This post is older than 2 years and might not be relevant anymore
More Info: Consider searching for newer posts

There seems to be a conflict between the app_timers.

Hello

I used sdk v17.0 and nRF52DK.

I wrote a code that can turn on/off various functions using buttons and apps. And I don't think there's a problem up to here.

And by creating a new timer, I am going to create a function that shuts down power if there is no input on the MCU for a certain period of time.

This is a simple timer whose count increases every second.  However, adding this timer will cause the board to stop if the button or app repeatedly executes one function several times.

(No errors were output from debugging.)

This is the app_timer I added.

static void SleepMode_timer_handler(void * p_context) //1sec
{
  //printf("%d\n", sleep_count);
  //sleep_count++;

  if(!cleaning_state && !UVC_state) //if no running cleaning and uvc led
  {
    sleep_count++;
  }

  else  //if running cleaning or uvc led
  {
    sleep_count = 0; //No count
  }

  if(sleep_count > 60) //if idle state during 1min, power off
  {
    printf("Power Off..\n");

    do_play_buzzer(); 
    /* power off code */
  }
}


static void timers_init(void)
{
    ret_code_t err_code;

    // Initialize timer module.
    err_code = app_timer_init();
    APP_ERROR_CHECK(err_code);

   //Create Sleep Mode timers/
    err_code = app_timer_create(&m_SleepMode_timer_id,
                                APP_TIMER_MODE_REPEATED, 
                                SleepMode_timer_handler);
    APP_ERROR_CHECK(err_code);
}


static void SleepMode_timers_start() 
{
    ret_code_t err_code;

    printf("SleepMode_timers_start \n");

    err_code = app_timer_start(m_SleepMode_timer_id, APP_TIMER_TICKS(1000), NULL); 
    APP_ERROR_CHECK(err_code);
}


int main()
{
    .
    .
    .
    SleepMode_timers_start(); //timer start
}

6371.nRF5_SDK_17.0.0_9d13099.zip

I attached my entire code file because I couldn't find the cause of the problem.


Thank you in advance for your help.

Parents
  • Hi,

    I do not see any issues related to the app_timer. However looking at your project and adding some more logging I see that pressing button 1 changes some state variables (cleaning_state and UVC_state) and that is used to reset sleep count, as you describe. I also see a few other timers being started or stopped in the button handling in app_button_event_handler().

    Looking at the code with a lot of commented out changes I get a feeling you do not have full control over the states, but it is difficult for me to know how things are supposed to work. I think it we should look more at the application logic and that it is a more likely culprit than the app_timer itself which seems to be working as expected as far as I can see.

    Perhaps you can describe in more detail which code to use to reproduce the issue, and also how to see it working as expected (without the sleep mode timer)?

  • Hello,

    I erased some unnecessary code from the code I posted.  I don't have a board right now, so I haven't tested it, but I don't think it's a problem.

    #include <stdint.h>
    #include <string.h>
    #include <stdbool.h>
    #include "nordic_common.h"
    #include "nrf.h"
    #include "ble_hci.h"
    #include "ble_advdata.h"
    #include "ble_advertising.h"
    #include "ble_conn_params.h"
    #include "nrf_sdh.h"
    #include "nrf_sdh_soc.h"
    #include "nrf_sdh_ble.h"
    #include "nrf_ble_gatt.h"
    #include "nrf_ble_lesc.h" 
    #include "nrf_ble_qwr.h"
    #include "app_timer.h"
    #include "ble_nus.h"
    #include "app_uart.h"
    #include "app_util_platform.h"
    #include "bsp_btn_ble.h"
    #include "nrf_pwr_mgmt.h"
    #include "nrf_drv_i2s.h" //neopixel led control
    
    #if defined (UART_PRESENT)
    #include "nrf_uart.h"
    #endif
    #if defined (UARTE_PRESENT)
    #include "nrf_uarte.h"
    #endif
    
    #include "nrf_log.h"
    #include "nrf_log_ctrl.h"
    #include "nrf_log_default_backends.h"
    
    //==========================================================
    
    //add include
    #include "app_button.h" 
    #include "nrf_delay.h" 
    #include "peer_manager.h" 
    #include "peer_manager_handler.h" 
    #include "fds.h" 
    #include "nrf_drv_twi.h"
    #include "app_error.h"
    #include "bsp.h" 
    #include "app_pwm.h" 
    
    #include "nrf_drv_saadc.h" //ADC
    #include "nrf_drv_ppi.h"
    #include "nrf_drv_timer.h"
    #include "boards.h"
    
    //==========================================================
    
    #define APP_BLE_CONN_CFG_TAG            1                                           /**< A tag identifying the SoftDevice BLE configuration. */
    
    #define DEVICE_NAME                     "nRF52DK"                               /**< Name of device. Will be included in the advertising data. */
    #define NUS_SERVICE_UUID_TYPE           BLE_UUID_TYPE_VENDOR_BEGIN                  /**< UUID type for the Nordic UART Service (vendor specific). */
    
    #define APP_BLE_OBSERVER_PRIO           3                                           /**< Application's BLE observer priority. You shouldn't need to modify this value. */
    
    #define APP_ADV_INTERVAL                64                                          /**< The advertising interval (in units of 0.625 ms. This value corresponds to 40 ms). */
    
    #define APP_ADV_DURATION                0 //18000 //0 : infinity snanning         /**< The advertising duration (180 seconds) in units of 10 milliseconds. */
    
    
    //==========================================================
    
    #define MIN_CONN_INTERVAL               MSEC_TO_UNITS(20, UNIT_1_25_MS)             /**< Minimum acceptable connection interval (20 ms), Connection interval uses 1.25 ms units. */
    #define MAX_CONN_INTERVAL               MSEC_TO_UNITS(75, UNIT_1_25_MS)             /**< Maximum acceptable connection interval (75 ms), Connection interval uses 1.25 ms units. */
    #define SLAVE_LATENCY                   0                                           /**< Slave latency. */
    #define CONN_SUP_TIMEOUT                MSEC_TO_UNITS(4000, UNIT_10_MS)             /**< Connection supervisory timeout (4 seconds), Supervision Timeout uses 10 ms units. */
    #define FIRST_CONN_PARAMS_UPDATE_DELAY  APP_TIMER_TICKS(5000)                       /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */
    #define NEXT_CONN_PARAMS_UPDATE_DELAY   APP_TIMER_TICKS(30000)                      /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */
    #define MAX_CONN_PARAMS_UPDATE_COUNT    3                                           /**< Number of attempts before giving up the connection parameter negotiation. */
    
    //==========================================================
    
    #define LESC_DEBUG_MODE                 0                                           /**< Set to 1 to use LESC debug keys, allows you to use a sniffer to inspect traffic. */
    
    #define SEC_PARAM_BOND                  1                                           /**< Perform bonding. */
    #define SEC_PARAM_MITM                  0 //1                                       /**< Man In The Middle protection required (applicable when display module is detected). */
    #define SEC_PARAM_LESC                  1 //0                                           /**< LE Secure Connections enabled. */
    #define SEC_PARAM_KEYPRESS              0                                           /**< Keypress notifications not enabled. */
    #define SEC_PARAM_IO_CAPABILITIES       BLE_GAP_IO_CAPS_NONE //BLE_GAP_IO_CAPS_DISPLAY_ONLY                /**< Display I/O capabilities. */
    #define SEC_PARAM_OOB                   0                                           /**< Out Of Band data not available. */
    #define SEC_PARAM_MIN_KEY_SIZE          7                                           /**< Minimum encryption key size. */
    #define SEC_PARAM_MAX_KEY_SIZE          16                                          /**< Maximum encryption key size. */
    
    #define DEAD_BEEF                       0xDEADBEEF                                  /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */
    
    #define UART_TX_BUF_SIZE                256                                         /**< UART TX buffer size. */
    #define UART_RX_BUF_SIZE                256                                         /**< UART RX buffer size. */
    
    //==========================================================
    //Neopixel LED 
    #define LED_DIN_PIN		    15 //27 //2
    //#define LED_LRCK_PIN		    11
    #define LED_SCK_PIN		    11 //18
    #define NUM_LEDS		    3 //9
    #define DATA_BYTES_PER_LED	    3	// 24-bit GRB data structure
    #define LEDS_DATA_BYTE_SIZE	    NUM_LEDS * DATA_BYTES_PER_LED //LEDs * (8bit * 3 = 24bit)
    
    #define I2S_BITS_PER_DATA_BIT	    4
    
    //SK68xx LED
    #define I2S_SK6812_ZERO		    0x8		//0b'1000 (0.3us; 0.9us)
    #define I2S_SK6812_ONE		    0xC		//0b'1100 (0.6us; 0.6us)
    
    //WS28xx LED
    #define I2S_WS2812B_ZERO	    0x8		//0b'1000 (0.4us; 0.85us)
    #define I2S_WS2812B_ONE		    0xE		//0b'1110 (0.8us; 0.45us)
    
    #define I2S_BYTES_PER_RESET	    256/8	//reset_pulse / period = 80us / 0.3125us = 256
    #define I2S_LEDS_WORD_SIZE	    BYTES_TO_WORDS(LEDS_DATA_BYTE_SIZE * I2S_BITS_PER_DATA_BIT)
    #define I2S_RESET_WORD_SIZE	    BYTES_TO_WORDS(I2S_BYTES_PER_RESET)	//8 words
    #define I2S_LEDS_FRAME_WORD_SIZE    I2S_LEDS_WORD_SIZE + I2S_RESET_WORD_SIZE
    
    typedef struct { //LED colors
        uint8_t g;
        uint8_t r;
        uint8_t b;
    } sk6812_led_t;
    
    sk6812_led_t	m_led_buffer_tx[NUM_LEDS];
    uint32_t	m_i2s_led_buffer_tx[I2S_LEDS_FRAME_WORD_SIZE];
    
    //==========================================================
    
    #define SAMPLES_IN_BUFFER 2 //ADC buffer
    volatile uint8_t state = 1;
    
    static nrf_saadc_value_t     m_buffer_pool[2][SAMPLES_IN_BUFFER];
    static nrf_ppi_channel_t     m_ppi_channel;
    static uint32_t              m_adc_evt_counter;
    
    
    static const nrf_drv_timer_t m_timer = NRF_DRV_TIMER_INSTANCE(2); //battery led timer
    
    //==========================================================
    
    BLE_NUS_DEF(m_nus, NRF_SDH_BLE_TOTAL_LINK_COUNT);                                   /**< BLE NUS service instance. */
    NRF_BLE_GATT_DEF(m_gatt);                                                           /**< GATT module instance. */
    NRF_BLE_QWR_DEF(m_qwr);                                                             /**< Context for the Queued Write module.*/
    BLE_ADVERTISING_DEF(m_advertising);                                                 /**< Advertising module instance. */
    
    APP_TIMER_DEF(m_PowerOff_timer_id); //button Long press time, repeate timer
    APP_TIMER_DEF(m_ClickCount_timer_id); //button double click time, repeate timer
    APP_TIMER_DEF(m_Cleaning_timer_id);
    APP_TIMER_DEF(m_UVC_timer_id); 
    APP_TIMER_DEF(m_ButtonIdleTime_timer_id);
    APP_TIMER_DEF(m_SleepMode_timer_id);
    
    
    //battery
    int charging_state;
    
    //ble
    int ble_connect_state = 0; //ble connect state
    
    //button
    int click_state;
    bool push_state = false;
    
    //App
    bool app_cleaning_state = false;
    bool app_uvc_state = false;
    
    //Peripheral state
    bool Cleaner_state = false; 
    bool UV_LED_state = false;
    bool stop_state = false;
    bool button_IdleTime = true; //true : can use button, false : Can't use button
    bool mag_state = false;
    bool sleepmode_timer_state = false;
    int mag_value; //magnetic sensor
    
    //=================================================================
    
    static uint16_t   m_conn_handle          = BLE_CONN_HANDLE_INVALID;                 /**< Handle of the current connection. */
    static uint16_t   m_ble_nus_max_data_len = BLE_GATT_ATT_MTU_DEFAULT - 3;            /**< Maximum length of data (in bytes) that can be transmitted to the peer by the Nordic UART service module. */
    static ble_uuid_t m_adv_uuids[]          =                                          /**< Universally unique service identifier. */
    {
        {BLE_UUID_NUS_SERVICE, NUS_SERVICE_UUID_TYPE}
    };
    
    static void sleep_mode_enter();
    
    /**@brief Function for assert macro callback.
     *
     * @details This function will be called in case of an assert in the SoftDevice.
     *
     * @warning This handler is an example only and does not fit a final product. You need to analyse
     *          how your product is supposed to react in case of Assert.
     * @warning On assert from the SoftDevice, the system can only recover on reset.
     *
     * @param[in] line_num    Line number of the failing ASSERT call.
     * @param[in] p_file_name File name of the failing ASSERT call.
     */
    void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name)
    {
        app_error_handler(DEAD_BEEF, line_num, p_file_name);
    }
    
    
    void gpio_init(void)
    {
      nrf_gpio_cfg_output(Piezo);
      nrf_gpio_pin_clear(Piezo); //off
    
      nrf_gpio_cfg_output(UVC_LED);
      nrf_gpio_pin_clear(UVC_LED); //off
    
      nrf_gpio_cfg_output(BUZZER);
      nrf_gpio_pin_clear(UVC_LED); //off
    
      nrf_gpio_cfg_input(Magnetic, NRF_GPIO_PIN_NOPULL);
      nrf_gpio_cfg_input(BUTTON_1, NRF_GPIO_PIN_PULLUP);
      nrf_gpio_cfg_input(Charge_CHG, NRF_GPIO_PIN_PULLUP); //battery charge state(CHG), PULLUP
      //nrf_gpio_cfg_output(POWER_SW); //POWER_HOLD pin
    }
    
    
    static void do_play_buzzer(void)
    {
      nrf_gpio_pin_set(BUZZER);
      nrf_delay_ms(200); //disable after buzzer play time
      nrf_gpio_pin_clear(BUZZER);
    }
    
    //======================================================================================
    
    static void PowerOff_timers_stop();
    static void ClickCount_timers_stop();
    static void Cleaning_timers_start();
    static void Cleaning_timers_stop();
    static void UVC_timers_stop();
    static void All_Off(); //When go to sleep mode
    
    void color_first(uint8_t r, uint8_t g, uint8_t b);
    void color_second(uint8_t r, uint8_t g, uint8_t b);
    void color_third(uint8_t r, uint8_t g, uint8_t b);
    void clear_leds();
    ret_code_t sk6812_i2s_init_mem();
    
    uint32_t press_time; //press time count
    
    int click_count; //click count(use double click)
    int cleaning_count = 0;
    int cleaning_disable_count = 0;
    int UVC_count = 0;
    int UVC_disable_count = 0;
    int sleep_count = 0; //sleep mode timer count
    
    bool buttonTimeout = false; //use double click
    bool cleaning_state = false;
    bool UVC_state = false;
    bool PowerOff_timer_state = false;
    
    static void PowerOff_timer_handler(void * p_context)
    {
      press_time++;
      printf("COUNT : %d\n", press_time); //long button press time
    }
    
    
    static void ClickCount_timer_handler(void * p_context)
    {
      buttonTimeout = true;
    
      if(click_count == 1 && !push_state) //If no click after first click
      {
        printf("One Click\n");
        cleaning_count++;
        cleaning_state = true; //cleaning start
        Cleaning_timers_start(); //after 5min, stop cleaning
        ClickCount_timers_stop();
      }
    
      click_count = 0;
      //printf("Click : %d\n", click_count);
    }
    
    
    static void Cleaning_timer_handler(void * p_context) //after 10sec cleaning off
    {
      printf("Timeout cleaning\n");
      cleaning_state = false; //cleaning off
      Cleaning_timers_stop();
    }
    
    
    static void UVC_timer_handler(void * p_context) //after 10sec uvc led off
    {
      printf("Timeout UVC LED\n");
      UVC_state = false; //UVC LED off
      UVC_timers_stop();
    }
    
    
    static void button_IdleTime_timer_handler(void * p_context) //after 0.5sec
    {
      //printf("button ready\n");
      button_IdleTime = true;
    }
    
    
    static void SleepMode_timer_handler(void * p_context) //for 1sec
    {
      //printf("%d\n", sleep_count);
      //sleep_count++;
    
      if(!cleaning_state && !UVC_state) //if no running cleaning and uvc led
      {
        sleep_count++;
      }
    
      else  //if running cleaning or uvc led
      {
        sleep_count = 0; //No count
      }
    
      if(sleep_count > 60) //if idle state during 1min, power off
      {
        printf("Power Off..\n");
    
        do_play_buzzer(); 
        //nrf_gpio_pin_clear(POWER_SW); //power off
      }
    }
    
    
    /**@brief Function for the Timer initialization.
     *
     * @details Initializes the timer module. This creates and starts application timers.
     */
    static void timers_init(void)
    {
        ret_code_t err_code;
    
        // Initialize timer module.
        err_code = app_timer_init();
        APP_ERROR_CHECK(err_code);
    
       //Create Power off Time timers/
        err_code = app_timer_create(&m_PowerOff_timer_id,
                                    APP_TIMER_MODE_REPEATED,
                                    PowerOff_timer_handler);
        APP_ERROR_CHECK(err_code);
    
       //Create Click count Time timers/
        err_code = app_timer_create(&m_ClickCount_timer_id,
                                    APP_TIMER_MODE_SINGLE_SHOT,  
                                    ClickCount_timer_handler); //APP_TIMER_MODE_REPEATED
        APP_ERROR_CHECK(err_code);
    
       //Create Stop Cleaning timers/
        err_code = app_timer_create(&m_Cleaning_timer_id,
                                    APP_TIMER_MODE_REPEATED, 
                                    Cleaning_timer_handler);
        APP_ERROR_CHECK(err_code);
    
       //Create Stop UVC timers/
        err_code = app_timer_create(&m_UVC_timer_id,
                                    APP_TIMER_MODE_REPEATED, 
                                    UVC_timer_handler);
       APP_ERROR_CHECK(err_code);
    
       //Create Button Idle Time timers/
        err_code = app_timer_create(&m_ButtonIdleTime_timer_id,
                                    APP_TIMER_MODE_SINGLE_SHOT,  
                                    button_IdleTime_timer_handler); //APP_TIMER_MODE_REPEATED
        APP_ERROR_CHECK(err_code);
    
       //Create Sleep Mode timers/
        err_code = app_timer_create(&m_SleepMode_timer_id,
                                    APP_TIMER_MODE_REPEATED, 
                                    SleepMode_timer_handler);
        APP_ERROR_CHECK(err_code);
    }
    
    
    static void PowerOff_timers_start()
    {
      ret_code_t err_code;
    
      err_code = app_timer_start(m_PowerOff_timer_id, APP_TIMER_TICKS(1000), NULL); //count 1sec
      APP_ERROR_CHECK(err_code);
    
      PowerOff_timer_state = true;
    
      //printf("PowerOff timer start\n");
    }
    
    
    static void PowerOff_timers_stop()
    {
        ret_code_t err_code;
    
        if(press_time >= 2 && !push_state) //press 3sec, Power Off
        {
          printf("Power Off\n");
          do_play_buzzer();
        }
    
        press_time = 0; //count reset
        PowerOff_timer_state = false;
    
        err_code = app_timer_stop(m_PowerOff_timer_id); 
        APP_ERROR_CHECK(err_code); 
    
        //printf("PowerOff timer stop\n");
    }
    
    
    static void  ClickCount_timers_start()
    {
      ret_code_t err_code;
    
      err_code = app_timer_start(m_ClickCount_timer_id, APP_TIMER_TICKS(700), NULL); 
      APP_ERROR_CHECK(err_code);
    
      //printf("Start  Click count Timer\n");
    }
    
    
    static void  ClickCount_timers_stop() //Stop Timer
    {
        ret_code_t err_code;
    
        err_code = app_timer_stop(m_ClickCount_timer_id); 
        APP_ERROR_CHECK(err_code);
    }
    
    
    static void Cleaning_timers_start() 
    {
      ret_code_t err_code;
    
      printf("Start  Cleaning Timer\n");
      err_code = app_timer_start(m_Cleaning_timer_id, APP_TIMER_TICKS(10000), NULL); //10sec test
      APP_ERROR_CHECK(err_code);
    }
    
    
    static void Cleaning_timers_stop() //Stop button or app
    {
        ret_code_t err_code;
    
        err_code = app_timer_stop(m_Cleaning_timer_id); 
        APP_ERROR_CHECK(err_code);
    
        printf("Stop Cleaning\n");
        cleaning_state = false; //cleaning off
        do_play_buzzer();
    
        color_second(0,0,0); //led off
    }
    
    
    static void UVC_timers_start() 
    {
      ret_code_t err_code;
    
      printf("Start  UVC LED Timer\n");
      err_code = app_timer_start(m_UVC_timer_id, APP_TIMER_TICKS(10000), NULL); //10sec test
      APP_ERROR_CHECK(err_code);
    }
    
    
    static void UVC_timers_stop() //Stop button or app
    {
        ret_code_t err_code;
        
        err_code = app_timer_stop(m_UVC_timer_id); 
        APP_ERROR_CHECK(err_code);
        
        printf("Stop UVC LED Timer\n");
        UVC_state = false; //UVC LED off
        do_play_buzzer();
    
        color_third(0,0,0); //led off
    }
    
    
    static void button_IdleTime_start() 
    {
      ret_code_t err_code;
    
      //printf("after 0.5sec button ready\n");
      err_code = app_timer_start(m_ButtonIdleTime_timer_id, APP_TIMER_TICKS(500), NULL); 
      APP_ERROR_CHECK(err_code);
    }
    
    
    static void SleepMode_timers_start() 
    {
        ret_code_t err_code;
    
        printf("SleepMode_timers_start \n");
    
        err_code = app_timer_start(m_SleepMode_timer_id, APP_TIMER_TICKS(1000), NULL); 
        APP_ERROR_CHECK(err_code);
    }
    
    
    /*static void SleepMode_timers_stop() 
    {
        ret_code_t err_code;
        
        printf("SleepMode_timers_stop \n");
        sleep_count = 0;
    }*/
    
    //==========================================================================================================
    
    /**@brief Function for the GAP initialization.
     *
     * @details This function will set up all the necessary GAP (Generic Access Profile) parameters of
     *          the device. It also sets the permissions and appearance.
     */
    static void gap_params_init(void)
    {
        uint32_t                err_code;
        ble_gap_conn_params_t   gap_conn_params;
        ble_gap_conn_sec_mode_t sec_mode;
    
        BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode);
    
        err_code = sd_ble_gap_device_name_set(&sec_mode,
                                              (const uint8_t *)DEVICE_NAME,
                                              strlen(DEVICE_NAME));
        APP_ERROR_CHECK(err_code);
    
        memset(&gap_conn_params, 0, sizeof(gap_conn_params));
    
        gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL;
        gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL;
        gap_conn_params.slave_latency     = SLAVE_LATENCY;
        gap_conn_params.conn_sup_timeout  = CONN_SUP_TIMEOUT;
    
        err_code = sd_ble_gap_ppcp_set(&gap_conn_params);
        APP_ERROR_CHECK(err_code);
    }
    
    /**@brief Function for handling events from the GATT library. */
    void gatt_evt_handler(nrf_ble_gatt_t * p_gatt, nrf_ble_gatt_evt_t const * p_evt)
    {
        if ((m_conn_handle == p_evt->conn_handle) && (p_evt->evt_id == NRF_BLE_GATT_EVT_ATT_MTU_UPDATED))
        {
            m_ble_nus_max_data_len = p_evt->params.att_mtu_effective - OPCODE_LENGTH - HANDLE_LENGTH;
            NRF_LOG_INFO("Data len is set to 0x%X(%d)", m_ble_nus_max_data_len, m_ble_nus_max_data_len);
        }
        NRF_LOG_DEBUG("ATT MTU exchange completed. central 0x%x peripheral 0x%x",
                      p_gatt->att_mtu_desired_central,
                      p_gatt->att_mtu_desired_periph);
    }
    
    
    /**@brief Function for initializing the GATT library. */
    void gatt_init(void)
    {
        ret_code_t err_code;
    
        err_code = nrf_ble_gatt_init(&m_gatt, gatt_evt_handler);
        APP_ERROR_CHECK(err_code);
    
        err_code = nrf_ble_gatt_att_mtu_periph_set(&m_gatt, NRF_SDH_BLE_GATT_MAX_MTU_SIZE);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling Queued Write Module errors.
     *
     * @details A pointer to this function will be passed to each service which may need to inform the
     *          application about an error.
     *
     * @param[in]   nrf_error   Error code containing information about what went wrong.
     */
    static void nrf_qwr_error_handler(uint32_t nrf_error)
    {
        APP_ERROR_HANDLER(nrf_error);
    }
    
    //==========================================================================================================
    
    /**@brief Function for handling the data from the Nordic UART Service.
     *
     * @details This function will process the data received from the Nordic UART BLE Service and send
     *          it to the UART module.
     *
     * @param[in] p_evt       Nordic UART Service event.
     */
    /**@snippet [Handling the data received over BLE] */
    
    static void nus_data_handler(ble_nus_evt_t * p_evt) //Receive data from App
    {
        ret_code_t err_code;
        uint8_t string_buffer[BLE_NUS_MAX_DATA_LEN+1];
    
        if (p_evt->type == BLE_NUS_EVT_RX_DATA)
        {
          memcpy(string_buffer, p_evt->params.rx_data.p_data, p_evt->params.rx_data.length);
          string_buffer[p_evt->params.rx_data.length] = 0;
        }
    }
    
    
    /**@snippet [Handling the data received over BLE] */
    
    
    /**@brief Function for initializing services that will be used by the application.
     */
    static void services_init(void)
    {
        uint32_t           err_code;
        ble_nus_init_t     nus_init;
        nrf_ble_qwr_init_t qwr_init = {0};
    
        // Initialize Queued Write Module.
        qwr_init.error_handler = nrf_qwr_error_handler;
    
        err_code = nrf_ble_qwr_init(&m_qwr, &qwr_init);
        APP_ERROR_CHECK(err_code);
    
        // Initialize NUS.
        memset(&nus_init, 0, sizeof(nus_init));
    
        nus_init.data_handler = nus_data_handler;
    
        err_code = ble_nus_init(&m_nus, &nus_init);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling an event from the Connection Parameters Module.
     *
     * @details This function will be called for all events in the Connection Parameters Module
     *          which are passed to the application.
     *
     * @note All this function does is to disconnect. This could have been done by simply setting
     *       the disconnect_on_fail config parameter, but instead we use the event handler
     *       mechanism to demonstrate its use.
     *
     * @param[in] p_evt  Event received from the Connection Parameters Module.
     */
    static void on_conn_params_evt(ble_conn_params_evt_t * p_evt)
    {
        uint32_t err_code;
    
        if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED)
        {
            err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE);
            APP_ERROR_CHECK(err_code);
        }
    }
    
    
    /**@brief Function for handling errors from the Connection Parameters module.
     *
     * @param[in] nrf_error  Error code containing information about what went wrong.
     */
    static void conn_params_error_handler(uint32_t nrf_error)
    {
        APP_ERROR_HANDLER(nrf_error);
    }
    
    
    /**@brief Function for initializing the Connection Parameters module.
     */
    static void conn_params_init(void)
    {
        uint32_t               err_code;
        ble_conn_params_init_t cp_init;
    
        memset(&cp_init, 0, sizeof(cp_init));
    
        cp_init.p_conn_params                  = NULL;
        cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY;
        cp_init.next_conn_params_update_delay  = NEXT_CONN_PARAMS_UPDATE_DELAY;
        cp_init.max_conn_params_update_count   = MAX_CONN_PARAMS_UPDATE_COUNT;//MAX_CONN_PARAM_UPDATE_COUNT
        cp_init.start_on_notify_cccd_handle    = BLE_GATT_HANDLE_INVALID;
        cp_init.disconnect_on_fail             = false;
        cp_init.evt_handler                    = on_conn_params_evt;
        cp_init.error_handler                  = conn_params_error_handler;
    
        err_code = ble_conn_params_init(&cp_init);
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for putting the chip into sleep mode.
     *
     * @note This function will not return.
     */
    static void sleep_mode_enter(void) 
    {
        uint32_t err_code;
      
        // Prepare wakeup buttons.
        //err_code = bsp_btn_ble_sleep_mode_prepare();
        //APP_ERROR_CHECK(err_code);
    
        // Go to system-off mode (this function will not return; wakeup will cause a reset).
        err_code = sd_power_system_off(); //disconnect ble, all stop, button press to reset
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling advertising events.
     *
     * @details This function will be called for advertising events which are passed to the application.
     *
     * @param[in] ble_adv_evt  Advertising event.
     */
    static void on_adv_evt(ble_adv_evt_t ble_adv_evt) //start advertising
    {
        uint32_t err_code;
    
        switch (ble_adv_evt)
        {
            case BLE_ADV_EVT_FAST:
                break;
    
            case BLE_ADV_EVT_IDLE: //If no connectable advertising is ongoing.
                sleep_mode_enter(); 
                break; 
    
            default:
                break;
        }
    }
    
    
    //==========================================================
    /**@brief Function for handling BLE events.
     *
     * @param[in]   p_ble_evt   Bluetooth stack event.
     * @param[in]   p_context   Unused.
     */
    
    static void advertising_start(bool erase_bonds);
    
    bool pairing_state = false;
    
    static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context) 
    {
        uint32_t err_code;
        //pm_handler_secure_on_connection(p_ble_evt);
    
        switch (p_ble_evt->header.evt_id)
        {
            case BLE_GAP_EVT_DISCONNECTED: //when disconnected
            {
                bool erase_bonds = false;
    
                NRF_LOG_INFO("Disconnected");
                printf("Disconnected\n");
    
                pairing_state = false;
                m_conn_handle = BLE_CONN_HANDLE_INVALID; //disconneted
            } break;
    
            case BLE_GAP_EVT_CONNECTED: //when connected pairing
            {            
                NRF_LOG_INFO("Connected");
    
                pairing_state = true;
                printf("Pairing Success!\n");
    
                m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle;
                err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr, m_conn_handle);
                APP_ERROR_CHECK(err_code);
            } break;
    
            case BLE_GAP_EVT_PHY_UPDATE_REQUEST:
            {
                NRF_LOG_DEBUG("PHY update request.");
                ble_gap_phys_t const phys =
                {
                    .rx_phys = BLE_GAP_PHY_AUTO,
                    .tx_phys = BLE_GAP_PHY_AUTO,
                };
                err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys);
                APP_ERROR_CHECK(err_code);
            } break;
    
            case BLE_GATTC_EVT_TIMEOUT:
                // Disconnect on GATT Client timeout event.
                NRF_LOG_DEBUG("GATT Client Timeout.");
                err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle,
                                                 BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GATTS_EVT_TIMEOUT:
                // Disconnect on GATT Server timeout event.
                NRF_LOG_DEBUG("GATT Server Timeout.");
                err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle,
                                                 BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
                APP_ERROR_CHECK(err_code);
                break;
    
            case BLE_GAP_EVT_SEC_PARAMS_REQUEST: //Edit
                NRF_LOG_DEBUG("BLE_GAP_EVT_SEC_PARAMS_REQUEST");
                break;
    
            case BLE_GAP_EVT_LESC_DHKEY_REQUEST: //add
                NRF_LOG_INFO("BLE_GAP_EVT_LESC_DHKEY_REQUEST");
                break;
    
             case BLE_GAP_EVT_AUTH_STATUS: //add
                 NRF_LOG_INFO("BLE_GAP_EVT_AUTH_STATUS: status=0x%x bond=0x%x lv4: %d kdist_own:0x%x kdist_peer:0x%x",
                              p_ble_evt->evt.gap_evt.params.auth_status.auth_status,
                              p_ble_evt->evt.gap_evt.params.auth_status.bonded,
                              p_ble_evt->evt.gap_evt.params.auth_status.sm1_levels.lv4,
                              *((uint8_t *)&p_ble_evt->evt.gap_evt.params.auth_status.kdist_own),
                              *((uint8_t *)&p_ble_evt->evt.gap_evt.params.auth_status.kdist_peer));
                break;
    
            default:
                // No implementation needed.
                break;
        }
    }
    //==========================================================
    
    
    
    /**@brief Function for the SoftDevice initialization.
     *
     * @details This function initializes the SoftDevice and the BLE event interrupt.
     */
    static void ble_stack_init(void)
    {
        ret_code_t err_code;
    
        err_code = nrf_sdh_enable_request();
        APP_ERROR_CHECK(err_code);
    
        // Configure the BLE stack using the default settings.
        // Fetch the start address of the application RAM.
        uint32_t ram_start = 0;
        err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start);
        APP_ERROR_CHECK(err_code);
    
        // Enable BLE stack.
        err_code = nrf_sdh_ble_enable(&ram_start);
        APP_ERROR_CHECK(err_code);
    
        // Register a handler for BLE events.
        NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL);
    }
    
    
    /**@brief   Function for handling app_uart events.
     *
     * @details This function will receive a single character from the app_uart module and append it to
     *          a string. The string will be be sent over BLE when the last character received was a
     *          'new line' '\n' (hex 0x0A) or if the string has reached the maximum data length.
     */
    /**@snippet [Handling the data received over UART] */
    void uart_event_handle(app_uart_evt_t * p_event)
    {
        static uint8_t data_array[BLE_NUS_MAX_DATA_LEN];
        static uint8_t index = 0;
        uint32_t       err_code;
    
        switch (p_event->evt_type)
        {
            case APP_UART_DATA_READY:
                UNUSED_VARIABLE(app_uart_get(&data_array[index]));
                index++;
    
                if ((data_array[index - 1] == '\n') ||
                    (data_array[index - 1] == '\r') ||
                    (index >= m_ble_nus_max_data_len))
                {
                    if (index > 1)
                    {
                        NRF_LOG_DEBUG("Ready to send data over BLE NUS");
                        NRF_LOG_HEXDUMP_DEBUG(data_array, index);
    
                        do
                        {
                            uint16_t length = (uint16_t)index;
                            err_code = ble_nus_data_send(&m_nus, data_array, &length, m_conn_handle);
                            if ((err_code != NRF_ERROR_INVALID_STATE) &&
                                (err_code != NRF_ERROR_RESOURCES) &&
                                (err_code != NRF_ERROR_NOT_FOUND))
                            {
                                APP_ERROR_CHECK(err_code);
                            }
                        } while (err_code == NRF_ERROR_RESOURCES);
                    }
    
                    index = 0;
                }
                break;
    
            case APP_UART_COMMUNICATION_ERROR:
                APP_ERROR_HANDLER(p_event->data.error_communication);
                break;
    
            case APP_UART_FIFO_ERROR:
                APP_ERROR_HANDLER(p_event->data.error_code);
                break;
    
            default:
                break;
        }
    }
    
    /**@snippet [Handling the data received over UART] */
    
    
    /**@brief  Function for initializing the UART module.
     */
    /**@snippet [UART Initialization] */
    static void uart_init(void)
    {
        uint32_t                     err_code;
        app_uart_comm_params_t const comm_params =
        {
            .rx_pin_no    = RX_PIN_NUMBER, 
            .tx_pin_no    = TX_PIN_NUMBER, 
            .rts_pin_no   = RTS_PIN_NUMBER,
            .cts_pin_no   = CTS_PIN_NUMBER,
            .flow_control = APP_UART_FLOW_CONTROL_DISABLED,
            .use_parity   = false,
    #if defined (UART_PRESENT)
            .baud_rate    = NRF_UART_BAUDRATE_115200
    #else
            .baud_rate    = NRF_UARTE_BAUDRATE_115200
    #endif
        };
    
        APP_UART_FIFO_INIT(&comm_params,
                           UART_RX_BUF_SIZE,
                           UART_TX_BUF_SIZE,
                           uart_event_handle,
                           APP_IRQ_PRIORITY_LOWEST,
                           err_code);
        APP_ERROR_CHECK(err_code);
    
        nrf_gpio_cfg_input (RX_PIN_NUMBER, NRF_GPIO_PIN_PULLUP); //for uart error
    }
    
    
    
    
    /**@brief Function for initializing the Advertising functionality.
     *
     * @details Encodes the required advertising data and passes it to the stack.
     *          Also builds a structure to be passed to the stack when starting advertising.
     */
    static void advertising_init(void)
    {
        uint32_t               err_code;
        ble_advertising_init_t init;
    
        memset(&init, 0, sizeof(init));
    
        init.advdata.name_type          = BLE_ADVDATA_FULL_NAME;
        init.advdata.include_appearance = false; //true
        //init.advdata.flags              = BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE;
        init.advdata.flags              = BLE_GAP_ADV_FLAGS_LE_ONLY_GENERAL_DISC_MODE; //For infinity scan
    
        init.srdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]);
        init.srdata.uuids_complete.p_uuids  = m_adv_uuids;
    
        init.config.ble_adv_fast_enabled  = true;
        init.config.ble_adv_fast_interval = APP_ADV_INTERVAL;
        init.config.ble_adv_fast_timeout  = APP_ADV_DURATION; //advertising timeout
        init.evt_handler = on_adv_evt;
    
        init.config.ble_adv_on_disconnect_disabled = false; //Auto pairing test, true : if disconnet no advertising(scan) / false : if disconnet auto advertising(scan) and connected
    
        err_code = ble_advertising_init(&m_advertising, &init);
        APP_ERROR_CHECK(err_code);
    
        ble_advertising_conn_cfg_tag_set(&m_advertising, APP_BLE_CONN_CFG_TAG);
    }
    
    
    /**@brief Function for initializing the nrf log module.
     */
    static void log_init(void)
    {
        ret_code_t err_code = NRF_LOG_INIT(NULL);
        APP_ERROR_CHECK(err_code);
    
        NRF_LOG_DEFAULT_BACKENDS_INIT();
    }
    
    
    /**@brief Function for initializing power management.
     */
    static void power_management_init(void)
    {
        ret_code_t err_code;
        err_code = nrf_pwr_mgmt_init();
        APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling the idle state (main loop).
     *
     * @details If there is no pending log operation, then sleep until next the next event occurs.
     */
    static void idle_state_handle(void)
    {
        ret_code_t err_code;
    
        if (NRF_LOG_PROCESS() == false)
        {
            nrf_pwr_mgmt_run();
        }
    }
    
    
    //==========================================================
    
    static void app_button_event_handler(uint8_t pin_no, uint8_t button_action)
    {
        ret_code_t err_code;
    
        switch (pin_no)
        {
          case BUTTON_1: 
            switch (button_action)
            {
              case APP_BUTTON_PUSH:
              {
               if(button_IdleTime)
               {
                  //printf("Button pressed\n");
                  push_state = true;
    
                  ////if cleaning or uvc led is running, press the button to stop
                  if(cleaning_state == true)
                  { 
                    //printf("Stop button\n");
                    click_count = 0; //For restart
                    stop_state = true;
                    Cleaning_timers_stop(); 
                  }
    
                  else if(UVC_state == true)
                  {
                    //printf("Stop button\n");
                    click_count = 0; //For restart
                    stop_state = true;
                    UVC_timers_stop();
                  }
    
                  else
                  {
                    if(click_count == 0) //first click
                    {
                      buttonTimeout = false;
                      ClickCount_timers_start();  //after 0.5sec, buttonTimeout = true, click_count = 0;
                      PowerOff_timers_start();
                    }
    
                  //PowerOff_timers_start(); //press time count
                  }
               }
    
               else //button_IdleTime == false
               {
                 printf("Wait ready time\n");
               }
              }
    
              if(!stop_state)
              {
                click_count++;
              }
    
              stop_state = false;
    
              break;
    
               case APP_BUTTON_RELEASE:
               {  
                  //printf("Button releaed\n");
                  push_state = false;
    
                  if(PowerOff_timer_state) //if timer start
                  {
                    PowerOff_timers_stop();
                  }
                  
                  if(click_count == 2 && !buttonTimeout) //double click
                  {
                    ClickCount_timers_stop(); //double click error, timer off
                    button_IdleTime = false;
                    button_IdleTime_start(); //button ready time (0.5sec)
    
                    UVC_state = true; //UVC LED running
                    UVC_timers_start(); //after 5min stop UVC LED
                    UVC_count++; 
                    printf("Double Click\n");
                    click_count = 0;
                  }
               } break;
            } 
          break;
    
          default:
             APP_ERROR_HANDLER(pin_no);
          break;
        }
    }
    
    
    static void app_buttons_init(void)
    {
      uint32_t err_code;
    
      static const app_button_cfg_t app_buttons[BUTTONS_NUMBER] =
      {
        {BUTTON_1, false, BUTTON_PULL, app_button_event_handler},
      };
    
      err_code = app_button_init((app_button_cfg_t *)app_buttons,
                                           BUTTONS_NUMBER,        // 1
                                           APP_TIMER_TICKS(50)); //debounce
      APP_ERROR_CHECK(err_code);
    }
    
    
    /**@brief Function for handling Peer Manager events.
     *
     * @param[in] p_evt  Peer Manager event.
     */
    static void pm_evt_handler(pm_evt_t const * p_evt) //add
    {
        ret_code_t err_code;
    
        pm_handler_on_pm_evt(p_evt);
        pm_handler_flash_clean(p_evt);
    
        switch (p_evt->evt_id) 
        {
            case PM_EVT_PEERS_DELETE_SUCCEEDED:
                advertising_start(false);
                break; 
    
            default:
                break;
        }
    }
    
    
    /**@brief Function for the Peer Manager initialization.
     */
    static void peer_manager_init(void)
    {
        ble_gap_sec_params_t sec_param;
        ret_code_t           err_code;
    
        err_code = pm_init();
        APP_ERROR_CHECK(err_code);
    
        memset(&sec_param, 0, sizeof(ble_gap_sec_params_t));
    
        // Security parameters to be used for all security procedures.
        sec_param.bond           = SEC_PARAM_BOND;
        sec_param.mitm           = SEC_PARAM_MITM;
        sec_param.lesc           = SEC_PARAM_LESC;
        sec_param.keypress       = SEC_PARAM_KEYPRESS;
        sec_param.io_caps        = SEC_PARAM_IO_CAPABILITIES;
        sec_param.oob            = SEC_PARAM_OOB;
        sec_param.min_key_size   = SEC_PARAM_MIN_KEY_SIZE;
        sec_param.max_key_size   = SEC_PARAM_MAX_KEY_SIZE;
        sec_param.kdist_own.enc  = 1;
        sec_param.kdist_own.id   = 1;
        sec_param.kdist_peer.enc = 1;
        sec_param.kdist_peer.id  = 1;
    
        err_code = pm_sec_params_set(&sec_param);
        APP_ERROR_CHECK(err_code);
    
        err_code = pm_register(pm_evt_handler);
        APP_ERROR_CHECK(err_code);
    }
    
    /**@brief Clear bond information from persistent storage.
     */
    static void delete_bonds(void)
    {
        ret_code_t err_code;
    
        NRF_LOG_INFO("Erase bonds!");
    
        err_code = pm_peers_delete();
        APP_ERROR_CHECK(err_code);
    }
    
    /**@brief Function for starting advertising.
     */
    static void advertising_start(bool erase_bonds)
    {
        if (erase_bonds == true)
        {
            delete_bonds();
            // Advertising is started by PM_EVT_PEERS_DELETE_SUCCEEDED event.
        }
        else
        {
            ret_code_t err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST);
    
            APP_ERROR_CHECK(err_code);
        }
    }
    
    //============================================================================
    //SAADC code
    void timer_handler(nrf_timer_event_t event_type, void * p_context)
    {
    
    }
    
    #define ADC_TIME    500 
    
    void saadc_sampling_event_init(void) //SAADC example Reference
    {
        ret_code_t err_code;
    
    #if 0
        err_code = nrf_drv_ppi_init();
        APP_ERROR_CHECK(err_code);
    #endif
        //timer setting
        nrf_drv_timer_config_t timer_cfg = NRF_DRV_TIMER_DEFAULT_CONFIG;
        timer_cfg.bit_width = NRF_TIMER_BIT_WIDTH_32; //different scan mode example
        err_code = nrf_drv_timer_init(&m_timer, &timer_cfg, timer_handler);
        APP_ERROR_CHECK(err_code);
    
        /* setup m_timer for compare event every ADC_TIME */
        uint32_t ticks = nrf_drv_timer_ms_to_ticks(&m_timer, ADC_TIME);
        nrf_drv_timer_extended_compare(&m_timer,
                                       NRF_TIMER_CC_CHANNEL0, //timer channel
                                       ticks, //ADC_TIME
                                       NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK, //Shortcut for clearing the timer based on compare 0.
                                       false);
        nrf_drv_timer_enable(&m_timer); // <-> nrf_drv_timer_disable(&m_timer);
    
        uint32_t timer_compare_event_addr = nrf_drv_timer_compare_event_address_get(&m_timer,
                                                                                    NRF_TIMER_CC_CHANNEL0);
        uint32_t saadc_sample_task_addr   = nrf_drv_saadc_sample_task_get();
    
    
        /* setup ppi channel so that timer compare event is triggering sample task in SAADC */
        err_code = nrf_drv_ppi_channel_alloc(&m_ppi_channel);
        APP_ERROR_CHECK(err_code);
    
        err_code = nrf_drv_ppi_channel_assign(m_ppi_channel,
                                              timer_compare_event_addr,
                                              saadc_sample_task_addr);
        APP_ERROR_CHECK(err_code);
    }
    
    
    void saadc_sampling_event_enable(void)
    {
        ret_code_t err_code = nrf_drv_ppi_channel_enable(m_ppi_channel);
    
        APP_ERROR_CHECK(err_code);
    }
    
      
    void turn_on_batter_level_led(bat_level) //battery LED
    { 
        ret_code_t err_code;
    
        //printf("battery_ADC : %d\n", bat_level);
    
    }
    
    //=====================================================================
    
    void saadc_callback(nrf_drv_saadc_evt_t const * p_event) //battery level
    { //battery A0 pin 
        ret_code_t err_code;
        int16_t bat_level = 0;
        int16_t adc_average = 0; //average adc value
        float temp;
    
       if (p_event->type == NRF_DRV_SAADC_EVT_DONE)
       {
            err_code = nrf_drv_saadc_buffer_convert(p_event->data.done.p_buffer, SAMPLES_IN_BUFFER);
            APP_ERROR_CHECK(err_code);
    
            //NRF_LOG_INFO("ADC event number: %d", (int)m_adc_evt_counter);
     
    
            //Average of bat_level(ADC) 
            for (int i = 0; i < SAMPLES_IN_BUFFER; i++)
            {
                //NRF_LOG_INFO("%d", p_event->data.done.p_buffer[i]);
                bat_level += p_event->data.done.p_buffer[0]; //battery value
                temp = p_event->data.done.p_buffer[1]; //temp value
            }
            m_adc_evt_counter++;
       }
    
    }
    
    
    void saadc_init(void)
    {
        ret_code_t err_code;
    
        nrf_drv_saadc_config_t saadc_config = NRF_DRV_SAADC_DEFAULT_CONFIG;
        saadc_config.resolution = NRF_SAADC_RESOLUTION_12BIT;
    	
        nrf_saadc_channel_config_t channel_0_config =
            NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(NRF_SAADC_INPUT_AIN1); //p0.003
        channel_0_config.gain = NRF_SAADC_GAIN1_6; //NRF_SAADC_GAIN1_6, Temp
        channel_0_config.reference = NRF_SAADC_REFERENCE_VDD4;
    	
        nrf_saadc_channel_config_t channel_1_config =
            NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(NRF_SAADC_INPUT_AIN2); //p0.004
        channel_1_config.gain = NRF_SAADC_GAIN1_4; //bat_adc
        channel_1_config.reference = NRF_SAADC_REFERENCE_VDD4;				
    	
        err_code = nrf_drv_saadc_init(&saadc_config, saadc_callback);
        APP_ERROR_CHECK(err_code);
    
        err_code = nrf_drv_saadc_channel_init(0, &channel_0_config);
        APP_ERROR_CHECK(err_code);
        err_code = nrf_drv_saadc_channel_init(1, &channel_1_config);
        APP_ERROR_CHECK(err_code);
    
        err_code = nrf_drv_saadc_buffer_convert(m_buffer_pool[0],SAMPLES_IN_BUFFER);
        APP_ERROR_CHECK(err_code);   
        err_code = nrf_drv_saadc_buffer_convert(m_buffer_pool[1],SAMPLES_IN_BUFFER);
        APP_ERROR_CHECK(err_code);
    }
    
    static void adc_configure(void)
    {
        saadc_init();
        saadc_sampling_event_init();
        saadc_sampling_event_enable();
    }
    
    //=====================================================================
    
    /**
     * @brief Clears the LED and I2S data buffers 
     */
    ret_code_t sk6812_i2s_init_mem() {
    // TODO: dynamically allocate memory when needed instead of using global arrays
    //    // Init memory for LED data
    //    if (p_led_buffer_tx) free(p_led_buffer_tx);
    //    p_led_buffer_tx = (sk6812_led_t *)malloc(LEDS_DATA_BYTE_SIZE);
    //    if (p_led_buffer_tx) memset(p_led_buffer_tx, 0, LEDS_DATA_BYTE_SIZE);
    //    else return NRF_ERROR_NO_MEM;
    //    
    //    // Init memory for I2S data
    //    if (p_i2s_led_buffer_tx) free(p_i2s_led_buffer_tx);
    //    p_i2s_led_buffer_tx = (uint32_t *)malloc(I2S_LEDS_WORD_SIZE * 4);
    //    if (p_i2s_led_buffer_tx) memset(p_i2s_led_buffer_tx, 0, I2S_LEDS_WORD_SIZE * 4);
    //    else return NRF_ERROR_NO_MEM;
        
        // Reset data buffers, memory value and size
        memset(m_led_buffer_tx, 0, sizeof(m_led_buffer_tx)); 
        memset(m_i2s_led_buffer_tx, 0, sizeof(m_i2s_led_buffer_tx));
        
        return NRF_SUCCESS;
    }
    
    
    /**
     * @brief Stops data transfer after the first full transmission (only using single buffer)
     * @brief Handles transmitted data when receiving the TXPTRUPD and RXPTRUPD events, every RXTXD.MAXCNT number of transmitted data words
     * @brief Addresses written to the pointer registers TXD.PTR and RXD.PTR are double-buffered in hardware, and these double buffers are updated for every RXTXD.MAXCNT words
     */
    void data_handler(nrf_drv_i2s_buffers_t const * p_released, uint32_t status) 
    {
    //    NRF_LOG_DEBUG("status: %d; p_tx_buffer: 0x%08X; p_rx_buffer: 0x%08X", status, p_released->p_tx_buffer, p_released->p_rx_buffer);
    
        // 'nrf_drv_i2s_next_buffers_set' is called directly from the handler
        // each time next buffers are requested, so data corruption is not expected.
    //    ASSERT(p_released);
    
        // When the handler is called after the transfer has been stopped
        // (no next buffers are needed, only the used buffers are to be
        // released), there is nothing to do.
        if (!(status & NRFX_I2S_STATUS_NEXT_BUFFERS_NEEDED)) { //No buffer data, nothing to do
            return;
        }
    
        // Stop data transfer after the first full transmission (only using single buffer)
        if (p_released->p_tx_buffer != NULL) {
    //	nrf_drv_i2s_stop();
    	nrf_drv_i2s_uninit();
        }
    }
    
    
    /**
     * @brief Initializes the I2S interface for ~3.2MHz clock for SK6812
     */
    ret_code_t sk6812_i2s_init() 
    {
        nrf_drv_i2s_config_t config = NRF_DRV_I2S_DEFAULT_CONFIG;     //= NRF_DRV_I2S_DEFAULT_CONFIG;
        //config.sck_pin	= LED_SCK_PIN;	// Don't set NRF_DRV_I2S_PIN_NOT_USED for I2S_CONFIG_SCK_PIN. (The program will stack.) 
        //config.lrck_pin	= NRF_DRV_I2S_PIN_NOT_USED; //LED_LRCK_PIN; // I2S_CONFIG_LRCK_PIN
        //config.mck_pin	= NRF_DRV_I2S_PIN_NOT_USED;
        config.sdout_pin	= LED_DIN_PIN;	// I2S_CONFIG_SDOUT_PIN
        config.sdin_pin	= NRF_DRV_I2S_PIN_NOT_USED;
        //config.irq_priority = I2S_CONFIG_IRQ_PRIORITY;
        //config.mode         = NRF_I2S_MODE_MASTER; //I2S_CONFIG_MODE_MODE_Slave
        //config.format       = NRF_I2S_FORMAT_I2S;
        //config.alignment    = NRF_I2S_ALIGN_LEFT;
        //config.sample_width = NRF_I2S_SWIDTH_8BIT;
        config.channels     = NRF_I2S_CHANNELS_STEREO;
        config.mck_setup    = NRF_I2S_MCK_32MDIV10; //NRF_I2S_MCK_32MDIV5;
        config.ratio        = NRF_I2S_RATIO_32X;
    
        uint32_t err_code = nrf_drv_i2s_init(&config, data_handler); //error! (pin error??)
    //    APP_ERROR_CHECK(err_code);
        
        return err_code; //call other function
    }
    
    
    /**
     * @brief Convert a byte of LED data to a word of I2S data 
     * @brief 1 data bit   <--> 4 I2S bits
     * @brief 1 data byte  <--> 1 I2S word
     */
    uint32_t convert_byte_to_i2s_bits(uint8_t data_byte) 
    {
        uint32_t data_bits = 0;
        
        // Set data_bits based on MSB, then left-shift data_byte
        for (int ii=0; ii < 8; ii++) 
        {
    	data_bits |= ((data_byte & 0x80) ? I2S_SK6812_ONE : I2S_SK6812_ZERO) << ((8-1-ii) * 4); //SK68xx
    	//data_bits |= ((data_byte & 0x80) ? I2S_WS2812B_ONE : I2S_WS2812B_ZERO) << ((8-1-ii) * 4); //WS28xx
    	data_byte = data_byte << 1;
        }
    
        return data_bits;
    }
    
    
    /**
     * @brief Sets I2S data from converted LED data
     */
    void set_i2s_led_data() { //each color data
        uint16_t jj = 0;
        for (uint16_t ii=0; ii < NUM_LEDS; ii++) {
    	m_i2s_led_buffer_tx[jj] = convert_byte_to_i2s_bits(m_led_buffer_tx[ii].g);
    	m_i2s_led_buffer_tx[jj+1] = convert_byte_to_i2s_bits(m_led_buffer_tx[ii].r);
    	m_i2s_led_buffer_tx[jj+2] = convert_byte_to_i2s_bits(m_led_buffer_tx[ii].b);
    	jj += 3;
        }
    }
     
    
    /**
     * @brief Initializes I2S and starts the data transfer
     * @brief Assumes data buffers have already been set
     */
    void send_i2s_led_data() 
    {
        // Configure the I2S module and map IO pins
        uint32_t err_code = sk6812_i2s_init();
        
        // Prevent starting a new data transfer if I2S already initialized
        if (err_code == NRF_SUCCESS) {
    	// Configure TX data buffer
    	nrf_drv_i2s_buffers_t const initial_buffers = {
    	    .p_tx_buffer = m_i2s_led_buffer_tx,
    	    .p_rx_buffer = NULL
    	};
        
    	// Enable the I2S module and start data streaming
    	err_code = nrf_drv_i2s_start(&initial_buffers, I2S_LEDS_FRAME_WORD_SIZE+1, 0);
    	APP_ERROR_CHECK(err_code);
        } else {
    	// Reset to all I2S_SK6812_ZERO's
    	memset(m_i2s_led_buffer_tx, 0x88, I2S_LEDS_WORD_SIZE * 4);
        }
    }
    
    void clear_leds() 
    {
        // Set to all I2S_SK6812_ZERO's
        memset(m_i2s_led_buffer_tx, 0x88, I2S_LEDS_WORD_SIZE * 4);
        send_i2s_led_data();
    }
    
    
    /**
     * @brief Set an RGB LED color data in the global sk6812_led_t array
     */
    void set_led_pixel_RGB(uint16_t pos, uint8_t r, uint8_t g, uint8_t b) {
        m_led_buffer_tx[pos].r = r;
        m_led_buffer_tx[pos].g = g;
        m_led_buffer_tx[pos].b = b;
    }
    
    //set led color
    void color_first(uint8_t r, uint8_t g, uint8_t b) 
    { 
        //sk6812_i2s_init_mem(); //led memory clear
    
        set_led_pixel_RGB(0, r, g, b);
        set_i2s_led_data();
        send_i2s_led_data();
    }
    
    void color_second(uint8_t r, uint8_t g, uint8_t b) 
    {
        //sk6812_i2s_init_mem();
    
        set_led_pixel_RGB(1, r, g, b);
        set_i2s_led_data();
        send_i2s_led_data();
    }
    
    void color_third(uint8_t r, uint8_t g, uint8_t b) 
    {
        //sk6812_i2s_init_mem();
    
        set_led_pixel_RGB(2, r, g, b);
        set_i2s_led_data();
        send_i2s_led_data();
    }
    
    
    //==========================================================
    
    /**@brief Application main function.
     */
    int main(void)
    {
        uint32_t err_code;
        bool erase_bonds = false;
    
        //Initialize.
        gpio_init(); 
        uart_init();
        log_init();
        timers_init();
        app_buttons_init(); 
        power_management_init();
            
        ble_stack_init();
        gap_params_init();
        gatt_init();
        services_init();
        advertising_init();
        conn_params_init();
        peer_manager_init();
    
        err_code = app_button_enable();
        APP_ERROR_CHECK(err_code);
    
        adc_configure(); //ADC value & LED
        bsp_board_init(BSP_INIT_LEDS); //use bsp
    
        // Start execution.
        printf("\r\nCleaner Device started.\r\n");
        NRF_LOG_INFO("Debug logging for UART over RTT started.");
        
        advertising_start(erase_bonds); //false
    
        do_play_buzzer(); //When start play buzzer  
        clear_leds(); //all led off 
    
        SleepMode_timers_start();
    
    
        // Enter main loop.
        for (;;)
        {
          pm_sec_params_set(NULL); //No Security parameters   
    
              if(cleaning_state == true)
              {
                if(cleaning_count == 1) //Run Only Once
                {
                  nrf_gpio_pin_set(Piezo);
                  do_play_buzzer();
    
                  color_second(0,0,255);
    
                  cleaning_count = 0;
                  cleaning_disable_count = 0;
                }
              }
    
              else
              {
                cleaning_disable_count++;
                if(cleaning_disable_count == 1) //Run Only Once
                {
                  nrf_gpio_pin_clear(Piezo);
                }
              }
                     
              if(UVC_state == true)
              {
                if(UVC_count == 1) //Run Only Once
                {
                  printf("Start UVC-LED\n");
                  nrf_gpio_pin_set(UVC_LED); //UVC LED On
                  do_play_buzzer();
    
                  color_third(255,50,0); //orange
    
                  UVC_count = 0;
                  UVC_disable_count = 0;
                }
              }
            
              else 
              {
                UVC_disable_count++;
                if(UVC_disable_count == 1) //Run Only Once
                {
                  nrf_gpio_pin_clear(UVC_LED); //UVC LED Off
                }
              }
    
        }
    } 
    
    /**
     * @}
     */
    

    The basic functions and how they work are as follows:

    1. Use button 1 to click, double-click, and long click.

    2. Click and double click to execute function1 or function2. The long click is pressed for more than 2 seconds and the power is shut down when the button is relised (not implemented on the DK board).

    3. When function 1 or function 2 is running, pressing the button stops running.

    4. If function1 and function2 is not running for one minute, power is shut down (Use app_timer).

    Issue: There is no problem running the first time and running the Sleep timer, and running multiple functions through the button, and it works as planned. However, if I start and stop one function two or three times, the DK board will be stopped. (However, no errors were detected.)  

    I don't think it's just a matter of app_timers. Can I know the cause of this problem?

    Thank you always for your help!

  • Hi,

    schosdas said:
    The basic functions and how they work are as follows:

    I am having a bit or problems mapping your high level description to your code. Can you go through the steps 1-4 and include detailed references to your code, and how it should behave and how it actually behaves? Which parts of the code should I look at at which point? Please be specific.

    schosdas said:
    DK board will be stopped.

    The device should not just stop, so it will be doing something or be in some state. Can you debug to se what state this is in? And how does it differ from what you expected?

Reply
  • Hi,

    schosdas said:
    The basic functions and how they work are as follows:

    I am having a bit or problems mapping your high level description to your code. Can you go through the steps 1-4 and include detailed references to your code, and how it should behave and how it actually behaves? Which parts of the code should I look at at which point? Please be specific.

    schosdas said:
    DK board will be stopped.

    The device should not just stop, so it will be doing something or be in some state. Can you debug to se what state this is in? And how does it differ from what you expected?

Children
No Data
Related