This post is older than 2 years and might not be relevant anymore
More Info: Consider searching for newer posts

Nordic UART Service custom flow control based on RX buffer size

Hi,

We have a question regarding a custom implementation of flow control for nrf52840 using SDK16 w/ SoftDevice 7.0.1. Currently, our sensor's primary micro transfers data via UART to a nrf52840 module running the peripheral ble_app_uart firmware. This issue is that we cannot use the standard uart flow control implementation within ble_app_uart (.flow_control = APP_UART_FLOW_CONTROL_ENABLED) because our micro sends bursts of data (512 bytes chunks) to the BLE module and cannot react to RTS instantaneously. 

That being said, our RX/TX buffer are set to a size which is >> the data chunks.

Ex. #define UART_RX_BUF_SIZE                8192

We were wondering if there was a way to track the current size of the RX buffer as its being fed data over UART so that we can manually deassert the RTS flag when the buffer is, for example, 75% full and re-assert RTS when the RX buffer is 25% full. This way, we will not have to worry about reacting instantaneously to RTS as I see is required by my logic analyzer when using APP_UART_FLOW_CONTROL_ENABLED.

Looking at ble_app_uart_pca10056_s140, I added some pseudo code to the following function which aims to check the current size of RX receiving buffer and assert/deassert RTS.

void uart_event_handle(app_uart_evt_t * p_event)
{
    static uint8_t data_array[BLE_NUS_MAX_DATA_LEN];
    static uint8_t index = 0;
    uint32_t       err_code;

    switch (p_event->evt_type)
    {
        case APP_UART_DATA_READY:
          if (CURRENT_RXBUFFER_SIZE < (0.75 * UART_RX_BUF_SIZE))
          {
              **(set RTS GPIO low - enable UART data transmission from micro)**

              UNUSED_VARIABLE(app_uart_get(&data_array[index]));
              index++;

              if ((data_array[index - 1] == '\n') ||
                  (data_array[index - 1] == '\r') ||
                  (index >= m_ble_nus_max_data_len))
              {
                  if (index > 1)
                  {
                      NRF_LOG_DEBUG("Ready to send data over BLE NUS");
                      NRF_LOG_HEXDUMP_DEBUG(data_array, index);

                      do
                      {
                          uint16_t length = (uint16_t)index;
                          err_code = ble_nus_data_send(&m_nus, data_array, &length, m_conn_handle);
                          if ((err_code != NRF_ERROR_INVALID_STATE) &&
                              (err_code != NRF_ERROR_RESOURCES) &&
                              (err_code != NRF_ERROR_NOT_FOUND))
                          {
                              APP_ERROR_CHECK(err_code);
                          }
                      } while (err_code == NRF_ERROR_RESOURCES);
                  }

                  index = 0;
              }
            break;
          }
          else {
            **(set RTS GPIO high - disable UART data transmission from micro)**
          }
        case APP_UART_COMMUNICATION_ERROR:
            APP_ERROR_HANDLER(p_event->data.error_communication);
            break;

        case APP_UART_FIFO_ERROR:
            APP_ERROR_HANDLER(p_event->data.error_code);
            break;

        default:
            break;
    }
}

Thoughts?

As I mentioned above, we cannot react instantly to RTS using the built in flow control so we'd like to trigger based on current BLE RX buffer size so as to not trigger the APP_UART_FIFO_ERROR when we transmit too much data too fast.

Thank you for your assistance.

Best,

Robert

  • To provide some more color... pictorially this is what I am trying to achieve:

    Pardon my ignorance, firmware is not my forte.. I assume the functionality described would go into the uart_event_handle function within ble_app_uart

    Thanks,

    Robert

  • Hi Robert

    Have you tried to implement this using the nrf_libuarte library?

    This is a more feature rich UART implementation, designed to leverage the EasyDMA support of the UARTE module. 

    On the RX side you have a timeout feature, which allows you get an interrupt after a predefined time even if the UART buffers are not full yet. It should be possible to use this feature to inform the application when the buffers reach a certain state, and use this to manually set a flow control pin. 

    Best regards
    Torbjørn

  • Hi Torbjørn,

    Thanks for the guidance. I went ahead and researched the nrf_libuarte library and based on others' attempts on the forum to modify ble_app_uart I'd prefer a simpler solution not requiring the overhead of timers and ppi.

    I went ahead and modified the peripheral side of ble_app_uart and have some questions. I have tested the following simple code on two nrf52840DK boards; transmitting a binary file from peripheral to central using Tera Term.

    I added the following functions to app_uart_fifo.c in order to read back the size of rx and tx uart buffers.

    uint32_t app_uart_rx_bytes_written(void)
    {
        uint32_t  num_bytes_rx = 0;
        uint32_t * num_bytes_rx_ptr;
        
        num_bytes_rx_ptr = &num_bytes_rx;
        app_fifo_read(&m_rx_fifo, NULL, num_bytes_rx_ptr);
    
        return num_bytes_rx;
    }
    
    uint32_t app_uart_rx_bytes_available(void)
    {
        uint32_t  num_bytes_rx = 0;
        uint32_t * num_bytes_rx_ptr;
        
        num_bytes_rx_ptr = &num_bytes_rx;
        app_fifo_write(&m_rx_fifo, NULL, num_bytes_rx_ptr);
    
        return num_bytes_rx;
    }
    
    uint32_t app_uart_tx_bytes_written(void)
    {
        uint32_t  num_bytes_tx = 0;
        uint32_t * num_bytes_tx_ptr;
        
        num_bytes_tx_ptr = &num_bytes_tx;
        app_fifo_read(&m_tx_fifo, NULL, num_bytes_tx_ptr);
    
        return num_bytes_tx;
    }
    
    uint32_t app_uart_tx_bytes_available(void)
    {
        uint32_t  num_bytes_tx = 0;
        uint32_t * num_bytes_tx_ptr;
        
        num_bytes_tx_ptr = &num_bytes_tx;
        app_fifo_write(&m_tx_fifo, NULL, num_bytes_tx_ptr);
    
        return num_bytes_tx;
    }
    

    Also added appropriate function definitions in app_uart.h

    uint32_t app_uart_rx_bytes_written(void);
    uint32_t app_uart_rx_bytes_available(void);
    uint32_t app_uart_tx_bytes_written(void);
    uint32_t app_uart_tx_bytes_available(void);

    It seems to me that the current ble_app_uart implementation for nrf52840 s140 (SDK 16) does not use EasyDMA, but regardless I left the following defined as is within sdk_config.h

    #ifndef UART_EASY_DMA_SUPPORT
    #define UART_EASY_DMA_SUPPORT 1
    #endif
    
    ...
    
    #ifndef UART0_CONFIG_USE_EASY_DMA
    #define UART0_CONFIG_USE_EASY_DMA 1
    #endif

    In peripheral ble_app_uart main.c (attached at bottom), I read the buffer sizes in uart_event_handle function. The central firmware (ble_app_uart_c) is unmodified beyond an increased rx/tx buffer size and ECHOBACK_BLE_UART_DATA set to 0.

    void uart_event_handle(app_uart_evt_t * p_event)
    {
        static uint8_t data_array[BLE_NUS_MAX_DATA_LEN];
        static uint8_t index = 0;
        static uint8_t flctrl = 0;
        static uint32_t size_rx_buf_written = 0;
        static uint32_t size_rx_buf_available = 0;
        static uint32_t size_tx_buf_written = 0;
        static uint32_t size_tx_buf_available = 0;
        uint32_t       err_code;
        
        switch (p_event->evt_type)
        {
            case APP_UART_DATA_READY:
    
                  size_rx_buf_written   = app_uart_rx_bytes_written();
                  size_rx_buf_available = app_uart_rx_bytes_available();
                  size_tx_buf_written   = app_uart_tx_bytes_written();
                  size_tx_buf_available = app_uart_tx_bytes_available();
    
                  printf("rxw: %lu rxa: %lu txw: %lu txa: %lu\r\n", size_rx_buf_written, size_rx_buf_available, size_tx_buf_written, size_tx_buf_available);
              
                  UNUSED_VARIABLE(app_uart_get(&data_array[index]));
                  index++;
    
                  if ((data_array[index - 1] == '\n') ||
                      (data_array[index - 1] == '\r') ||
                      (index >= m_ble_nus_max_data_len))
                  {

    Interestingly enough, the RX buffer never seems to fill up yet I consistently get a APP_UART_FIFO_ERROR, regardless of how big I set the RX / TX buffers (tested @ 16384 byes) and with flow control disabled.

    When I send a simple binary file over UART (attached) from the peripheral to central device with APP_UART_FLOW_CONTROL_ENABLED, it works great and I get the following output. 

    binary-output.bin

    Here is my Tera Term output:

    rxw: 1 rxa: 16383 txw: 0 txa: 16384
    rxw: 1 rxa: 16383 txw: 35 txa: 16349
    rxw: 1 rxa: 16383 txw: 72 txa: 16312
    rxw: 1 rxa: 16383 txw: 109 txa: 16275
    rxw: 1 rxa: 16383 txw: 147 txa: 16237
    rxw: 1 rxa: 16383 txw: 185 txa: 16199
    rxw: 1 rxa: 16383 txw: 223 txa: 16161
    rxw: 1 rxa: 16383 txw: 261 txa: 16123
    rxw: 1 rxa: 16383 txw: 299 txa: 16085
    rxw: 1 rxa: 16383 txw: 337 txa: 16047
    rxw: 1 rxa: 16383 txw: 375 txa: 16009
    rxw: 1 rxa: 16383 txw: 413 txa: 15971
    rxw: 1 rxa: 16383 txw: 451 txa: 15933
    rxw: 1 rxa: 16383 txw: 489 txa: 15895
    rxw: 1 rxa: 16383 txw: 527 txa: 15857
    rxw: 1 rxa: 16383 txw: 565 txa: 15819
    rxw: 1 rxa: 16383 txw: 603 txa: 15781
    rxw: 1 rxa: 16383 txw: 641 txa: 15743
    rxw: 1 rxa: 16383 txw: 679 txa: 15705
    rxw: 1 rxa: 16383 txw: 717 txa: 15667
    rxw: 1 rxa: 16383 txw: 755 txa: 15629
    rxw: 1 rxa: 16383 txw: 793 txa: 15591
    rxw: 1 rxa: 16383 txw: 831 txa: 15553
    rxw: 1 rxa: 16383 txw: 869 txa: 15515
    rxw: 1 rxa: 16383 txw: 907 txa: 15477
    rxw: 1 rxa: 16383 txw: 945 txa: 15439
    rxw: 1 rxa: 16383 txw: 983 txa: 15401
    rxw: 1 rxa: 16383 txw: 1021 txa: 15363
    rxw: 1 rxa: 16383 txw: 1060 txa: 15324
    rxw: 1 rxa: 16383 txw: 1099 txa: 15285
    rxw: 1 rxa: 16383 txw: 1138 txa: 15246
    rxw: 1 rxa: 16383 txw: 1177 txa: 15207
    rxw: 1 rxa: 16383 txw: 1216 txa: 15168
    rxw: 1 rxa: 16383 txw: 1255 txa: 15129
    rxw: 1 rxa: 16383 txw: 1294 txa: 15090

    This indicates that the UART RX buffer is not filling up. However, when I disable built-in flow control (APP_UART_FLOW_CONTROL_DISABLED) I immediately get an error that resets my peripheral device after only a few bytes are sent.

    Tera Term output:

    rxw: 1 rxa:

    The peripheral device (running ble_app_uart) output shows the following call stack:

    Which I believe points me to the following error: 

            case APP_UART_FIFO_ERROR:
                APP_ERROR_HANDLER(p_event->data.error_code);
                break;

    Am I reading this correctly? The issue seems to be with the FIFO but the RX/TX buffers are not yet overflowed as I demonstrated above.

    If I transfer the same binary file via RealTerm, the transfer works without erroring the peripheral device out, but only because the Send File function within RealTerm sends data ~128byte chunks at a time with 40ms pauses in between chunks as seen in the logic analyzer comparison screenshots below. Tera Term sends all the binary data continuously as needed.

    RealTerm:

    TeraTerm:

    I guess it boils down to, am I understanding my error correctly? Is it error I am seeing caused by FIFO overflow of the RX UART buffer?

    Thank you for your support.

    Best,

    Robert

    peripheral ble_app_uart main.c

    /**
     * Copyright (c) 2014 - 2019, Nordic Semiconductor ASA
     *
     * All rights reserved.
     *
     * Redistribution and use in source and binary forms, with or without modification,
     * are permitted provided that the following conditions are met:
     *
     * 1. Redistributions of source code must retain the above copyright notice, this
     *    list of conditions and the following disclaimer.
     *
     * 2. Redistributions in binary form, except as embedded into a Nordic
     *    Semiconductor ASA integrated circuit in a product or a software update for
     *    such product, must reproduce the above copyright notice, this list of
     *    conditions and the following disclaimer in the documentation and/or other
     *    materials provided with the distribution.
     *
     * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
     *    contributors may be used to endorse or promote products derived from this
     *    software without specific prior written permission.
     *
     * 4. This software, with or without modification, must only be used with a
     *    Nordic Semiconductor ASA integrated circuit.
     *
     * 5. Any software provided in binary form under this license must not be reverse
     *    engineered, decompiled, modified and/or disassembled.
     *
     * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
     * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
     * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
     * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
     * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     *
     */
    /** @file
     *
     * @defgroup ble_sdk_uart_over_ble_main main.c
     * @{
     * @ingroup  ble_sdk_app_nus_eval
     * @brief    UART over BLE application main file.
     *
     * This file contains the source code for a sample application that uses the Nordic UART service.
     * This application uses the @ref srvlib_conn_params module.
     */
    
    
    #include <stdint.h>
    #include <string.h>
    #include "nordic_common.h"
    #include "nrf.h"
    #include "ble_hci.h"
    #include "ble_advdata.h"
    #include "ble_advertising.h"
    #include "ble_conn_params.h"
    #include "nrf_gpio.h"
    #include "nrf_sdh.h"
    #include "nrf_sdh_soc.h"
    #include "nrf_sdh_ble.h"
    #include "nrf_ble_gatt.h"
    #include "nrf_ble_qwr.h"
    #include "app_timer.h"
    #include "ble_nus.h"
    #include "app_uart.h"
    #include "app_util_platform.h"
    #include "bsp_btn_ble.h"
    #include "nrf_pwr_mgmt.h"
    
    #if defined (UART_PRESENT)
    #include "nrf_uart.h"
    #endif
    #if defined (UARTE_PRESENT)
    #include "nrf_uarte.h"
    #endif
    
    #include "nrf_log.h"
    #include "nrf_log_ctrl.h"
    #include "nrf_log_default_backends.h"
    
    #define APP_BLE_CONN_CFG_TAG            1                                           /**< A tag identifying the SoftDevice BLE configuration. */
    
    #define DEVICE_NAME                     "Nordic_UART"                               /**< Name of device. Will be included in the advertising data. */
    #define NUS_SERVICE_UUID_TYPE           BLE_UUID_TYPE_VENDOR_BEGIN                  /**< UUID type for the Nordic UART Service (vendor specific). */
    
    #define APP_BLE_OBSERVER_PRIO           3                                           /**< Application's BLE observer priority. You shouldn't need to modify this value. */
    
    #define APP_ADV_INTERVAL                64                                          /**< The advertising interval (in units of 0.625 ms. This value corresponds to 40 ms). */
    
    #define APP_ADV_DURATION                18000                                       /**< The advertising duration (180 seconds) in units of 10 milliseconds. */
    
    #define MIN_CONN_INTERVAL               MSEC_TO_UNITS(20, UNIT_1_25_MS)             /**< Minimum acceptable connection interval (20 ms), Connection interval uses 1.25 ms units. */
    #define MAX_CONN_INTERVAL               MSEC_TO_UNITS(75, UNIT_1_25_MS)             /**< Maximum acceptable connection interval (75 ms), Connection interval uses 1.25 ms units. */
    #define SLAVE_LATENCY                   0                                           /**< Slave latency. */
    #define CONN_SUP_TIMEOUT                MSEC_TO_UNITS(4000, UNIT_10_MS)             /**< Connection supervisory timeout (4 seconds), Supervision Timeout uses 10 ms units. */
    #define FIRST_CONN_PARAMS_UPDATE_DELAY  APP_TIMER_TICKS(5000)                       /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */
    #define NEXT_CONN_PARAMS_UPDATE_DELAY   APP_TIMER_TICKS(30000)                      /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */
    #define MAX_CONN_PARAMS_UPDATE_COUNT    3                                           /**< Number of attempts before giving up the connection parameter negotiation. */
    
    #define DEAD_BEEF                       0xDEADBEEF                                  /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */
    
    #define UART_TX_BUF_SIZE                16384                                         /**< UART TX buffer size. */
    #define UART_RX_BUF_SIZE                16384                                         /**< UART RX buffer size. */
    
    
    BLE_NUS_DEF(m_nus, NRF_SDH_BLE_TOTAL_LINK_COUNT);                                   /**< BLE NUS service instance. */
    NRF_BLE_GATT_DEF(m_gatt);                                                           /**< GATT module instance. */
    NRF_BLE_QWR_DEF(m_qwr);                                                             /**< Context for the Queued Write module.*/
    BLE_ADVERTISING_DEF(m_advertising);                                                 /**< Advertising module instance. */
    
    static uint16_t   m_conn_handle          = BLE_CONN_HANDLE_INVALID;                 /**< Handle of the current connection. */
    static uint16_t   m_ble_nus_max_data_len = NRF_SDH_BLE_GATT_MAX_MTU_SIZE - OPCODE_LENGTH - HANDLE_LENGTH;            /**< Maximum length of data (in bytes) that can be transmitted to the peer by the Nordic UART service module. */
    // was: BLE_GATT_ATT_MTU_DEFAULT
    static ble_uuid_t m_adv_uuids[]          =                                          /**< Universally unique service identifier. */
    {
        {BLE_UUID_NUS_SERVICE, NUS_SERVICE_UUID_TYPE}
    };
    
    
    /**@brief Function for assert macro callback.
     *
     * @details This function will be called in case of an assert in the SoftDevice.
     *
     * @warning This handler is an example only and does not fit a final product. You need to analyse
     *          how your product is supposed to react in case of Assert.
     * @warning On assert from the SoftDevice, the system can only recover on reset.
     *
     * @param[in] line_num    Line number of the failing ASSERT call.
     * @param[in] p_file_name File name of the failing ASSERT call.
     */
    void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name)
    {
        app_error_handler(DEAD_BEEF, line_num, p_file_name);
    }
    
    /**@brief Function for initializing the timer module.
     */
    static void timers_init(void)
    {
        ret_code_t err_code = app_timer_init();
        APP_ERROR_CHECK(err_code);
    }
    
    /**@brief Function for the GAP initialization.
     *
     * @details This function will set up all the necessary GAP (Generic Access Profile) parameters of
     *          the device. It also sets the permissions and appearance.
     */
    static void gap_params_init(void)
    {
        uint32_t                err_code;
        ble_gap_conn_params_t   gap_conn_params;
        ble_gap_conn_sec_mode_t sec_mode;
    
        BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode);
    
        err_code = sd_ble_gap_device_name_set(&sec_mode,
                                              (const uint8_t *) DEVICE_NAME,
                                              strlen(DEVICE_NAME));
        APP_ERROR_CHECK(err_code);
    
        memset(&gap_conn_params, 0, sizeof(gap_conn_params));
    
        gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL;
        gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL;
        gap_conn_params.slave_latency     = SLAVE_LATENCY;
        gap_conn_params.conn_sup_timeout  = CONN_SUP_TIMEOUT;
    
        err_code = sd_ble_gap_ppcp_set(&gap_conn_params);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling Queued Write Module errors.
     *
     * @details A pointer to this function will be passed to each service which may need to inform the
     *          application about an error.
     *
     * @param[in]   nrf_error   Error code containing information about what went wrong.
     */
    static void nrf_qwr_error_handler(uint32_t nrf_error)
    {
        APP_ERROR_HANDLER(nrf_error);
    }
    
    
    /**@brief Function for handling the data from the Nordic UART Service.
     *
     * @details This function will process the data received from the Nordic UART BLE Service and send
     *          it to the UART module.
     *
     * @param[in] p_evt       Nordic UART Service event.
     */
    /**@snippet [Handling the data received over BLE] */
    static void nus_data_handler(ble_nus_evt_t * p_evt)
    {
    
        if (p_evt->type == BLE_NUS_EVT_RX_DATA)
        {
            uint32_t err_code;
    
            NRF_LOG_DEBUG("Received data from BLE NUS. Writing data on UART.");
            NRF_LOG_HEXDUMP_DEBUG(p_evt->params.rx_data.p_data, p_evt->params.rx_data.length);
    
            for (uint32_t i = 0; i < p_evt->params.rx_data.length; i++)
            {
                do
                {
                    err_code = app_uart_put(p_evt->params.rx_data.p_data[i]);
                    if ((err_code != NRF_SUCCESS) && (err_code != NRF_ERROR_BUSY))
                    {
                        NRF_LOG_ERROR("Failed receiving NUS message. Error 0x%x. ", err_code);
                        APP_ERROR_CHECK(err_code);
                    }
                } while (err_code == NRF_ERROR_BUSY);
            }
            if (p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 1] == '\r')
            {
                while (app_uart_put('\n') == NRF_ERROR_BUSY);
            }
        }
    
    }
    /**@snippet [Handling the data received over BLE] */
    
    
    /**@brief Function for initializing services that will be used by the application.
     */
    static void services_init(void)
    {
        uint32_t           err_code;
        ble_nus_init_t     nus_init;
        nrf_ble_qwr_init_t qwr_init = {0};
    
        // Initialize Queued Write Module.
        qwr_init.error_handler = nrf_qwr_error_handler;
    
        err_code = nrf_ble_qwr_init(&m_qwr, &qwr_init);
        APP_ERROR_CHECK(err_code);
    
        // Initialize NUS.
        memset(&nus_init, 0, sizeof(nus_init));
    
        nus_init.data_handler = nus_data_handler;
    
        err_code = ble_nus_init(&m_nus, &nus_init);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling an event from the Connection Parameters Module.
     *
     * @details This function will be called for all events in the Connection Parameters Module
     *          which are passed to the application.
     *
     * @note All this function does is to disconnect. This could have been done by simply setting
     *       the disconnect_on_fail config parameter, but instead we use the event handler
     *       mechanism to demonstrate its use.
     *
     * @param[in] p_evt  Event received from the Connection Parameters Module.
     */
    static void on_conn_params_evt(ble_conn_params_evt_t * p_evt)
    {
        uint32_t err_code;
    
        if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED)
        {
            err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE);
            APP_ERROR_CHECK(err_code);
        }
    }
    
    
    /**@brief Function for handling errors from the Connection Parameters module.
     *
     * @param[in] nrf_error  Error code containing information about what went wrong.
     */
    static void conn_params_error_handler(uint32_t nrf_error)
    {
        APP_ERROR_HANDLER(nrf_error);
    }
    
    
    /**@brief Function for initializing the Connection Parameters module.
     */
    static void conn_params_init(void)
    {
        uint32_t               err_code;
        ble_conn_params_init_t cp_init;
    
        memset(&cp_init, 0, sizeof(cp_init));
    
        cp_init.p_conn_params                  = NULL;
        cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY;
        cp_init.next_conn_params_update_delay  = NEXT_CONN_PARAMS_UPDATE_DELAY;
        cp_init.max_conn_params_update_count   = MAX_CONN_PARAMS_UPDATE_COUNT;
        cp_init.start_on_notify_cccd_handle    = BLE_GATT_HANDLE_INVALID;
        cp_init.disconnect_on_fail             = false;
        cp_init.evt_handler                    = on_conn_params_evt;
        cp_init.error_handler                  = conn_params_error_handler;
    
        err_code = ble_conn_params_init(&cp_init);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for putting the chip into sleep mode.
     *
     * @note This function will not return.
     */
    static void sleep_mode_enter(void)
    {
        uint32_t err_code = bsp_indication_set(BSP_INDICATE_IDLE);
        APP_ERROR_CHECK(err_code);
    
        // Prepare wakeup buttons.
        err_code = bsp_btn_ble_sleep_mode_prepare();
        APP_ERROR_CHECK(err_code);
    
        // Go to system-off mode (this function will not return; wakeup will cause a reset).
        err_code = sd_power_system_off();
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling advertising events.
     *
     * @details This function will be called for advertising events which are passed to the application.
     *
     * @param[in] ble_adv_evt  Advertising event.
     */
    static void on_adv_evt(ble_adv_evt_t ble_adv_evt)
    {
        uint32_t err_code;
    
        switch (ble_adv_evt)
        {
            case BLE_ADV_EVT_FAST:
                err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING);
                APP_ERROR_CHECK(err_code);
                break;
            case BLE_ADV_EVT_IDLE:
                sleep_mode_enter();
                break;
            default:
                break;
        }
    }
    
    
    /**@brief Function for handling BLE events.
     *
     * @param[in]   p_ble_evt   Bluetooth stack event.
     * @param[in]   p_context   Unused.
     */
    static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context)
    {
        uint32_t err_code;
    
        switch (p_ble_evt->header.evt_id)
        {
            case BLE_GAP_EVT_CONNECTED:
                NRF_LOG_INFO("Connected");
                err_code = bsp_indication_set(BSP_INDICATE_CONNECTED);
                APP_ERROR_CHECK(err_code);
                m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle;
                err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr, m_conn_handle);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GAP_EVT_DISCONNECTED:
                NRF_LOG_INFO("Disconnected");
                // LED indication will be changed when advertising starts.
                m_conn_handle = BLE_CONN_HANDLE_INVALID;
                break;
    
            case BLE_GAP_EVT_PHY_UPDATE_REQUEST:
            {
                NRF_LOG_DEBUG("PHY update request.");
                ble_gap_phys_t const phys =
                {
                    .rx_phys = BLE_GAP_PHY_AUTO,
                    .tx_phys = BLE_GAP_PHY_AUTO,
                };
                err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys);
                APP_ERROR_CHECK(err_code);
            } break;
    
            case BLE_GAP_EVT_SEC_PARAMS_REQUEST:
                // Pairing not supported
                err_code = sd_ble_gap_sec_params_reply(m_conn_handle, BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GATTS_EVT_SYS_ATTR_MISSING:
                // No system attributes have been stored.
                err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0, 0);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GATTC_EVT_TIMEOUT:
                // Disconnect on GATT Client timeout event.
                err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle,
                                                 BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GATTS_EVT_TIMEOUT:
                // Disconnect on GATT Server timeout event.
                err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle,
                                                 BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
                APP_ERROR_CHECK(err_code);
                break;
    
            default:
                // No implementation needed.
                break;
        }
    }
    
    
    /**@brief Function for the SoftDevice initialization.
     *
     * @details This function initializes the SoftDevice and the BLE event interrupt.
     */
    static void ble_stack_init(void)
    {
        ret_code_t err_code;
    
        err_code = nrf_sdh_enable_request();
        APP_ERROR_CHECK(err_code);
    
        // Configure the BLE stack using the default settings.
        // Fetch the start address of the application RAM.
        uint32_t ram_start = 0;
        err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start);
        APP_ERROR_CHECK(err_code);
    
        // Enable BLE stack.
        err_code = nrf_sdh_ble_enable(&ram_start);
        APP_ERROR_CHECK(err_code);
    
        // Register a handler for BLE events.
        NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL);
    }
    
    
    /**@brief Function for handling events from the GATT library. */
    void gatt_evt_handler(nrf_ble_gatt_t * p_gatt, nrf_ble_gatt_evt_t const * p_evt)
    {
        if ((m_conn_handle == p_evt->conn_handle) && (p_evt->evt_id == NRF_BLE_GATT_EVT_ATT_MTU_UPDATED))
        {
            m_ble_nus_max_data_len = p_evt->params.att_mtu_effective - OPCODE_LENGTH - HANDLE_LENGTH;
            NRF_LOG_INFO("Data len is set to 0x%X(%d)", m_ble_nus_max_data_len, m_ble_nus_max_data_len);
        }
        NRF_LOG_DEBUG("ATT MTU exchange completed. central 0x%x peripheral 0x%x",
                      p_gatt->att_mtu_desired_central,
                      p_gatt->att_mtu_desired_periph);
    }
    
    
    /**@brief Function for initializing the GATT library. */
    void gatt_init(void)
    {
        ret_code_t err_code;
    
        err_code = nrf_ble_gatt_init(&m_gatt, gatt_evt_handler);
        APP_ERROR_CHECK(err_code);
    
        err_code = nrf_ble_gatt_att_mtu_periph_set(&m_gatt, NRF_SDH_BLE_GATT_MAX_MTU_SIZE);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling events from the BSP module.
     *
     * @param[in]   event   Event generated by button press.
     */
    void bsp_event_handler(bsp_event_t event)
    {
        uint32_t err_code;
        switch (event)
        {
            case BSP_EVENT_SLEEP:
                sleep_mode_enter();
                break;
    
            case BSP_EVENT_DISCONNECT:
                err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
                if (err_code != NRF_ERROR_INVALID_STATE)
                {
                    APP_ERROR_CHECK(err_code);
                }
                break;
    
            case BSP_EVENT_WHITELIST_OFF:
                if (m_conn_handle == BLE_CONN_HANDLE_INVALID)
                {
                    err_code = ble_advertising_restart_without_whitelist(&m_advertising);
                    if (err_code != NRF_ERROR_INVALID_STATE)
                    {
                        APP_ERROR_CHECK(err_code);
                    }
                }
                break;
    
            default:
                break;
        }
    }
    
    
    /**@brief   Function for handling app_uart events.
     *
     * @details This function will receive a single character from the app_uart module and append it to
     *          a string. The string will be be sent over BLE when the last character received was a
     *          'new line' '\n' (hex 0x0A) or if the string has reached the maximum data length.
     */
    /**@snippet [Handling the data received over UART] */
    
    void uart_event_handle(app_uart_evt_t * p_event)
    {
        static uint8_t data_array[BLE_NUS_MAX_DATA_LEN];
        static uint8_t index = 0;
        static uint8_t flctrl = 0;
        static uint32_t size_rx_buf_written = 0;
        static uint32_t size_rx_buf_available = 0;
        static uint32_t size_tx_buf_written = 0;
        static uint32_t size_tx_buf_available = 0;
        uint32_t       err_code;
        
        switch (p_event->evt_type)
        {
            case APP_UART_DATA_READY:
    
                  size_rx_buf_written   = app_uart_rx_bytes_written();
                  size_rx_buf_available = app_uart_rx_bytes_available();
                  size_tx_buf_written   = app_uart_tx_bytes_written();
                  size_tx_buf_available = app_uart_tx_bytes_available();
    
                  printf("rxw: %lu rxa: %lu txw: %lu txa: %lu\r\n", size_rx_buf_written, size_rx_buf_available, size_tx_buf_written, size_tx_buf_available);
    
    //              if (flctrl == 0 && size_rx_buf > 1024) // !flctrl && app_uart_rx_size() > 7680
    //              {
    //                nrf_gpio_pin_write(RTS_PIN_NUMBER, 1); // stop UART transmission
    //                flctrl = 1; // flctrl++;
    //              }
    //              if (flctrl == 1 && size_rx_buf < 256) // flctrl && app_uart_rx_size() < 512
    //              {
    //                nrf_gpio_pin_write(RTS_PIN_NUMBER, 0); // start UART transmission
    //                flctrl = 0; // flctrl--;
    //              }
              
                  UNUSED_VARIABLE(app_uart_get(&data_array[index]));
                  index++;
    
                  if ((data_array[index - 1] == '\n') ||
                      (data_array[index - 1] == '\r') ||
                      (index >= m_ble_nus_max_data_len))
                  {
                      
                      if (index > 1)
                      {
                          NRF_LOG_DEBUG("Ready to send data over BLE NUS");
                          NRF_LOG_HEXDUMP_DEBUG(data_array, index);
                          //nrf_gpio_pin_write(RTS_PIN_NUMBER, 1); // stop UART transmission
                          do
                          {
                              uint16_t length = (uint16_t)index;
                              err_code = ble_nus_data_send(&m_nus, data_array, &length, m_conn_handle);
                              if ((err_code != NRF_ERROR_INVALID_STATE) &&
                                  (err_code != NRF_ERROR_RESOURCES) &&
                                  (err_code != NRF_ERROR_NOT_FOUND))
                              {
                                  APP_ERROR_CHECK(err_code);
                              }
                          } while (err_code == NRF_ERROR_RESOURCES);
                          //nrf_gpio_pin_write(RTS_PIN_NUMBER, 0); // start UART transmission
                      }
                      index = 0;
                  }
                break;
            case APP_UART_COMMUNICATION_ERROR:
                APP_ERROR_HANDLER(p_event->data.error_communication);
                break;
    
            case APP_UART_FIFO_ERROR:
                APP_ERROR_HANDLER(p_event->data.error_code);
                break;
    
            default:
                break;
        }
    }
    /**@snippet [Handling the data received over UART] */
    
    
    /**@brief  Function for initializing the UART module.
     */
    /**@snippet [UART Initialization] */
    static void uart_init(void)
    {
        nrf_gpio_cfg_output(RTS_PIN_NUMBER);
        nrf_gpio_pin_write(RTS_PIN_NUMBER, 0);
    
        uint32_t                     err_code;
        app_uart_comm_params_t const comm_params =
        {
            .rx_pin_no    = RX_PIN_NUMBER,
            .tx_pin_no    = TX_PIN_NUMBER,
            .rts_pin_no   = RTS_PIN_NUMBER,
            .cts_pin_no   = CTS_PIN_NUMBER,
            .flow_control = APP_UART_FLOW_CONTROL_DISABLED, // APP_UART_FLOW_CONTROL_ENABLED APP_UART_FLOW_CONTROL_DISABLED
            .use_parity   = false,
    #if defined (UART_PRESENT)
            .baud_rate    = NRF_UART_BAUDRATE_115200 // NRF_UART_BAUDRATE_460800 NRF_UART_BAUDRATE_230400 NRF_UART_BAUDRATE_115200
    #else
            .baud_rate    = NRF_UARTE_BAUDRATE_115200
    #endif
        };
    
        APP_UART_FIFO_INIT(&comm_params,
                           UART_RX_BUF_SIZE,
                           UART_TX_BUF_SIZE,
                           uart_event_handle,
                           APP_IRQ_PRIORITY_LOWEST,
                           err_code);
        APP_ERROR_CHECK(err_code);
    }
    /**@snippet [UART Initialization] */
    
    
    /**@brief Function for initializing the Advertising functionality.
     */
    static void advertising_init(void)
    {
        uint32_t               err_code;
        ble_advertising_init_t init;
    
        memset(&init, 0, sizeof(init));
    
        init.advdata.name_type          = BLE_ADVDATA_FULL_NAME;
        init.advdata.include_appearance = false;
        init.advdata.flags              = BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE;
    
        init.srdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]);
        init.srdata.uuids_complete.p_uuids  = m_adv_uuids;
    
        init.config.ble_adv_fast_enabled  = true;
        init.config.ble_adv_fast_interval = APP_ADV_INTERVAL;
        init.config.ble_adv_fast_timeout  = APP_ADV_DURATION;
        init.evt_handler = on_adv_evt;
    
        err_code = ble_advertising_init(&m_advertising, &init);
        APP_ERROR_CHECK(err_code);
    
        ble_advertising_conn_cfg_tag_set(&m_advertising, APP_BLE_CONN_CFG_TAG);
    }
    
    
    /**@brief Function for initializing buttons and leds.
     *
     * @param[out] p_erase_bonds  Will be true if the clear bonding button was pressed to wake the application up.
     */
    static void buttons_leds_init(bool * p_erase_bonds)
    {
        bsp_event_t startup_event;
    
        uint32_t err_code = bsp_init(BSP_INIT_LEDS | BSP_INIT_BUTTONS, bsp_event_handler);
        APP_ERROR_CHECK(err_code);
    
        err_code = bsp_btn_ble_init(NULL, &startup_event);
        APP_ERROR_CHECK(err_code);
    
        *p_erase_bonds = (startup_event == BSP_EVENT_CLEAR_BONDING_DATA);
    }
    
    
    /**@brief Function for initializing the nrf log module.
     */
    static void log_init(void)
    {
        ret_code_t err_code = NRF_LOG_INIT(NULL);
        APP_ERROR_CHECK(err_code);
    
        NRF_LOG_DEFAULT_BACKENDS_INIT();
    }
    
    
    /**@brief Function for initializing power management.
     */
    static void power_management_init(void)
    {
        ret_code_t err_code;
        err_code = nrf_pwr_mgmt_init();
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling the idle state (main loop).
     *
     * @details If there is no pending log operation, then sleep until next the next event occurs.
     */
    static void idle_state_handle(void)
    {
        if (NRF_LOG_PROCESS() == false)
        {
            nrf_pwr_mgmt_run();
        }
    }
    
    
    /**@brief Function for starting advertising.
     */
    static void advertising_start(void)
    {
        uint32_t err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST);
        APP_ERROR_CHECK(err_code);
    }
    
    /**@brief Application main function.
     */
    int main(void)
    {
        bool erase_bonds;
    
        // Initialize.
        uart_init();
        log_init();
        timers_init();
        buttons_leds_init(&erase_bonds);
        power_management_init();
        ble_stack_init();
        gap_params_init();
        gatt_init();
        services_init();
        advertising_init();
        conn_params_init();
    
        // Start execution.
        /* printf("\r\nUART started.\r\n"); */
        NRF_LOG_INFO("Debug logging for UART over RTT started.");
        advertising_start();
    
    //    nrf_gpio_cfg_output(RTS_PIN_NUMBER);
    
        // Enter main loop.
        for (;;)
        {
    //        int x;
    //        nrf_gpio_pin_write(RTS_PIN_NUMBER, 1);
    //        for(x=0; x<10000000;x++);
    //        nrf_gpio_pin_write(RTS_PIN_NUMBER, 0);
    //        for(x=0; x<10000000;x++);
            idle_state_handle();
        }
    }
    
    
    /**
     * @}
     */
    

  • Hi Robert

    Unless you need the timer and PPI channels for something else I wouldn't recommend doing something custom just to avoid using them. Running a timer adds a bit to your current consumption, but when you're already running UART (and the CPU big parts of the time) the relative difference is very small. 

    That aside, it seems to me you are trying to write a ~30 byte log message to the UART every time you receive a single byte from the UART?

    This is sure to overload the TX FIFO in the driver, if you are sending a series of byte to the nrf52. 

    To see if this is the problem try to add a counter to the interrupt, and only print the log output on every N RX bytes:

    static int counter = 0;
    if(counter++ > 100)
    {
        size_rx_buf_written   = app_uart_rx_bytes_written();
        size_rx_buf_available = app_uart_rx_bytes_available();
        size_tx_buf_written   = app_uart_tx_bytes_written();
        size_tx_buf_available = app_uart_tx_bytes_available();
    
        printf("rxw: %lu rxa: %lu txw: %lu txa: %lu\r\n", size_rx_buf_written, size_rx_buf_available, size_tx_buf_written, size_tx_buf_available);
        counter = 0;
    }

    Best regards
    Torbjørn

  • Thank you. I realized that almost immediately after I posted.

    I'd like to confirm one thing that does not make sense.

    According to your documentation here, there is a 6 byte hardware buffer for incoming uart data that generates an overrun error condition when more than 6 bytes is received. It also triggers RTS when there is only space for four more bytes in the receiver FIFO.

    That being said, can you confirm that the current UART implementation in ble_app_uart will not function properly without flow control enabled on a byte by byte basis? Said otherwise, sending more than 6 bytes of data without flow control at a time might certainly lead to lost data and the overrun error?

    If the answer to that question is yes, then does my problem even have a solution?? The external microprocessor sending data to the nrf52840 can only react to flow control RTS after each chunk of data it sends which is >128 bytes.. so at this point, the RX 6 byte hardware buffer could have already overflowed.

Related