    // Configure the BLE stack using the default settings.
    // Fetch the start address of the application RAM.
    uint32_t ram_start = 0;
    err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start);
    APP_ERROR_CHECK(err_code);

    // Enable BLE stack.
    err_code = nrf_sdh_ble_enable(&ram_start);
    APP_ERROR_CHECK(err_code);

    // Register a handler for BLE events.
    NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL);
}


/**@brief Function for handling events from the GATT library. */
void gatt_evt_handler(nrf_ble_gatt_t * p_gatt, nrf_ble_gatt_evt_t const * p_evt)
{
    if (p_evt->evt_id == NRF_BLE_GATT_EVT_ATT_MTU_UPDATED)
    {
        NRF_LOG_INFO("ATT MTU exchange completed.");

        m_ble_nus_max_data_len = p_evt->params.att_mtu_effective - OPCODE_LENGTH - HANDLE_LENGTH;
        NRF_LOG_INFO("Ble NUS max data length set to 0x%X(%d)", m_ble_nus_max_data_len, m_ble_nus_max_data_len);
    }
}


/**@brief Function for initializing the GATT library. */
void gatt_init(void)
{
    ret_code_t err_code;

    err_code = nrf_ble_gatt_init(&m_gatt, gatt_evt_handler);
    APP_ERROR_CHECK(err_code);

    err_code = nrf_ble_gatt_att_mtu_central_set(&m_gatt, NRF_SDH_BLE_GATT_MAX_MTU_SIZE);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling events from the BSP module.
 *
 * @param[in] event  Event generated by button press.
 */
void bsp_event_handler(bsp_event_t event)
{
    ret_code_t err_code;
    nrfx_err_t nrfx_code;

    switch (event)
    {
        case BSP_EVENT_SLEEP:
            nrf_pwr_mgmt_shutdown(NRF_PWR_MGMT_SHUTDOWN_GOTO_SYSOFF);
            break;

        case BSP_EVENT_DISCONNECT:
            err_code = sd_ble_gap_disconnect(m_ble_nus_c.conn_handle,
                                             BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
            if (err_code != NRF_ERROR_INVALID_STATE)
            {
                APP_ERROR_CHECK(err_code);
            }
            break;
        
        case BSP_EVENT_KEY_1:
            //Start the PCM Data Stream.
            nrfx_code=nrfx_pdm_start();
            APP_ERROR_CHECK(nrfx_code);
            if(nrfx_code==NRFX_SUCCESS)
              {
                NRF_LOG_INFO("PDM Data Sampling has started.");
              }

            break;

        case BSP_EVENT_KEY_2:
            //Stop the PCM Data Stream.
            nrfx_code=nrfx_pdm_stop();
            APP_ERROR_CHECK(nrfx_code);
            if(nrfx_code==NRFX_SUCCESS)
              {
                NRF_LOG_INFO("PDM Data Sampling has stopped.");
              }
            break;

        default:
            break;
    }
}

/**@brief Function for initializing the UART. */
static void uart_init(void)
{
    ret_code_t err_code;

    app_uart_comm_params_t const comm_params =
    {
        .rx_pin_no    = RX_PIN_NUMBER,
        .tx_pin_no    = TX_PIN_NUMBER,
        .rts_pin_no   = RTS_PIN_NUMBER,
        .cts_pin_no   = CTS_PIN_NUMBER,
        .flow_control = APP_UART_FLOW_CONTROL_DISABLED,
        .use_parity   = false,
        .baud_rate    = UART_BAUDRATE_BAUDRATE_Baud115200

    };

    APP_UART_FIFO_INIT(&comm_params,
                       UART_RX_BUF_SIZE,
                       UART_TX_BUF_SIZE,
                       uart_event_handle,
                       APP_IRQ_PRIORITY_LOWEST,
                       err_code);

    APP_ERROR_CHECK(err_code);
}

/**@brief Function for initializing the Nordic UART Service (NUS) client. */
static void nus_c_init(void)
{
    ret_code_t       err_code;
    ble_nus_c_init_t init;

    init.evt_handler = ble_nus_c_evt_handler;

    err_code = ble_nus_c_init(&m_ble_nus_c, &init);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for initializing buttons and leds. */
static void buttons_leds_init(void)
{
    ret_code_t err_code;
    bsp_event_t startup_event;

    err_code = bsp_init(BSP_INIT_LEDS|BSP_INIT_BUTTONS, bsp_event_handler);
    APP_ERROR_CHECK(err_code);

    err_code = bsp_btn_ble_init(NULL, &startup_event);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for initializing the timer. */
static void timer_init(void)
{
    ret_code_t err_code = app_timer_init();
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for initializing the nrf log module. */
static void log_init(void)
{
    ret_code_t err_code = NRF_LOG_INIT(NULL);
    APP_ERROR_CHECK(err_code);

    NRF_LOG_DEFAULT_BACKENDS_INIT();
}


/**@brief Function for initializing power management.
 */
static void power_management_init(void)
{
    ret_code_t err_code;
    err_code = nrf_pwr_mgmt_init();
    APP_ERROR_CHECK(err_code);
}


/** @brief Function for initializing the database discovery module. */
static void db_discovery_init(void)
{
    ret_code_t err_code = ble_db_discovery_init(db_disc_handler);
    APP_ERROR_CHECK(err_code);
}


/**@brief Function for handling the idle state (main loop).
 *
 * @details Handles any pending log operations, then sleeps until the next event occurs.
 */
static void idle_state_handle(void)
{
    if (NRF_LOG_PROCESS() == false)
    {
        nrf_pwr_mgmt_run();
    }
}
uint32_t test_var=0;
uint32_t test_var2=0;

void buffer_event_handler(nrfx_pdm_evt_t *p_evt)
{
  nrfx_err_t err_code;

  if(p_evt->buffer_requested==true)
  {
    err_code=nrfx_pdm_buffer_set(audio_sample_buf,(uint16_t)sample_buf_size);
    APP_ERROR_CHECK(err_code);
    test_var++;
  }
  else if(p_evt->buffer_requested==false)
  {
    //fetch the audio data from release buffer
    //test_var2++;

  }

}



int main(void)
{

    
    // Initialize.
    log_init();
    timer_init();
    uart_init();
    buttons_leds_init();
    db_discovery_init();
    nrfx_pdm_init(&pdm_config,(nrfx_pdm_event_handler_t)buffer_event_handler);
    power_management_init();
    ble_stack_init();
    gatt_init();
    nus_c_init();
    scan_init();

 
    

    // Start execution.
    printf("Audio Application: PCM Data -> UART, Started\r\n");
    NRF_LOG_INFO("Audio Application: PCM Data -> UART, Started.");
    


    // Enter main loop.
    for (;;)
    {
        idle_state_handle();
    }
}
/**
 * Copyright (c) 2015 - 2018, Nordic Semiconductor ASA
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form, except as embedded into a Nordic
 *    Semiconductor ASA integrated circuit in a product or a software update for
 *    such product, must reproduce the above copyright notice, this list of
 *    conditions and the following disclaimer in the documentation and/or other
 *    materials provided with the distribution.
 *
 * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
 *    contributors may be used to endorse or promote products derived from this
 *    software without specific prior written permission.
 *
 * 4. This software, with or without modification, must only be used with a
 *    Nordic Semiconductor ASA integrated circuit.
 *
 * 5. Any software provided in binary form under this license must not be reverse
 *    engineered, decompiled, modified and/or disassembled.
 *
 * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 */

#include <nrfx.h>
#include <app_uart.h>
#include <app_timer.h>

#if NRFX_CHECK(NRFX_PDM_ENABLED)

#include <nrfx_pdm.h>
#include <hal/nrf_gpio.h>

#define NRFX_LOG_MODULE PDM
#include <nrfx_log.h>

#define EVT_TO_STR(event)                                       \
    (event == NRF_PDM_EVENT_STARTED ? "NRF_PDM_EVENT_STARTED" : \
    (event == NRF_PDM_EVENT_STOPPED ? "NRF_PDM_EVENT_STOPPED" : \
    (event == NRF_PDM_EVENT_END     ? "NRF_PDM_EVENT_END"     : \
                                      "UNKNOWN EVENT")))


/** @brief PDM interface status. */
typedef enum
{
    NRFX_PDM_STATE_IDLE,
    NRFX_PDM_STATE_RUNNING,
    NRFX_PDM_STATE_STARTING,
    NRFX_PDM_STATE_STOPPING
} nrfx_pdm_state_t;

uint32_t test_var3=0;
uint32_t begin[1000]={0},t=0;//end=0,time_diff=0;
APP_TIMER_DEF(test_timer);

/** @brief PDM interface control block.*/
typedef struct
{
    nrfx_pdm_event_handler_t  event_handler;    ///< Event handler function pointer.
    int16_t *                 buff_address[2];  ///< Sample buffers.
    uint16_t                  buff_length[2];   ///< Length of the sample buffers.
    nrfx_drv_state_t          drv_state;        ///< Driver state.
    volatile nrfx_pdm_state_t op_state;         ///< PDM peripheral operation state.
    uint8_t                   active_buffer;    ///< Number of currently active buffer.
    uint8_t                   error;            ///< Driver error flag.
    volatile uint8_t          irq_buff_request; ///< Request the next buffer in the ISR.
} nrfx_pdm_cb_t;

static nrfx_pdm_cb_t m_cb;
extern uint16_t audio_sample_buf[sample_buf_size];
uint8_t audio_uart[sample_buf_size*2];
uint16_t j=0;
uint32_t k=0;

void nrfx_pdm_irq_handler(void)
{
    if (nrf_pdm_event_check(NRF_PDM_EVENT_STARTED))
    {
        nrf_pdm_event_clear(NRF_PDM_EVENT_STARTED);
        NRFX_LOG_DEBUG("Event: %s.", EVT_TO_STR(NRF_PDM_EVENT_STARTED));

        uint8_t finished_buffer = m_cb.active_buffer;

        // Check if the next buffer was set before.
        uint8_t next_buffer = (~m_cb.active_buffer) & 0x01;
        if (m_cb.buff_address[next_buffer] ||
            m_cb.op_state == NRFX_PDM_STATE_STARTING)
        {
            nrfx_pdm_evt_t evt;
            evt.error = NRFX_PDM_NO_ERROR;
            m_cb.error = 0;

            // Release the full buffer if ready and request the next one.
            if (m_cb.op_state == NRFX_PDM_STATE_STARTING)
            {
                evt.buffer_released = 0;
                m_cb.op_state = NRFX_PDM_STATE_RUNNING;
            }
            else
            {
                evt.buffer_released = m_cb.buff_address[finished_buffer];
                m_cb.buff_address[finished_buffer] = 0;
                m_cb.active_buffer = next_buffer;
            }
            evt.buffer_requested = true;
            m_cb.event_handler(&evt);
        }
        else
        {
            // No next buffer available. Report an error.
            // Do not request the new buffer as it was already done.
            if (m_cb.error == 0)
            {
                nrfx_pdm_evt_t const evt = {
                    .buffer_requested = false,
                    .buffer_released  = NULL,
                    .error = NRFX_PDM_ERROR_OVERFLOW
                };
                m_cb.error = 1;
                m_cb.event_handler(&evt);
            }
        }

        if (m_cb.op_state == NRFX_PDM_STATE_STARTING)
        {
            m_cb.op_state = NRFX_PDM_STATE_RUNNING;
        }
    }
    else if (nrf_pdm_event_check(NRF_PDM_EVENT_STOPPED))
    {
        nrf_pdm_event_clear(NRF_PDM_EVENT_STOPPED);

        NRFX_LOG_DEBUG("Event: %s.", EVT_TO_STR(NRF_PDM_EVENT_STOPPED));
        nrf_pdm_disable();
        m_cb.op_state = NRFX_PDM_STATE_IDLE;

        // Release the buffers.
        nrfx_pdm_evt_t evt;
        evt.error = NRFX_PDM_NO_ERROR;
        evt.buffer_requested = false;
        if (m_cb.buff_address[m_cb.active_buffer])
        {
            evt.buffer_released = m_cb.buff_address[m_cb.active_buffer];
            m_cb.buff_address[m_cb.active_buffer] = 0;
            m_cb.event_handler(&evt);
        }

        uint8_t second_buffer = (~m_cb.active_buffer) & 0x01;
        if (m_cb.buff_address[second_buffer])
        {
            evt.buffer_released = m_cb.buff_address[second_buffer];
            m_cb.buff_address[second_buffer] = 0;
            m_cb.event_handler(&evt);
        }
        m_cb.active_buffer = 0;
    }

    else if (nrf_pdm_event_check(NRF_PDM_EVENT_END))
    {  
        //begin[t]=app_timer_cnt_get();
        t++;
        nrf_pdm_event_clear(NRF_PDM_EVENT_END);
        j=0;
        

        for(uint16_t i=0;i<sizeof(audio_sample_buf)/sizeof(audio_sample_buf[0]);i++)
        {
          audio_uart[j]=(uint8_t)(audio_sample_buf[i]>>8);
          audio_uart[j+1]=(uint8_t)audio_sample_buf[i];
          app_uart_put(audio_uart[j]);
          app_uart_put(audio_uart[j+1]);
          j+=2;
          k++;
        }
        //end=app_timer_cnt_get();
        //time_diff=app_timer_cnt_diff_compute(end,begin);
        
        

    }

    if (m_cb.irq_buff_request)
    {
        nrfx_pdm_evt_t const evt =
        {
            .buffer_requested = true,
            .buffer_released  = NULL,
            .error = NRFX_PDM_NO_ERROR,
        };
        m_cb.irq_buff_request = 0;
        m_cb.event_handler(&evt);
    }
}

//void one_sec_up()
//{
//  printf("Cycle: %x\n", k);
//}

nrfx_err_t nrfx_pdm_init(nrfx_pdm_config_t const * p_config,
                         nrfx_pdm_event_handler_t  event_handler)
{
    NRFX_ASSERT(p_config);
    NRFX_ASSERT(event_handler);
    nrfx_err_t err_code;

    if (m_cb.drv_state != NRFX_DRV_STATE_UNINITIALIZED)
    {
        err_code = NRFX_ERROR_INVALID_STATE;
        NRFX_LOG_WARNING("Function: %s, error code: %s.",
                         __func__,
                         NRFX_LOG_ERROR_STRING_GET(err_code));
        return err_code;
    }

    if (p_config->gain_l > NRF_PDM_GAIN_MAXIMUM ||
        p_config->gain_r > NRF_PDM_GAIN_MAXIMUM)
    {
        err_code = NRFX_ERROR_INVALID_PARAM;
        NRFX_LOG_WARNING("Function: %s, error code: %s.",
                         __func__,
                         NRFX_LOG_ERROR_STRING_GET(err_code));
        return err_code;
    }

    m_cb.buff_address[0] = 0;
    m_cb.buff_address[1] = 0;
    m_cb.active_buffer = 0;
    m_cb.error = 0;
    m_cb.event_handler = event_handler;
    m_cb.op_state = NRFX_PDM_STATE_IDLE;

    nrf_pdm_clock_set(p_config->clock_freq);
    nrf_pdm_mode_set(p_config->mode, p_config->edge);
    nrf_pdm_gain_set(p_config->gain_l, p_config->gain_r);

    nrf_gpio_cfg_output(p_config->pin_clk);
    nrf_gpio_pin_clear(p_config->pin_clk);
    nrf_gpio_cfg_input(p_config->pin_din, NRF_GPIO_PIN_NOPULL);
    nrf_pdm_psel_connect(p_config->pin_clk, p_config->pin_din);

    nrf_pdm_event_clear(NRF_PDM_EVENT_STARTED);
    nrf_pdm_event_clear(NRF_PDM_EVENT_END);
    nrf_pdm_event_clear(NRF_PDM_EVENT_STOPPED);
    nrf_pdm_int_enable(NRF_PDM_INT_STARTED | NRF_PDM_INT_STOPPED | NRF_PDM_INT_END);
    NRFX_IRQ_PRIORITY_SET(PDM_IRQn, p_config->interrupt_priority);
    NRFX_IRQ_ENABLE(PDM_IRQn);
    m_cb.drv_state = NRFX_DRV_STATE_INITIALIZED;

    err_code = NRFX_SUCCESS;
    NRFX_LOG_INFO("Function: %s, error code: %s.",
                  __func__,
                  NRFX_LOG_ERROR_STRING_GET(err_code));

   //app_timer_create(&test_timer,APP_TIMER_MODE_REPEATED,one_sec_up);

    return err_code;
}



void nrfx_pdm_uninit(void)
{
    nrf_pdm_disable();
    nrf_pdm_psel_disconnect();
    m_cb.drv_state = NRFX_DRV_STATE_UNINITIALIZED;
    NRFX_LOG_INFO("Uninitialized.");
}

static void pdm_start()
{
    m_cb.drv_state = NRFX_DRV_STATE_POWERED_ON;
    nrf_pdm_enable();
    nrf_pdm_event_clear(NRF_PDM_EVENT_STARTED);
    nrf_pdm_task_trigger(NRF_PDM_TASK_START);
}

static void pdm_buf_request()
{
    m_cb.irq_buff_request = 1;
    NRFX_IRQ_PENDING_SET(PDM_IRQn);
}

nrfx_err_t nrfx_pdm_start(void)
{
    app_timer_start(test_timer,APP_TIMER_TICKS(3000),NULL);
    NRFX_ASSERT(m_cb.drv_state != NRFX_DRV_STATE_UNINITIALIZED);
    nrfx_err_t err_code;

    if (m_cb.op_state != NRFX_PDM_STATE_IDLE)
    {
        if (m_cb.op_state == NRFX_PDM_STATE_RUNNING)
        {
            err_code = NRFX_SUCCESS;
            NRFX_LOG_INFO("Function: %s, error code: %s.",
                          __func__,
                          NRFX_LOG_ERROR_STRING_GET(err_code));
            return err_code;
        }
        err_code = NRFX_ERROR_BUSY;
        NRFX_LOG_WARNING("Function: %s, error code: %s.",
                         __func__,
                         NRFX_LOG_ERROR_STRING_GET(err_code));
        return err_code;
    }

    m_cb.op_state = NRFX_PDM_STATE_STARTING;
    pdm_buf_request();

    err_code = NRFX_SUCCESS;
    NRFX_LOG_INFO("Function: %s, error code: %s.",
                  __func__,
                  NRFX_LOG_ERROR_STRING_GET(err_code));
    return err_code;
}

nrfx_err_t nrfx_pdm_buffer_set(int16_t * buffer, uint16_t buffer_length)
{
    if (m_cb.drv_state == NRFX_DRV_STATE_UNINITIALIZED)
    {
        return NRFX_ERROR_INVALID_STATE;
    }
    if (m_cb.op_state == NRFX_PDM_STATE_STOPPING)
    {
        return NRFX_ERROR_BUSY;
    }
    if ((buffer == NULL) || (buffer_length > NRFX_PDM_MAX_BUFFER_SIZE))
    {
        return NRFX_ERROR_INVALID_PARAM;
    }

    nrfx_err_t err_code = NRFX_SUCCESS;

    // Enter the PDM critical section.
    NRFX_IRQ_DISABLE(PDM_IRQn);

    uint8_t next_buffer = (~m_cb.active_buffer) & 0x01;
    if (m_cb.op_state == NRFX_PDM_STATE_STARTING)
    {
        next_buffer = 0;
    }

    if (m_cb.buff_address[next_buffer])
    {
        // Buffer already set.
        err_code = NRFX_ERROR_BUSY;
    }
    else
    {
        m_cb.buff_address[next_buffer] = buffer;
        m_cb.buff_length[next_buffer] = buffer_length;
        nrf_pdm_buffer_set((uint32_t *)buffer, buffer_length);

        if (m_cb.drv_state != NRFX_DRV_STATE_POWERED_ON)
        {
            pdm_start();
        }
    }

    NRFX_IRQ_ENABLE(PDM_IRQn);
    return err_code;
}

nrfx_err_t nrfx_pdm_stop(void)
{
    NRFX_ASSERT(m_cb.drv_state != NRFX_DRV_STATE_UNINITIALIZED);
    nrfx_err_t err_code;

    if (m_cb.op_state != NRFX_PDM_STATE_RUNNING)
    {
        if (m_cb.op_state == NRFX_PDM_STATE_IDLE ||
            m_cb.op_state == NRFX_PDM_STATE_STARTING)
        {
            nrf_pdm_disable();
            m_cb.op_state = NRFX_PDM_STATE_IDLE;
            err_code = NRFX_SUCCESS;
            NRFX_LOG_INFO("Function: %s, error code: %s.",
                          __func__,
                          NRFX_LOG_ERROR_STRING_GET(err_code));
            return err_code;
        }
        err_code = NRFX_ERROR_BUSY;
        NRFX_LOG_WARNING("Function: %s, error code: %s.",
                         __func__,
                         NRFX_LOG_ERROR_STRING_GET(err_code));
        return err_code;
    }
    m_cb.drv_state = NRFX_DRV_STATE_INITIALIZED;
    m_cb.op_state = NRFX_PDM_STATE_STOPPING;

    nrf_pdm_task_trigger(NRF_PDM_TASK_STOP);
    err_code = NRFX_SUCCESS;
    NRFX_LOG_INFO("Function: %s, error code: %s.", __func__, NRFX_LOG_ERROR_STRING_GET(err_code));
    
    
    return err_code;
}

#endif // NRFX_CHECK(NRFX_PDM_ENABLED)

  • I know there's quite a bit of unnecessary code to my simple application of acquiring data from microphone and receiving them via DMA in RAM and from there send the data to UART at every END event (when allocated space in RAM is filled).
    The relevant functions in main.c are the initialization of the pdm_config structure at the top, bsp_event_handler(bsp_event_t event), static void uart_init(void), void buffer_event_handler(nrfx_pdm_evt_t *p_evt),  nrfx_pdm_init(&pdm_config,(nrfx_pdm_event_handler_t)buffer_event_handler) under int main().

  • Hello,

    Ok, let me see if I understand your issue (please correct me if I am wrong).

    You expect to get ~32 000 bytes per second, but you see only ~half.

    16 000 bytes = 128 000 bit, so you need to increase the baudrate. 115 200[b/s] is slightly less than 128 000bps, so that gives almost 16 000 bytes per second.Try to increase the baud rate to 1 000 000.

    For development purposes, I suggest you wait a bit with the UART. Try to just count the number of bytes received over PDM, and see if you receive the expected 32 000 bytes. 

    Lastly, I am a bit concerned about your app_uart_put() calls. You don't check the return values here. What happens if you do something like this:

    err_code = app_uart_put(audio_uart[j]);
    if (err_code != NRF_SUCCESS)
    {
        NRF_LOG_INFO("app_uart_put returned 0x%08x", err_code);
    }
    err_code = app_uart_put(audio_uart[j+1]);
    if (err_code != NRF_SUCCESS)
    {
        NRF_LOG_INFO("app_uart_put returned 0x%08x", err_code);
    }

    How often do you see that these lines prints anything, and what do they print? If it prints "app_uart_put returned 0x00000011", it means that it returns NRF_ERROR_BUSY, which means that it is already busy processing the previous byte. When this value is retuned, app_uart_put() didn't successfully queue that byte. 

    Try to do some testing with this in mind. Find out whether all the data is received over PDM, and if so, what is the return value of app_uart_put() when it is not NRF_SUCCESS?

    And you need to increase the UART baudrate. 115200 (from your uart_init() in main.c) is not enough for 32 000bytes/second. 

    BR,

    Edvin

  • Try to just count the number of bytes received over PDM

    above, samp value is 162 in 1 second and the Buffsize is 100. samp is incremented at every END event i.e everytime buffer of 100 samples (uint16_t) is filled samp is incremented by 1. Hence if after 1 second I have 162 increments of samp it means there are 162*100=16200 samples in one second, which is equal to PCM output sample frequency.


    How often do you see that these lines prints anything, and what do they print?

    For some reason it doesn't enter into the if condition only or it doesn't check the if condition only.

    Anyway I modified the code to transmit data over UART using EasyDMA (UARTE) using Baud rate 460800 and now when I check the byte/sec using the python script it's coming ~32000. 
    Modified code:

    static void uart_init(void)
    {
        ret_code_t err_code;
        
    
        nrfx_uarte_config_t config_params = NRFX_UARTE_DEFAULT_CONFIG;
        
        config_params.pselrxd=8;
        config_params.pseltxd=6;
        config_params.baudrate=0x07400000UL; //460800 Baud
        
        err_code=nrfx_uarte_init(&uarte_handler,&config_params,NULL);
        APP_ERROR_CHECK(err_code);

        else if (nrf_pdm_event_check(NRF_PDM_EVENT_END))
        {  
            //begin[t]=app_timer_cnt_get();
            //t++;
            nrf_pdm_event_clear(NRF_PDM_EVENT_END);
            j=0;
            //memcpy(audio_sample_copy,audio_sample_buf,sizeof(audio_sample_buf));
    
            for(uint16_t i=0;i<sizeof(audio_sample_buf)/sizeof(audio_sample_buf[0]);i++)
            {
              audio_uart[j]=(uint8_t)(audio_sample_buf[i]>>8);
              audio_uart[j+1]=(uint8_t)audio_sample_buf[i];
    
              j+=2;
              //k++;
            }  
            nrfx_uarte_tx(&uarte_handler,(uint8_t*)audio_uart,sizeof(audio_uart));
            
    
            
    
        }

    However, when I try to generate a wav file using the PCM data from serial terminal, I get a highly distorted audio when I playback and the meaningful audio data seems to be superimposed by all the noise/distortion. I also import the raw data from the wave file into an audio app called audacity to playback the audio. How do I check the correctness of the PCM output from the PDM peripheral ?

  • I don't know how you would do that. I guess it is not possible to make the PCM output to be equal to a given sequence that you can check when you have received it? Does the received values look reasonable? Does it look like it receives the correct amount of bytes per sample?

Related